/**************************************************************************
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "main/glheader.h"
#include "main/macros.h"
#include "main/enums.h"
#include "program/prog_instruction.h"
#include "program/prog_parameter.h"
#include "program/program.h"
#include "program/programopt.h"
#include "program/prog_print.h"
#include "tnl/tnl.h"
#include "tnl/t_context.h"
#include "intel_batchbuffer.h"
#include "i915_reg.h"
#include "i915_context.h"
#include "i915_program.h"
static const GLfloat sin_quad_constants[2][4] = {
{
2.0,
-1.0,
.5,
.75
},
{
4.0,
-4.0,
1.0 / (2.0 * M_PI),
.2225
}
};
static const GLfloat sin_constants[4] = { 1.0,
-1.0 / (3 * 2 * 1),
1.0 / (5 * 4 * 3 * 2 * 1),
-1.0 / (7 * 6 * 5 * 4 * 3 * 2 * 1)
};
/* 1, -1/2!, 1/4!, -1/6! */
static const GLfloat cos_constants[4] = { 1.0,
-1.0 / (2 * 1),
1.0 / (4 * 3 * 2 * 1),
-1.0 / (6 * 5 * 4 * 3 * 2 * 1)
};
/**
* Retrieve a ureg for the given source register. Will emit
* constants, apply swizzling and negation as needed.
*/
static GLuint
src_vector(struct i915_fragment_program *p,
const struct prog_src_register *source,
const struct gl_fragment_program *program)
{
GLuint src;
switch (source->File) {
/* Registers:
*/
case PROGRAM_TEMPORARY:
if (source->Index >= I915_MAX_TEMPORARY) {
i915_program_error(p, "Exceeded max temporary reg: %d/%d",
source->Index, I915_MAX_TEMPORARY);
return 0;
}
src = UREG(REG_TYPE_R, source->Index);
break;
case PROGRAM_INPUT:
switch (source->Index) {
case FRAG_ATTRIB_WPOS:
src = i915_emit_decl(p, REG_TYPE_T, p->wpos_tex, D0_CHANNEL_ALL);
break;
case FRAG_ATTRIB_COL0:
src = i915_emit_decl(p, REG_TYPE_T, T_DIFFUSE, D0_CHANNEL_ALL);
break;
case FRAG_ATTRIB_COL1:
src = i915_emit_decl(p, REG_TYPE_T, T_SPECULAR, D0_CHANNEL_XYZ);
src = swizzle(src, X, Y, Z, ONE);
break;
case FRAG_ATTRIB_FOGC:
src = i915_emit_decl(p, REG_TYPE_T, T_FOG_W, D0_CHANNEL_W);
src = swizzle(src, W, ZERO, ZERO, ONE);
break;
case FRAG_ATTRIB_TEX0:
case FRAG_ATTRIB_TEX1:
case FRAG_ATTRIB_TEX2:
case FRAG_ATTRIB_TEX3:
case FRAG_ATTRIB_TEX4:
case FRAG_ATTRIB_TEX5:
case FRAG_ATTRIB_TEX6:
case FRAG_ATTRIB_TEX7:
src = i915_emit_decl(p, REG_TYPE_T,
T_TEX0 + (source->Index - FRAG_ATTRIB_TEX0),
D0_CHANNEL_ALL);
break;
case FRAG_ATTRIB_VAR0:
case FRAG_ATTRIB_VAR0 + 1:
case FRAG_ATTRIB_VAR0 + 2:
case FRAG_ATTRIB_VAR0 + 3:
case FRAG_ATTRIB_VAR0 + 4:
case FRAG_ATTRIB_VAR0 + 5:
case FRAG_ATTRIB_VAR0 + 6:
case FRAG_ATTRIB_VAR0 + 7:
src = i915_emit_decl(p, REG_TYPE_T,
T_TEX0 + (source->Index - FRAG_ATTRIB_VAR0),
D0_CHANNEL_ALL);
break;
default:
i915_program_error(p, "Bad source->Index: %d", source->Index);
return 0;
}
break;
case PROGRAM_OUTPUT:
switch (source->Index) {
case FRAG_RESULT_COLOR:
src = UREG(REG_TYPE_OC, 0);
break;
case FRAG_RESULT_DEPTH:
src = UREG(REG_TYPE_OD, 0);
break;
default:
i915_program_error(p, "Bad source->Index: %d", source->Index);
return 0;
}
break;
/* Various paramters and env values. All emitted to
* hardware as program constants.
*/
case PROGRAM_LOCAL_PARAM:
src = i915_emit_param4fv(p, program->Base.LocalParams[source->Index]);
break;
case PROGRAM_ENV_PARAM:
src =
i915_emit_param4fv(p,
p->ctx->FragmentProgram.Parameters[source->
Index]);
break;
case PROGRAM_CONSTANT:
case PROGRAM_STATE_VAR:
case PROGRAM_NAMED_PARAM:
case PROGRAM_UNIFORM:
src = i915_emit_param4fv(p,
&program->Base.Parameters->ParameterValues[source->Index][0].f);
break;
default:
i915_program_error(p, "Bad source->File: %d", source->File);
return 0;
}
src = swizzle(src,
GET_SWZ(source->Swizzle, 0),
GET_SWZ(source->Swizzle, 1),
GET_SWZ(source->Swizzle, 2), GET_SWZ(source->Swizzle, 3));
if (source->Negate)
src = negate(src,
GET_BIT(source->Negate, 0),
GET_BIT(source->Negate, 1),
GET_BIT(source->Negate, 2),
GET_BIT(source->Negate, 3));
return src;
}
static GLuint
get_result_vector(struct i915_fragment_program *p,
const struct prog_instruction *inst)
{
switch (inst->DstReg.File) {
case PROGRAM_OUTPUT:
switch (inst->DstReg.Index) {
case FRAG_RESULT_COLOR:
case FRAG_RESULT_DATA0:
return UREG(REG_TYPE_OC, 0);
case FRAG_RESULT_DEPTH:
p->depth_written = 1;
return UREG(REG_TYPE_OD, 0);
default:
i915_program_error(p, "Bad inst->DstReg.Index: %d",
inst->DstReg.Index);
return 0;
}
case PROGRAM_TEMPORARY:
return UREG(REG_TYPE_R, inst->DstReg.Index);
default:
i915_program_error(p, "Bad inst->DstReg.File: %d", inst->DstReg.File);
return 0;
}
}
static GLuint
get_result_flags(const struct prog_instruction *inst)
{
GLuint flags = 0;
if (inst->SaturateMode == SATURATE_ZERO_ONE)
flags |= A0_DEST_SATURATE;
if (inst->DstReg.WriteMask & WRITEMASK_X)
flags |= A0_DEST_CHANNEL_X;
if (inst->DstReg.WriteMask & WRITEMASK_Y)
flags |= A0_DEST_CHANNEL_Y;
if (inst->DstReg.WriteMask & WRITEMASK_Z)
flags |= A0_DEST_CHANNEL_Z;
if (inst->DstReg.WriteMask & WRITEMASK_W)
flags |= A0_DEST_CHANNEL_W;
return flags;
}
static GLuint
translate_tex_src_target(struct i915_fragment_program *p, GLubyte bit)
{
switch (bit) {
case TEXTURE_1D_INDEX:
return D0_SAMPLE_TYPE_2D;
case TEXTURE_2D_INDEX:
return D0_SAMPLE_TYPE_2D;
case TEXTURE_RECT_INDEX:
return D0_SAMPLE_TYPE_2D;
case TEXTURE_3D_INDEX:
return D0_SAMPLE_TYPE_VOLUME;
case TEXTURE_CUBE_INDEX:
return D0_SAMPLE_TYPE_CUBE;
default:
i915_program_error(p, "TexSrcBit: %d", bit);
return 0;
}
}
#define EMIT_TEX( OP ) \
do { \
GLuint dim = translate_tex_src_target( p, inst->TexSrcTarget ); \
const struct gl_fragment_program *program = &p->FragProg; \
GLuint unit = program->Base.SamplerUnits[inst->TexSrcUnit]; \
GLuint sampler = i915_emit_decl(p, REG_TYPE_S, \
unit, dim); \
GLuint coord = src_vector( p, &inst->SrcReg[0], program); \
/* Texel lookup */ \
\
i915_emit_texld( p, get_live_regs(p, inst), \
get_result_vector( p, inst ), \
get_result_flags( inst ), \
sampler, \
coord, \
OP); \
} while (0)
#define EMIT_ARITH( OP, N ) \
do { \
i915_emit_arith( p, \
OP, \
get_result_vector( p, inst ), \
get_result_flags( inst ), 0, \
(N<1)?0:src_vector( p, &inst->SrcReg[0], program), \
(N<2)?0:src_vector( p, &inst->SrcReg[1], program), \
(N<3)?0:src_vector( p, &inst->SrcReg[2], program)); \
} while (0)
#define EMIT_1ARG_ARITH( OP ) EMIT_ARITH( OP, 1 )
#define EMIT_2ARG_ARITH( OP ) EMIT_ARITH( OP, 2 )
#define EMIT_3ARG_ARITH( OP ) EMIT_ARITH( OP, 3 )
/*
* TODO: consider moving this into core
*/
static bool calc_live_regs( struct i915_fragment_program *p )
{
const struct gl_fragment_program *program = &p->FragProg;
GLuint regsUsed = ~((1 << I915_MAX_TEMPORARY) - 1);
uint8_t live_components[I915_MAX_TEMPORARY] = { 0, };
GLint i;
for (i = program->Base.NumInstructions - 1; i >= 0; i--) {
struct prog_instruction *inst = &program->Base.Instructions[i];
int opArgs = _mesa_num_inst_src_regs(inst->Opcode);
int a;
/* Register is written to: unmark as live for this and preceeding ops */
if (inst->DstReg.File == PROGRAM_TEMPORARY) {
if (inst->DstReg.Index >= I915_MAX_TEMPORARY)
return false;
live_components[inst->DstReg.Index] &= ~inst->DstReg.WriteMask;
if (live_components[inst->DstReg.Index] == 0)
regsUsed &= ~(1 << inst->DstReg.Index);
}
for (a = 0; a < opArgs; a++) {
/* Register is read from: mark as live for this and preceeding ops */
if (inst->SrcReg[a].File == PROGRAM_TEMPORARY) {
unsigned c;
if (inst->SrcReg[a].Index >= I915_MAX_TEMPORARY)
return false;
regsUsed |= 1 << inst->SrcReg[a].Index;
for (c = 0; c < 4; c++) {
const unsigned field = GET_SWZ(inst->SrcReg[a].Swizzle, c);
if (field <= SWIZZLE_W)
live_components[inst->SrcReg[a].Index] |= (1U << field);
}
}
}
p->usedRegs[i] = regsUsed;
}
return true;
}
static GLuint get_live_regs( struct i915_fragment_program *p,
const struct prog_instruction *inst )
{
const struct gl_fragment_program *program = &p->FragProg;
GLuint nr = inst - program->Base.Instructions;
return p->usedRegs[nr];
}
/* Possible concerns:
*
* SIN, COS -- could use another taylor step?
* LIT -- results seem a little different to sw mesa
* LOG -- different to mesa on negative numbers, but this is conformant.
*
* Parse failures -- Mesa doesn't currently give a good indication
* internally whether a particular program string parsed or not. This
* can lead to confusion -- hopefully we cope with it ok now.
*
*/
static void
upload_program(struct i915_fragment_program *p)
{
const struct gl_fragment_program *program = &p->FragProg;
const struct prog_instruction *inst = program->Base.Instructions;
if (INTEL_DEBUG & DEBUG_WM)
_mesa_print_program(&program->Base);
/* Is this a parse-failed program? Ensure a valid program is
* loaded, as the flagging of an error isn't sufficient to stop
* this being uploaded to hardware.
*/
if (inst[0].Opcode == OPCODE_END) {
GLuint tmp = i915_get_utemp(p);
i915_emit_arith(p,
A0_MOV,
UREG(REG_TYPE_OC, 0),
A0_DEST_CHANNEL_ALL, 0,
swizzle(tmp, ONE, ZERO, ONE, ONE), 0, 0);
return;
}
if (program->Base.NumInstructions > I915_MAX_INSN) {
i915_program_error(p, "Exceeded max instructions (%d out of %d)",
program->Base.NumInstructions, I915_MAX_INSN);
return;
}
/* Not always needed:
*/
if (!calc_live_regs(p)) {
i915_program_error(p, "Could not allocate registers");
return;
}
while (1) {
GLuint src0, src1, src2, flags;
GLuint tmp = 0, dst, consts0 = 0, consts1 = 0;
switch (inst->Opcode) {
case OPCODE_ABS:
src0 = src_vector(p, &inst->SrcReg[0], program);
i915_emit_arith(p,
A0_MAX,
get_result_vector(p, inst),
get_result_flags(inst), 0,
src0, negate(src0, 1, 1, 1, 1), 0);
break;
case OPCODE_ADD:
EMIT_2ARG_ARITH(A0_ADD);
break;
case OPCODE_CMP:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
src2 = src_vector(p, &inst->SrcReg[2], program);
i915_emit_arith(p, A0_CMP, get_result_vector(p, inst), get_result_flags(inst), 0, src0, src2, src1); /* NOTE: order of src2, src1 */
break;
case OPCODE_COS:
src0 = src_vector(p, &inst->SrcReg[0], program);
tmp = i915_get_utemp(p);
consts0 = i915_emit_const4fv(p, sin_quad_constants[0]);
consts1 = i915_emit_const4fv(p, sin_quad_constants[1]);
/* Reduce range from repeating about [-pi,pi] to [-1,1] */
i915_emit_arith(p,
A0_MAD,
tmp, A0_DEST_CHANNEL_X, 0,
src0,
swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */
swizzle(consts0, W, ZERO, ZERO, ZERO)); /* .75 */
i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0);
i915_emit_arith(p,
A0_MAD,
tmp, A0_DEST_CHANNEL_X, 0,
tmp,
swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */
swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */
/* Compute COS with the same calculation used for SIN, but a
* different source range has been mapped to [-1,1] this time.
*/
/* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */
i915_emit_arith(p,
A0_MAX,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
0);
/* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */
i915_emit_arith(p,
A0_MUL,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
tmp,
0);
/* tmp.x = tmp.xy DP sin_quad_constants[2].xy */
i915_emit_arith(p,
A0_DP3,
tmp, A0_DEST_CHANNEL_X, 0,
tmp,
swizzle(consts1, X, Y, ZERO, ZERO),
0);
/* tmp.x now contains a first approximation (y). Now, weight it
* against tmp.y**2 to get closer.
*/
i915_emit_arith(p,
A0_MAX,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
0);
/* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */
i915_emit_arith(p,
A0_MAD,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
swizzle(tmp, ZERO, Y, ZERO, ZERO),
negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0));
/* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */
i915_emit_arith(p,
A0_MAD,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(consts1, W, W, W, W),
swizzle(tmp, Y, Y, Y, Y),
swizzle(tmp, X, X, X, X));
break;
case OPCODE_DP2:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
i915_emit_arith(p,
A0_DP3,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, X, Y, ZERO, ZERO),
swizzle(src1, X, Y, ZERO, ZERO),
0);
break;
case OPCODE_DP3:
EMIT_2ARG_ARITH(A0_DP3);
break;
case OPCODE_DP4:
EMIT_2ARG_ARITH(A0_DP4);
break;
case OPCODE_DPH:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
i915_emit_arith(p,
A0_DP4,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, X, Y, Z, ONE), src1, 0);
break;
case OPCODE_DST:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
/* result[0] = 1 * 1;
* result[1] = a[1] * b[1];
* result[2] = a[2] * 1;
* result[3] = 1 * b[3];
*/
i915_emit_arith(p,
A0_MUL,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, ONE, Y, Z, ONE),
swizzle(src1, ONE, Y, ONE, W), 0);
break;
case OPCODE_EX2:
src0 = src_vector(p, &inst->SrcReg[0], program);
i915_emit_arith(p,
A0_EXP,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, X, X, X, X), 0, 0);
break;
case OPCODE_FLR:
EMIT_1ARG_ARITH(A0_FLR);
break;
case OPCODE_TRUNC:
EMIT_1ARG_ARITH(A0_TRC);
break;
case OPCODE_FRC:
EMIT_1ARG_ARITH(A0_FRC);
break;
case OPCODE_KIL:
src0 = src_vector(p, &inst->SrcReg[0], program);
tmp = i915_get_utemp(p);
i915_emit_texld(p, get_live_regs(p, inst),
tmp, A0_DEST_CHANNEL_ALL, /* use a dummy dest reg */
0, src0, T0_TEXKILL);
break;
case OPCODE_KIL_NV:
if (inst->DstReg.CondMask == COND_TR) {
tmp = i915_get_utemp(p);
/* The KIL instruction discards the fragment if any component of
* the source is < 0. Emit an immediate operand of {-1}.xywz.
*/
i915_emit_texld(p, get_live_regs(p, inst),
tmp, A0_DEST_CHANNEL_ALL,
0, /* use a dummy dest reg */
negate(swizzle(tmp, ONE, ONE, ONE, ONE),
1, 1, 1, 1),
T0_TEXKILL);
} else {
p->error = 1;
i915_program_error(p, "Unsupported KIL_NV condition code: %d",
inst->DstReg.CondMask);
}
break;
case OPCODE_LG2:
src0 = src_vector(p, &inst->SrcReg[0], program);
i915_emit_arith(p,
A0_LOG,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, X, X, X, X), 0, 0);
break;
case OPCODE_LIT:
src0 = src_vector(p, &inst->SrcReg[0], program);
tmp = i915_get_utemp(p);
/* tmp = max( a.xyzw, a.00zw )
* XXX: Clamp tmp.w to -128..128
* tmp.y = log(tmp.y)
* tmp.y = tmp.w * tmp.y
* tmp.y = exp(tmp.y)
* result = cmp (a.11-x1, a.1x01, a.1xy1 )
*/
i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_ALL, 0,
src0, swizzle(src0, ZERO, ZERO, Z, W), 0);
i915_emit_arith(p, A0_LOG, tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, Y, Y, Y, Y), 0, 0);
i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, Y, ZERO, ZERO),
swizzle(tmp, ZERO, W, ZERO, ZERO), 0);
i915_emit_arith(p, A0_EXP, tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, Y, Y, Y, Y), 0, 0);
i915_emit_arith(p, A0_CMP,
get_result_vector(p, inst),
get_result_flags(inst), 0,
negate(swizzle(tmp, ONE, ONE, X, ONE), 0, 0, 1, 0),
swizzle(tmp, ONE, X, ZERO, ONE),
swizzle(tmp, ONE, X, Y, ONE));
break;
case OPCODE_LRP:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
src2 = src_vector(p, &inst->SrcReg[2], program);
flags = get_result_flags(inst);
tmp = i915_get_utemp(p);
/* b*a + c*(1-a)
*
* b*a + c - ca
*
* tmp = b*a + c,
* result = (-c)*a + tmp
*/
i915_emit_arith(p, A0_MAD, tmp,
flags & A0_DEST_CHANNEL_ALL, 0, src1, src0, src2);
i915_emit_arith(p, A0_MAD,
get_result_vector(p, inst),
flags, 0, negate(src2, 1, 1, 1, 1), src0, tmp);
break;
case OPCODE_MAD:
EMIT_3ARG_ARITH(A0_MAD);
break;
case OPCODE_MAX:
EMIT_2ARG_ARITH(A0_MAX);
break;
case OPCODE_MIN:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
tmp = i915_get_utemp(p);
flags = get_result_flags(inst);
i915_emit_arith(p,
A0_MAX,
tmp, flags & A0_DEST_CHANNEL_ALL, 0,
negate(src0, 1, 1, 1, 1),
negate(src1, 1, 1, 1, 1), 0);
i915_emit_arith(p,
A0_MOV,
get_result_vector(p, inst),
flags, 0, negate(tmp, 1, 1, 1, 1), 0, 0);
break;
case OPCODE_MOV:
EMIT_1ARG_ARITH(A0_MOV);
break;
case OPCODE_MUL:
EMIT_2ARG_ARITH(A0_MUL);
break;
case OPCODE_POW:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
tmp = i915_get_utemp(p);
flags = get_result_flags(inst);
/* XXX: masking on intermediate values, here and elsewhere.
*/
i915_emit_arith(p,
A0_LOG,
tmp, A0_DEST_CHANNEL_X, 0,
swizzle(src0, X, X, X, X), 0, 0);
i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_X, 0, tmp, src1, 0);
i915_emit_arith(p,
A0_EXP,
get_result_vector(p, inst),
flags, 0, swizzle(tmp, X, X, X, X), 0, 0);
break;
case OPCODE_RCP:
src0 = src_vector(p, &inst->SrcReg[0], program);
i915_emit_arith(p,
A0_RCP,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, X, X, X, X), 0, 0);
break;
case OPCODE_RSQ:
src0 = src_vector(p, &inst->SrcReg[0], program);
i915_emit_arith(p,
A0_RSQ,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, X, X, X, X), 0, 0);
break;
case OPCODE_SCS:
src0 = src_vector(p, &inst->SrcReg[0], program);
tmp = i915_get_utemp(p);
/*
* t0.xy = MUL x.xx11, x.x1111 ; x^2, x, 1, 1
* t0 = MUL t0.xyxy t0.xx11 ; x^4, x^3, x^2, x
* t1 = MUL t0.xyyw t0.yz11 ; x^7 x^5 x^3 x
* scs.x = DP4 t1, sin_constants
* t1 = MUL t0.xxz1 t0.z111 ; x^6 x^4 x^2 1
* scs.y = DP4 t1, cos_constants
*/
i915_emit_arith(p,
A0_MUL,
tmp, A0_DEST_CHANNEL_XY, 0,
swizzle(src0, X, X, ONE, ONE),
swizzle(src0, X, ONE, ONE, ONE), 0);
i915_emit_arith(p,
A0_MUL,
tmp, A0_DEST_CHANNEL_ALL, 0,
swizzle(tmp, X, Y, X, Y),
swizzle(tmp, X, X, ONE, ONE), 0);
if (inst->DstReg.WriteMask & WRITEMASK_Y) {
GLuint tmp1;
if (inst->DstReg.WriteMask & WRITEMASK_X)
tmp1 = i915_get_utemp(p);
else
tmp1 = tmp;
i915_emit_arith(p,
A0_MUL,
tmp1, A0_DEST_CHANNEL_ALL, 0,
swizzle(tmp, X, Y, Y, W),
swizzle(tmp, X, Z, ONE, ONE), 0);
i915_emit_arith(p,
A0_DP4,
get_result_vector(p, inst),
A0_DEST_CHANNEL_Y, 0,
swizzle(tmp1, W, Z, Y, X),
i915_emit_const4fv(p, sin_constants), 0);
}
if (inst->DstReg.WriteMask & WRITEMASK_X) {
i915_emit_arith(p,
A0_MUL,
tmp, A0_DEST_CHANNEL_XYZ, 0,
swizzle(tmp, X, X, Z, ONE),
swizzle(tmp, Z, ONE, ONE, ONE), 0);
i915_emit_arith(p,
A0_DP4,
get_result_vector(p, inst),
A0_DEST_CHANNEL_X, 0,
swizzle(tmp, ONE, Z, Y, X),
i915_emit_const4fv(p, cos_constants), 0);
}
break;
case OPCODE_SEQ:
tmp = i915_get_utemp(p);
flags = get_result_flags(inst);
dst = get_result_vector(p, inst);
/* tmp = src1 >= src2 */
i915_emit_arith(p,
A0_SGE,
tmp,
flags, 0,
src_vector(p, &inst->SrcReg[0], program),
src_vector(p, &inst->SrcReg[1], program),
0);
/* dst = src1 <= src2 */
i915_emit_arith(p,
A0_SGE,
dst,
flags, 0,
negate(src_vector(p, &inst->SrcReg[0], program),
1, 1, 1, 1),
negate(src_vector(p, &inst->SrcReg[1], program),
1, 1, 1, 1),
0);
/* dst = tmp && dst */
i915_emit_arith(p,
A0_MUL,
dst,
flags, 0,
dst,
tmp,
0);
break;
case OPCODE_SIN:
src0 = src_vector(p, &inst->SrcReg[0], program);
tmp = i915_get_utemp(p);
consts0 = i915_emit_const4fv(p, sin_quad_constants[0]);
consts1 = i915_emit_const4fv(p, sin_quad_constants[1]);
/* Reduce range from repeating about [-pi,pi] to [-1,1] */
i915_emit_arith(p,
A0_MAD,
tmp, A0_DEST_CHANNEL_X, 0,
src0,
swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */
swizzle(consts0, Z, ZERO, ZERO, ZERO)); /* .5 */
i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0);
i915_emit_arith(p,
A0_MAD,
tmp, A0_DEST_CHANNEL_X, 0,
tmp,
swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */
swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */
/* Compute sin using a quadratic and quartic. It gives continuity
* that repeating the Taylor series lacks every 2*pi, and has
* reduced error.
*
* The idea was described at:
* http://www.devmaster.net/forums/showthread.php?t=5784
*/
/* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */
i915_emit_arith(p,
A0_MAX,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
0);
/* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */
i915_emit_arith(p,
A0_MUL,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
tmp,
0);
/* tmp.x = tmp.xy DP sin_quad_constants[2].xy */
i915_emit_arith(p,
A0_DP3,
tmp, A0_DEST_CHANNEL_X, 0,
tmp,
swizzle(consts1, X, Y, ZERO, ZERO),
0);
/* tmp.x now contains a first approximation (y). Now, weight it
* against tmp.y**2 to get closer.
*/
i915_emit_arith(p,
A0_MAX,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
0);
/* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */
i915_emit_arith(p,
A0_MAD,
tmp, A0_DEST_CHANNEL_Y, 0,
swizzle(tmp, ZERO, X, ZERO, ZERO),
swizzle(tmp, ZERO, Y, ZERO, ZERO),
negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0));
/* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */
i915_emit_arith(p,
A0_MAD,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(consts1, W, W, W, W),
swizzle(tmp, Y, Y, Y, Y),
swizzle(tmp, X, X, X, X));
break;
case OPCODE_SGE:
EMIT_2ARG_ARITH(A0_SGE);
break;
case OPCODE_SGT:
i915_emit_arith(p,
A0_SLT,
get_result_vector( p, inst ),
get_result_flags( inst ), 0,
negate(src_vector( p, &inst->SrcReg[0], program),
1, 1, 1, 1),
negate(src_vector( p, &inst->SrcReg[1], program),
1, 1, 1, 1),
0);
break;
case OPCODE_SLE:
i915_emit_arith(p,
A0_SGE,
get_result_vector( p, inst ),
get_result_flags( inst ), 0,
negate(src_vector( p, &inst->SrcReg[0], program),
1, 1, 1, 1),
negate(src_vector( p, &inst->SrcReg[1], program),
1, 1, 1, 1),
0);
break;
case OPCODE_SLT:
EMIT_2ARG_ARITH(A0_SLT);
break;
case OPCODE_SNE:
tmp = i915_get_utemp(p);
flags = get_result_flags(inst);
dst = get_result_vector(p, inst);
/* tmp = src1 < src2 */
i915_emit_arith(p,
A0_SLT,
tmp,
flags, 0,
src_vector(p, &inst->SrcReg[0], program),
src_vector(p, &inst->SrcReg[1], program),
0);
/* dst = src1 > src2 */
i915_emit_arith(p,
A0_SLT,
dst,
flags, 0,
negate(src_vector(p, &inst->SrcReg[0], program),
1, 1, 1, 1),
negate(src_vector(p, &inst->SrcReg[1], program),
1, 1, 1, 1),
0);
/* dst = tmp || dst */
i915_emit_arith(p,
A0_ADD,
dst,
flags | A0_DEST_SATURATE, 0,
dst,
tmp,
0);
break;
case OPCODE_SSG:
dst = get_result_vector(p, inst);
flags = get_result_flags(inst);
src0 = src_vector(p, &inst->SrcReg[0], program);
tmp = i915_get_utemp(p);
/* tmp = (src < 0.0) */
i915_emit_arith(p,
A0_SLT,
tmp,
flags, 0,
src0,
swizzle(src0, ZERO, ZERO, ZERO, ZERO),
0);
/* dst = (0.0 < src) */
i915_emit_arith(p,
A0_SLT,
dst,
flags, 0,
swizzle(src0, ZERO, ZERO, ZERO, ZERO),
src0,
0);
/* dst = (src > 0.0) - (src < 0.0) */
i915_emit_arith(p,
A0_ADD,
dst,
flags, 0,
dst,
negate(tmp, 1, 1, 1, 1),
0);
break;
case OPCODE_SUB:
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
i915_emit_arith(p,
A0_ADD,
get_result_vector(p, inst),
get_result_flags(inst), 0,
src0, negate(src1, 1, 1, 1, 1), 0);
break;
case OPCODE_SWZ:
EMIT_1ARG_ARITH(A0_MOV); /* extended swizzle handled natively */
break;
case OPCODE_TEX:
EMIT_TEX(T0_TEXLD);
break;
case OPCODE_TXB:
EMIT_TEX(T0_TEXLDB);
break;
case OPCODE_TXP:
EMIT_TEX(T0_TEXLDP);
break;
case OPCODE_XPD:
/* Cross product:
* result.x = src0.y * src1.z - src0.z * src1.y;
* result.y = src0.z * src1.x - src0.x * src1.z;
* result.z = src0.x * src1.y - src0.y * src1.x;
* result.w = undef;
*/
src0 = src_vector(p, &inst->SrcReg[0], program);
src1 = src_vector(p, &inst->SrcReg[1], program);
tmp = i915_get_utemp(p);
i915_emit_arith(p,
A0_MUL,
tmp, A0_DEST_CHANNEL_ALL, 0,
swizzle(src0, Z, X, Y, ONE),
swizzle(src1, Y, Z, X, ONE), 0);
i915_emit_arith(p,
A0_MAD,
get_result_vector(p, inst),
get_result_flags(inst), 0,
swizzle(src0, Y, Z, X, ONE),
swizzle(src1, Z, X, Y, ONE),
negate(tmp, 1, 1, 1, 0));
break;
case OPCODE_END:
return;
case OPCODE_BGNLOOP:
case OPCODE_BGNSUB:
case OPCODE_BRA:
case OPCODE_BRK:
case OPCODE_CAL:
case OPCODE_CONT:
case OPCODE_DDX:
case OPCODE_DDY:
case OPCODE_ELSE:
case OPCODE_ENDIF:
case OPCODE_ENDLOOP:
case OPCODE_ENDSUB:
case OPCODE_IF:
case OPCODE_RET:
p->error = 1;
i915_program_error(p, "Unsupported opcode: %s",
_mesa_opcode_string(inst->Opcode));
return;
case OPCODE_EXP:
case OPCODE_LOG:
/* These opcodes are claimed as GLSL, NV_vp, and ARB_vp in
* prog_instruction.h, but apparently GLSL doesn't ever emit them.
* Instead, it translates to EX2 or LG2.
*/
case OPCODE_TXD:
case OPCODE_TXL:
/* These opcodes are claimed by GLSL in prog_instruction.h, but
* only NV_vp/fp appears to emit them.
*/
default:
i915_program_error(p, "bad opcode: %s",
_mesa_opcode_string(inst->Opcode));
return;
}
inst++;
i915_release_utemps(p);
}
}
/* Rather than trying to intercept and jiggle depth writes during
* emit, just move the value into its correct position at the end of
* the program:
*/
static void
fixup_depth_write(struct i915_fragment_program *p)
{
if (p->depth_written) {
GLuint depth = UREG(REG_TYPE_OD, 0);
i915_emit_arith(p,
A0_MOV,
depth, A0_DEST_CHANNEL_W, 0,
swizzle(depth, X, Y, Z, Z), 0, 0);
}
}
static void
check_wpos(struct i915_fragment_program *p)
{
GLbitfield64 inputs = p->FragProg.Base.InputsRead;
GLint i;
p->wpos_tex = -1;
for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
if (inputs & (FRAG_BIT_TEX(i) | FRAG_BIT_VAR(i)))
continue;
else if (inputs & FRAG_BIT_WPOS) {
p->wpos_tex = i;
inputs &= ~FRAG_BIT_WPOS;
}
}
if (inputs & FRAG_BIT_WPOS) {
i915_program_error(p, "No free texcoord for wpos value");
}
}
static void
translate_program(struct i915_fragment_program *p)
{
struct i915_context *i915 = I915_CONTEXT(p->ctx);
if (INTEL_DEBUG & DEBUG_WM) {
printf("fp:\n");
_mesa_print_program(&p->FragProg.Base);
printf("\n");
}
i915_init_program(i915, p);
check_wpos(p);
upload_program(p);
fixup_depth_write(p);
i915_fini_program(p);
p->translated = 1;
}
static void
track_params(struct i915_fragment_program *p)
{
GLint i;
if (p->nr_params)
_mesa_load_state_parameters(p->ctx, p->FragProg.Base.Parameters);
for (i = 0; i < p->nr_params; i++) {
GLint reg = p->param[i].reg;
COPY_4V(p->constant[reg], p->param[i].values);
}
p->params_uptodate = 1;
p->on_hardware = 0; /* overkill */
}
static void
i915BindProgram(struct gl_context * ctx, GLenum target, struct gl_program *prog)
{
if (target == GL_FRAGMENT_PROGRAM_ARB) {
struct i915_context *i915 = I915_CONTEXT(ctx);
struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
if (i915->current_program == p)
return;
if (i915->current_program) {
i915->current_program->on_hardware = 0;
i915->current_program->params_uptodate = 0;
}
i915->current_program = p;
assert(p->on_hardware == 0);
assert(p->params_uptodate == 0);
}
}
static struct gl_program *
i915NewProgram(struct gl_context * ctx, GLenum target, GLuint id)
{
switch (target) {
case GL_VERTEX_PROGRAM_ARB:
return _mesa_init_vertex_program(ctx, CALLOC_STRUCT(gl_vertex_program),
target, id);
case GL_FRAGMENT_PROGRAM_ARB:{
struct i915_fragment_program *prog =
CALLOC_STRUCT(i915_fragment_program);
if (prog) {
i915_init_program(I915_CONTEXT(ctx), prog);
return _mesa_init_fragment_program(ctx, &prog->FragProg,
target, id);
}
else
return NULL;
}
default:
/* Just fallback:
*/
return _mesa_new_program(ctx, target, id);
}
}
static void
i915DeleteProgram(struct gl_context * ctx, struct gl_program *prog)
{
if (prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
struct i915_context *i915 = I915_CONTEXT(ctx);
struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
if (i915->current_program == p)
i915->current_program = 0;
}
_mesa_delete_program(ctx, prog);
}
static GLboolean
i915IsProgramNative(struct gl_context * ctx, GLenum target, struct gl_program *prog)
{
if (target == GL_FRAGMENT_PROGRAM_ARB) {
struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
if (!p->translated)
translate_program(p);
return !p->error;
}
else
return true;
}
static GLboolean
i915ProgramStringNotify(struct gl_context * ctx,
GLenum target, struct gl_program *prog)
{
if (target == GL_FRAGMENT_PROGRAM_ARB) {
struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
p->translated = 0;
}
(void) _tnl_program_string(ctx, target, prog);
/* XXX check if program is legal, within limits */
return true;
}
static void
i915SamplerUniformChange(struct gl_context *ctx,
GLenum target, struct gl_program *prog)
{
i915ProgramStringNotify(ctx, target, prog);
}
void
i915_update_program(struct gl_context *ctx)
{
struct intel_context *intel = intel_context(ctx);
struct i915_context *i915 = i915_context(&intel->ctx);
struct i915_fragment_program *fp =
(struct i915_fragment_program *) ctx->FragmentProgram._Current;
if (i915->current_program != fp) {
if (i915->current_program) {
i915->current_program->on_hardware = 0;
i915->current_program->params_uptodate = 0;
}
i915->current_program = fp;
}
if (!fp->translated)
translate_program(fp);
FALLBACK(&i915->intel, I915_FALLBACK_PROGRAM, fp->error);
}
void
i915ValidateFragmentProgram(struct i915_context *i915)
{
struct gl_context *ctx = &i915->intel.ctx;
struct intel_context *intel = intel_context(ctx);
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
struct i915_fragment_program *p =
(struct i915_fragment_program *) ctx->FragmentProgram._Current;
const GLbitfield64 inputsRead = p->FragProg.Base.InputsRead;
GLuint s4 = i915->state.Ctx[I915_CTXREG_LIS4] & ~S4_VFMT_MASK;
GLuint s2 = S2_TEXCOORD_NONE;
int i, offset = 0;
/* Important:
*/
VB->AttribPtr[VERT_ATTRIB_POS] = VB->NdcPtr;
if (!p->translated)
translate_program(p);
intel->vertex_attr_count = 0;
intel->wpos_offset = 0;
intel->coloroffset = 0;
intel->specoffset = 0;
if (inputsRead & FRAG_BITS_TEX_ANY || p->wpos_tex != -1) {
EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_4F_VIEWPORT, S4_VFMT_XYZW, 16);
}
else {
EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_3F_VIEWPORT, S4_VFMT_XYZ, 12);
}
/* Handle gl_PointSize builtin var here */
if (ctx->Point._Attenuated || ctx->VertexProgram.PointSizeEnabled)
EMIT_ATTR(_TNL_ATTRIB_POINTSIZE, EMIT_1F, S4_VFMT_POINT_WIDTH, 4);
if (inputsRead & FRAG_BIT_COL0) {
intel->coloroffset = offset / 4;
EMIT_ATTR(_TNL_ATTRIB_COLOR0, EMIT_4UB_4F_BGRA, S4_VFMT_COLOR, 4);
}
if (inputsRead & FRAG_BIT_COL1) {
intel->specoffset = offset / 4;
EMIT_ATTR(_TNL_ATTRIB_COLOR1, EMIT_4UB_4F_BGRA, S4_VFMT_SPEC_FOG, 4);
}
if ((inputsRead & FRAG_BIT_FOGC)) {
EMIT_ATTR(_TNL_ATTRIB_FOG, EMIT_1F, S4_VFMT_FOG_PARAM, 4);
}
for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
if (inputsRead & FRAG_BIT_TEX(i)) {
int sz = VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]->size;
s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(sz));
EMIT_ATTR(_TNL_ATTRIB_TEX0 + i, EMIT_SZ(sz), 0, sz * 4);
}
else if (inputsRead & FRAG_BIT_VAR(i)) {
int sz = VB->AttribPtr[_TNL_ATTRIB_GENERIC0 + i]->size;
s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(sz));
EMIT_ATTR(_TNL_ATTRIB_GENERIC0 + i, EMIT_SZ(sz), 0, sz * 4);
}
else if (i == p->wpos_tex) {
int wpos_size = 4 * sizeof(float);
/* If WPOS is required, duplicate the XYZ position data in an
* unused texture coordinate:
*/
s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(wpos_size));
intel->wpos_offset = offset;
EMIT_PAD(wpos_size);
}
}
if (s2 != i915->state.Ctx[I915_CTXREG_LIS2] ||
s4 != i915->state.Ctx[I915_CTXREG_LIS4]) {
int k;
I915_STATECHANGE(i915, I915_UPLOAD_CTX);
/* Must do this *after* statechange, so as not to affect
* buffered vertices reliant on the old state:
*/
intel->vertex_size = _tnl_install_attrs(&intel->ctx,
intel->vertex_attrs,
intel->vertex_attr_count,
intel->ViewportMatrix.m, 0);
assert(intel->prim.current_offset == intel->prim.start_offset);
intel->prim.start_offset = (intel->prim.current_offset + intel->vertex_size-1) / intel->vertex_size * intel->vertex_size;
intel->prim.current_offset = intel->prim.start_offset;
intel->vertex_size >>= 2;
i915->state.Ctx[I915_CTXREG_LIS2] = s2;
i915->state.Ctx[I915_CTXREG_LIS4] = s4;
k = intel->vtbl.check_vertex_size(intel, intel->vertex_size);
assert(k);
}
if (!p->params_uptodate)
track_params(p);
if (!p->on_hardware)
i915_upload_program(i915, p);
if (INTEL_DEBUG & DEBUG_WM) {
printf("i915:\n");
i915_disassemble_program(i915->state.Program, i915->state.ProgramSize);
}
}
void
i915InitFragProgFuncs(struct dd_function_table *functions)
{
functions->BindProgram = i915BindProgram;
functions->NewProgram = i915NewProgram;
functions->DeleteProgram = i915DeleteProgram;
functions->IsProgramNative = i915IsProgramNative;
functions->ProgramStringNotify = i915ProgramStringNotify;
functions->SamplerUniformChange = i915SamplerUniformChange;
}