//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief SI implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "SIRegisterInfo.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
using namespace llvm;
SIRegisterInfo::SIRegisterInfo() : AMDGPURegisterInfo() {}
BitVector SIRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
Reserved.set(AMDGPU::EXEC);
// EXEC_LO and EXEC_HI could be allocated and used as regular register,
// but this seems likely to result in bugs, so I'm marking them as reserved.
Reserved.set(AMDGPU::EXEC_LO);
Reserved.set(AMDGPU::EXEC_HI);
Reserved.set(AMDGPU::INDIRECT_BASE_ADDR);
Reserved.set(AMDGPU::FLAT_SCR);
Reserved.set(AMDGPU::FLAT_SCR_LO);
Reserved.set(AMDGPU::FLAT_SCR_HI);
// Reserve some VGPRs to use as temp registers in case we have to spill VGPRs
Reserved.set(AMDGPU::VGPR255);
Reserved.set(AMDGPU::VGPR254);
// Tonga and Iceland can only allocate a fixed number of SGPRs due
// to a hw bug.
if (MF.getSubtarget<AMDGPUSubtarget>().hasSGPRInitBug()) {
unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
// Reserve some SGPRs for FLAT_SCRATCH and VCC (4 SGPRs).
// Assume XNACK_MASK is unused.
unsigned Limit = AMDGPUSubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG - 4;
for (unsigned i = Limit; i < NumSGPRs; ++i) {
unsigned Reg = AMDGPU::SGPR_32RegClass.getRegister(i);
MCRegAliasIterator R = MCRegAliasIterator(Reg, this, true);
for (; R.isValid(); ++R)
Reserved.set(*R);
}
}
return Reserved;
}
unsigned SIRegisterInfo::getRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const {
const AMDGPUSubtarget &STI = MF.getSubtarget<AMDGPUSubtarget>();
// FIXME: We should adjust the max number of waves based on LDS size.
unsigned SGPRLimit = getNumSGPRsAllowed(STI.getGeneration(),
STI.getMaxWavesPerCU());
unsigned VGPRLimit = getNumVGPRsAllowed(STI.getMaxWavesPerCU());
for (regclass_iterator I = regclass_begin(), E = regclass_end();
I != E; ++I) {
unsigned NumSubRegs = std::max((int)(*I)->getSize() / 4, 1);
unsigned Limit;
if (isSGPRClass(*I)) {
Limit = SGPRLimit / NumSubRegs;
} else {
Limit = VGPRLimit / NumSubRegs;
}
const int *Sets = getRegClassPressureSets(*I);
assert(Sets);
for (unsigned i = 0; Sets[i] != -1; ++i) {
if (Sets[i] == (int)Idx)
return Limit;
}
}
return 256;
}
bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
return Fn.getFrameInfo()->hasStackObjects();
}
static unsigned getNumSubRegsForSpillOp(unsigned Op) {
switch (Op) {
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V512_RESTORE:
return 16;
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V256_RESTORE:
return 8;
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V128_RESTORE:
return 4;
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V96_RESTORE:
return 3;
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V64_RESTORE:
return 2;
case AMDGPU::SI_SPILL_S32_SAVE:
case AMDGPU::SI_SPILL_S32_RESTORE:
case AMDGPU::SI_SPILL_V32_SAVE:
case AMDGPU::SI_SPILL_V32_RESTORE:
return 1;
default: llvm_unreachable("Invalid spill opcode");
}
}
void SIRegisterInfo::buildScratchLoadStore(MachineBasicBlock::iterator MI,
unsigned LoadStoreOp,
unsigned Value,
unsigned ScratchRsrcReg,
unsigned ScratchOffset,
int64_t Offset,
RegScavenger *RS) const {
MachineBasicBlock *MBB = MI->getParent();
const MachineFunction *MF = MI->getParent()->getParent();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(MF->getSubtarget().getInstrInfo());
LLVMContext &Ctx = MF->getFunction()->getContext();
DebugLoc DL = MI->getDebugLoc();
bool IsLoad = TII->get(LoadStoreOp).mayLoad();
bool RanOutOfSGPRs = false;
unsigned SOffset = ScratchOffset;
unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
unsigned Size = NumSubRegs * 4;
if (!isUInt<12>(Offset + Size)) {
SOffset = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, MI, 0);
if (SOffset == AMDGPU::NoRegister) {
RanOutOfSGPRs = true;
SOffset = AMDGPU::SGPR0;
}
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), SOffset)
.addReg(ScratchOffset)
.addImm(Offset);
Offset = 0;
}
if (RanOutOfSGPRs)
Ctx.emitError("Ran out of SGPRs for spilling VGPRS");
for (unsigned i = 0, e = NumSubRegs; i != e; ++i, Offset += 4) {
unsigned SubReg = NumSubRegs > 1 ?
getPhysRegSubReg(Value, &AMDGPU::VGPR_32RegClass, i) :
Value;
bool IsKill = (i == e - 1);
BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
.addReg(SubReg, getDefRegState(IsLoad))
.addReg(ScratchRsrcReg, getKillRegState(IsKill))
.addReg(SOffset)
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addReg(Value, RegState::Implicit | getDefRegState(IsLoad));
}
}
void SIRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(MF->getSubtarget().getInstrInfo());
DebugLoc DL = MI->getDebugLoc();
MachineOperand &FIOp = MI->getOperand(FIOperandNum);
int Index = MI->getOperand(FIOperandNum).getIndex();
switch (MI->getOpcode()) {
// SGPR register spill
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE: {
unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
unsigned SubReg = getPhysRegSubReg(MI->getOperand(0).getReg(),
&AMDGPU::SGPR_32RegClass, i);
struct SIMachineFunctionInfo::SpilledReg Spill =
MFI->getSpilledReg(MF, Index, i);
if (Spill.VGPR == AMDGPU::NoRegister) {
LLVMContext &Ctx = MF->getFunction()->getContext();
Ctx.emitError("Ran out of VGPRs for spilling SGPR");
}
BuildMI(*MBB, MI, DL,
TII->getMCOpcodeFromPseudo(AMDGPU::V_WRITELANE_B32),
Spill.VGPR)
.addReg(SubReg)
.addImm(Spill.Lane);
}
MI->eraseFromParent();
break;
}
// SGPR register restore
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE: {
unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
unsigned SubReg = getPhysRegSubReg(MI->getOperand(0).getReg(),
&AMDGPU::SGPR_32RegClass, i);
bool isM0 = SubReg == AMDGPU::M0;
struct SIMachineFunctionInfo::SpilledReg Spill =
MFI->getSpilledReg(MF, Index, i);
if (Spill.VGPR == AMDGPU::NoRegister) {
LLVMContext &Ctx = MF->getFunction()->getContext();
Ctx.emitError("Ran out of VGPRs for spilling SGPR");
}
if (isM0)
SubReg = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, MI, 0);
BuildMI(*MBB, MI, DL,
TII->getMCOpcodeFromPseudo(AMDGPU::V_READLANE_B32),
SubReg)
.addReg(Spill.VGPR)
.addImm(Spill.Lane)
.addReg(MI->getOperand(0).getReg(), RegState::ImplicitDefine);
if (isM0) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(SubReg);
}
}
// TODO: only do this when it is needed
switch (MF->getSubtarget<AMDGPUSubtarget>().getGeneration()) {
case AMDGPUSubtarget::SOUTHERN_ISLANDS:
// "VALU writes SGPR" -> "SMRD reads that SGPR" needs "S_NOP 3" on SI
TII->insertNOPs(MI, 3);
break;
case AMDGPUSubtarget::SEA_ISLANDS:
break;
default: // VOLCANIC_ISLANDS and later
// "VALU writes SGPR -> VMEM reads that SGPR" needs "S_NOP 4" on VI
// and later. This also applies to VALUs which write VCC, but we're
// unlikely to see VMEM use VCC.
TII->insertNOPs(MI, 4);
}
MI->eraseFromParent();
break;
}
// VGPR register spill
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V32_SAVE:
buildScratchLoadStore(MI, AMDGPU::BUFFER_STORE_DWORD_OFFSET,
TII->getNamedOperand(*MI, AMDGPU::OpName::src)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_rsrc)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_offset)->getReg(),
FrameInfo->getObjectOffset(Index), RS);
MI->eraseFromParent();
break;
case AMDGPU::SI_SPILL_V32_RESTORE:
case AMDGPU::SI_SPILL_V64_RESTORE:
case AMDGPU::SI_SPILL_V96_RESTORE:
case AMDGPU::SI_SPILL_V128_RESTORE:
case AMDGPU::SI_SPILL_V256_RESTORE:
case AMDGPU::SI_SPILL_V512_RESTORE: {
buildScratchLoadStore(MI, AMDGPU::BUFFER_LOAD_DWORD_OFFSET,
TII->getNamedOperand(*MI, AMDGPU::OpName::dst)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_rsrc)->getReg(),
TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_offset)->getReg(),
FrameInfo->getObjectOffset(Index), RS);
MI->eraseFromParent();
break;
}
default: {
int64_t Offset = FrameInfo->getObjectOffset(Index);
FIOp.ChangeToImmediate(Offset);
if (!TII->isImmOperandLegal(MI, FIOperandNum, FIOp)) {
unsigned TmpReg = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, SPAdj);
BuildMI(*MBB, MI, MI->getDebugLoc(),
TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
.addImm(Offset);
FIOp.ChangeToRegister(TmpReg, false, false, true);
}
}
}
}
const TargetRegisterClass * SIRegisterInfo::getCFGStructurizerRegClass(
MVT VT) const {
switch(VT.SimpleTy) {
default:
case MVT::i32: return &AMDGPU::VGPR_32RegClass;
}
}
unsigned SIRegisterInfo::getHWRegIndex(unsigned Reg) const {
return getEncodingValue(Reg) & 0xff;
}
const TargetRegisterClass *SIRegisterInfo::getPhysRegClass(unsigned Reg) const {
assert(!TargetRegisterInfo::isVirtualRegister(Reg));
static const TargetRegisterClass *BaseClasses[] = {
&AMDGPU::VGPR_32RegClass,
&AMDGPU::SReg_32RegClass,
&AMDGPU::VReg_64RegClass,
&AMDGPU::SReg_64RegClass,
&AMDGPU::VReg_96RegClass,
&AMDGPU::VReg_128RegClass,
&AMDGPU::SReg_128RegClass,
&AMDGPU::VReg_256RegClass,
&AMDGPU::SReg_256RegClass,
&AMDGPU::VReg_512RegClass
};
for (const TargetRegisterClass *BaseClass : BaseClasses) {
if (BaseClass->contains(Reg)) {
return BaseClass;
}
}
return nullptr;
}
bool SIRegisterInfo::hasVGPRs(const TargetRegisterClass *RC) const {
return getCommonSubClass(&AMDGPU::VGPR_32RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_64RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_96RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_128RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_256RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_512RegClass, RC);
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentVGPRClass(
const TargetRegisterClass *SRC) const {
if (hasVGPRs(SRC)) {
return SRC;
} else if (SRC == &AMDGPU::SCCRegRegClass) {
return &AMDGPU::VCCRegRegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SGPR_32RegClass)) {
return &AMDGPU::VGPR_32RegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SGPR_64RegClass)) {
return &AMDGPU::VReg_64RegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SReg_128RegClass)) {
return &AMDGPU::VReg_128RegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SReg_256RegClass)) {
return &AMDGPU::VReg_256RegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SReg_512RegClass)) {
return &AMDGPU::VReg_512RegClass;
}
return nullptr;
}
const TargetRegisterClass *SIRegisterInfo::getSubRegClass(
const TargetRegisterClass *RC, unsigned SubIdx) const {
if (SubIdx == AMDGPU::NoSubRegister)
return RC;
// If this register has a sub-register, we can safely assume it is a 32-bit
// register, because all of SI's sub-registers are 32-bit.
if (isSGPRClass(RC)) {
return &AMDGPU::SGPR_32RegClass;
} else {
return &AMDGPU::VGPR_32RegClass;
}
}
unsigned SIRegisterInfo::getPhysRegSubReg(unsigned Reg,
const TargetRegisterClass *SubRC,
unsigned Channel) const {
switch (Reg) {
case AMDGPU::VCC:
switch(Channel) {
case 0: return AMDGPU::VCC_LO;
case 1: return AMDGPU::VCC_HI;
default: llvm_unreachable("Invalid SubIdx for VCC");
}
case AMDGPU::FLAT_SCR:
switch (Channel) {
case 0:
return AMDGPU::FLAT_SCR_LO;
case 1:
return AMDGPU::FLAT_SCR_HI;
default:
llvm_unreachable("Invalid SubIdx for FLAT_SCR");
}
break;
case AMDGPU::EXEC:
switch (Channel) {
case 0:
return AMDGPU::EXEC_LO;
case 1:
return AMDGPU::EXEC_HI;
default:
llvm_unreachable("Invalid SubIdx for EXEC");
}
break;
}
const TargetRegisterClass *RC = getPhysRegClass(Reg);
// 32-bit registers don't have sub-registers, so we can just return the
// Reg. We need to have this check here, because the calculation below
// using getHWRegIndex() will fail with special 32-bit registers like
// VCC_LO, VCC_HI, EXEC_LO, EXEC_HI and M0.
if (RC->getSize() == 4) {
assert(Channel == 0);
return Reg;
}
unsigned Index = getHWRegIndex(Reg);
return SubRC->getRegister(Index + Channel);
}
bool SIRegisterInfo::opCanUseLiteralConstant(unsigned OpType) const {
return OpType == AMDGPU::OPERAND_REG_IMM32;
}
bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
if (opCanUseLiteralConstant(OpType))
return true;
return OpType == AMDGPU::OPERAND_REG_INLINE_C;
}
unsigned SIRegisterInfo::getPreloadedValue(const MachineFunction &MF,
enum PreloadedValue Value) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
switch (Value) {
case SIRegisterInfo::TGID_X:
return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 0);
case SIRegisterInfo::TGID_Y:
return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 1);
case SIRegisterInfo::TGID_Z:
return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2);
case SIRegisterInfo::SCRATCH_WAVE_OFFSET:
if (MFI->getShaderType() != ShaderType::COMPUTE)
return MFI->ScratchOffsetReg;
return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 4);
case SIRegisterInfo::SCRATCH_PTR:
return AMDGPU::SGPR2_SGPR3;
case SIRegisterInfo::INPUT_PTR:
return AMDGPU::SGPR0_SGPR1;
case SIRegisterInfo::TIDIG_X:
return AMDGPU::VGPR0;
case SIRegisterInfo::TIDIG_Y:
return AMDGPU::VGPR1;
case SIRegisterInfo::TIDIG_Z:
return AMDGPU::VGPR2;
}
llvm_unreachable("unexpected preloaded value type");
}
/// \brief Returns a register that is not used at any point in the function.
/// If all registers are used, then this function will return
// AMDGPU::NoRegister.
unsigned SIRegisterInfo::findUnusedRegister(const MachineRegisterInfo &MRI,
const TargetRegisterClass *RC) const {
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I) {
if (!MRI.isPhysRegUsed(*I))
return *I;
}
return AMDGPU::NoRegister;
}
unsigned SIRegisterInfo::getNumVGPRsAllowed(unsigned WaveCount) const {
switch(WaveCount) {
case 10: return 24;
case 9: return 28;
case 8: return 32;
case 7: return 36;
case 6: return 40;
case 5: return 48;
case 4: return 64;
case 3: return 84;
case 2: return 128;
default: return 256;
}
}
unsigned SIRegisterInfo::getNumSGPRsAllowed(AMDGPUSubtarget::Generation gen,
unsigned WaveCount) const {
if (gen >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
switch (WaveCount) {
case 10: return 80;
case 9: return 80;
case 8: return 96;
default: return 102;
}
} else {
switch(WaveCount) {
case 10: return 48;
case 9: return 56;
case 8: return 64;
case 7: return 72;
case 6: return 80;
case 5: return 96;
default: return 103;
}
}
}