//===-- DisassemblerLLVMC.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DisassemblerLLVMC.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCRelocationInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/ADT/SmallString.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Stream.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/StackFrame.h"
#include <regex.h>
using namespace lldb;
using namespace lldb_private;
class InstructionLLVMC : public lldb_private::Instruction
{
public:
InstructionLLVMC (DisassemblerLLVMC &disasm,
const lldb_private::Address &address,
AddressClass addr_class) :
Instruction (address, addr_class),
m_disasm_sp (disasm.shared_from_this()),
m_does_branch (eLazyBoolCalculate),
m_is_valid (false),
m_using_file_addr (false)
{
}
virtual
~InstructionLLVMC ()
{
}
virtual bool
DoesBranch ()
{
if (m_does_branch == eLazyBoolCalculate)
{
GetDisassemblerLLVMC().Lock(this, NULL);
DataExtractor data;
if (m_opcode.GetData(data))
{
bool is_alternate_isa;
lldb::addr_t pc = m_address.GetFileAddress();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr = GetDisasmToUse (is_alternate_isa);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
const size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data,
opcode_data_len,
pc,
inst);
// Be conservative, if we didn't understand the instruction, say it might branch...
if (inst_size == 0)
m_does_branch = eLazyBoolYes;
else
{
const bool can_branch = mc_disasm_ptr->CanBranch(inst);
if (can_branch)
m_does_branch = eLazyBoolYes;
else
m_does_branch = eLazyBoolNo;
}
}
GetDisassemblerLLVMC().Unlock();
}
return m_does_branch == eLazyBoolYes;
}
DisassemblerLLVMC::LLVMCDisassembler *
GetDisasmToUse (bool &is_alternate_isa)
{
is_alternate_isa = false;
DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();
if (llvm_disasm.m_alternate_disasm_ap.get() != NULL)
{
const AddressClass address_class = GetAddressClass ();
if (address_class == eAddressClassCodeAlternateISA)
{
is_alternate_isa = true;
return llvm_disasm.m_alternate_disasm_ap.get();
}
}
return llvm_disasm.m_disasm_ap.get();
}
virtual size_t
Decode (const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
lldb::offset_t data_offset)
{
// All we have to do is read the opcode which can be easy for some
// architectures
bool got_op = false;
DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();
const ArchSpec &arch = llvm_disasm.GetArchitecture();
const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
if (min_op_byte_size == max_op_byte_size)
{
// Fixed size instructions, just read that amount of data.
if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
return false;
switch (min_op_byte_size)
{
case 1:
m_opcode.SetOpcode8 (data.GetU8 (&data_offset));
got_op = true;
break;
case 2:
m_opcode.SetOpcode16 (data.GetU16 (&data_offset));
got_op = true;
break;
case 4:
m_opcode.SetOpcode32 (data.GetU32 (&data_offset));
got_op = true;
break;
case 8:
m_opcode.SetOpcode64 (data.GetU64 (&data_offset));
got_op = true;
break;
default:
m_opcode.SetOpcodeBytes(data.PeekData(data_offset, min_op_byte_size), min_op_byte_size);
got_op = true;
break;
}
}
if (!got_op)
{
bool is_alternate_isa = false;
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr = GetDisasmToUse (is_alternate_isa);
const llvm::Triple::ArchType machine = arch.GetMachine();
if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb)
{
if (machine == llvm::Triple::thumb || is_alternate_isa)
{
uint32_t thumb_opcode = data.GetU16(&data_offset);
if ((thumb_opcode & 0xe000) != 0xe000 || ((thumb_opcode & 0x1800u) == 0))
{
m_opcode.SetOpcode16 (thumb_opcode);
m_is_valid = true;
}
else
{
thumb_opcode <<= 16;
thumb_opcode |= data.GetU16(&data_offset);
m_opcode.SetOpcode16_2 (thumb_opcode);
m_is_valid = true;
}
}
else
{
m_opcode.SetOpcode32 (data.GetU32(&data_offset));
m_is_valid = true;
}
}
else
{
// The opcode isn't evenly sized, so we need to actually use the llvm
// disassembler to parse it and get the size.
uint8_t *opcode_data = const_cast<uint8_t *>(data.PeekData (data_offset, 1));
const size_t opcode_data_len = data.BytesLeft(data_offset);
const addr_t pc = m_address.GetFileAddress();
llvm::MCInst inst;
llvm_disasm.Lock(this, NULL);
const size_t inst_size = mc_disasm_ptr->GetMCInst(opcode_data,
opcode_data_len,
pc,
inst);
llvm_disasm.Unlock();
if (inst_size == 0)
m_opcode.Clear();
else
{
m_opcode.SetOpcodeBytes(opcode_data, inst_size);
m_is_valid = true;
}
}
}
return m_opcode.GetByteSize();
}
void
AppendComment (std::string &description)
{
if (m_comment.empty())
m_comment.swap (description);
else
{
m_comment.append(", ");
m_comment.append(description);
}
}
virtual void
CalculateMnemonicOperandsAndComment (const lldb_private::ExecutionContext *exe_ctx)
{
DataExtractor data;
const AddressClass address_class = GetAddressClass ();
if (m_opcode.GetData(data))
{
char out_string[512];
DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr;
if (address_class == eAddressClassCodeAlternateISA)
mc_disasm_ptr = llvm_disasm.m_alternate_disasm_ap.get();
else
mc_disasm_ptr = llvm_disasm.m_disasm_ap.get();
lldb::addr_t pc = m_address.GetFileAddress();
m_using_file_addr = true;
const bool data_from_file = GetDisassemblerLLVMC().m_data_from_file;
bool use_hex_immediates = true;
Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC;
if (exe_ctx)
{
Target *target = exe_ctx->GetTargetPtr();
if (target)
{
use_hex_immediates = target->GetUseHexImmediates();
hex_style = target->GetHexImmediateStyle();
if (!data_from_file)
{
const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
if (load_addr != LLDB_INVALID_ADDRESS)
{
pc = load_addr;
m_using_file_addr = false;
}
}
}
}
llvm_disasm.Lock(this, exe_ctx);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data,
opcode_data_len,
pc,
inst);
if (inst_size > 0)
{
mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
mc_disasm_ptr->PrintMCInst(inst, out_string, sizeof(out_string));
}
llvm_disasm.Unlock();
if (inst_size == 0)
{
m_comment.assign ("unknown opcode");
inst_size = m_opcode.GetByteSize();
StreamString mnemonic_strm;
lldb::offset_t offset = 0;
switch (inst_size)
{
case 1:
{
const uint8_t uval8 = data.GetU8 (&offset);
m_opcode.SetOpcode8 (uval8);
m_opcode_name.assign (".byte");
mnemonic_strm.Printf("0x%2.2x", uval8);
}
break;
case 2:
{
const uint16_t uval16 = data.GetU16(&offset);
m_opcode.SetOpcode16(uval16);
m_opcode_name.assign (".short");
mnemonic_strm.Printf("0x%4.4x", uval16);
}
break;
case 4:
{
const uint32_t uval32 = data.GetU32(&offset);
m_opcode.SetOpcode32(uval32);
m_opcode_name.assign (".long");
mnemonic_strm.Printf("0x%8.8x", uval32);
}
break;
case 8:
{
const uint64_t uval64 = data.GetU64(&offset);
m_opcode.SetOpcode64(uval64);
m_opcode_name.assign (".quad");
mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
}
break;
default:
if (inst_size == 0)
return;
else
{
const uint8_t *bytes = data.PeekData(offset, inst_size);
if (bytes == NULL)
return;
m_opcode_name.assign (".byte");
m_opcode.SetOpcodeBytes(bytes, inst_size);
mnemonic_strm.Printf("0x%2.2x", bytes[0]);
for (uint32_t i=1; i<inst_size; ++i)
mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
}
break;
}
m_mnemonics.swap(mnemonic_strm.GetString());
return;
}
else
{
if (m_does_branch == eLazyBoolCalculate)
{
const bool can_branch = mc_disasm_ptr->CanBranch(inst);
if (can_branch)
m_does_branch = eLazyBoolYes;
else
m_does_branch = eLazyBoolNo;
}
}
if (!s_regex_compiled)
{
::regcomp(&s_regex, "[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?", REG_EXTENDED);
s_regex_compiled = true;
}
::regmatch_t matches[3];
if (!::regexec(&s_regex, out_string, sizeof(matches) / sizeof(::regmatch_t), matches, 0))
{
if (matches[1].rm_so != -1)
m_opcode_name.assign(out_string + matches[1].rm_so, matches[1].rm_eo - matches[1].rm_so);
if (matches[2].rm_so != -1)
m_mnemonics.assign(out_string + matches[2].rm_so, matches[2].rm_eo - matches[2].rm_so);
}
}
}
bool
IsValid () const
{
return m_is_valid;
}
bool
UsingFileAddress() const
{
return m_using_file_addr;
}
size_t
GetByteSize () const
{
return m_opcode.GetByteSize();
}
DisassemblerLLVMC &
GetDisassemblerLLVMC ()
{
return *(DisassemblerLLVMC *)m_disasm_sp.get();
}
protected:
DisassemblerSP m_disasm_sp; // for ownership
LazyBool m_does_branch;
bool m_is_valid;
bool m_using_file_addr;
static bool s_regex_compiled;
static ::regex_t s_regex;
};
bool InstructionLLVMC::s_regex_compiled = false;
::regex_t InstructionLLVMC::s_regex;
DisassemblerLLVMC::LLVMCDisassembler::LLVMCDisassembler (const char *triple, unsigned flavor, DisassemblerLLVMC &owner):
m_is_valid(true)
{
std::string Error;
const llvm::Target *curr_target = llvm::TargetRegistry::lookupTarget(triple, Error);
if (!curr_target)
{
m_is_valid = false;
return;
}
m_instr_info_ap.reset(curr_target->createMCInstrInfo());
m_reg_info_ap.reset (curr_target->createMCRegInfo(triple));
std::string features_str;
m_subtarget_info_ap.reset(curr_target->createMCSubtargetInfo(triple, "",
features_str));
m_asm_info_ap.reset(curr_target->createMCAsmInfo(*curr_target->createMCRegInfo(triple), triple));
if (m_instr_info_ap.get() == NULL || m_reg_info_ap.get() == NULL || m_subtarget_info_ap.get() == NULL || m_asm_info_ap.get() == NULL)
{
m_is_valid = false;
return;
}
m_context_ap.reset(new llvm::MCContext(m_asm_info_ap.get(), m_reg_info_ap.get(), 0));
m_disasm_ap.reset(curr_target->createMCDisassembler(*m_subtarget_info_ap.get()));
if (m_disasm_ap.get() && m_context_ap.get())
{
llvm::OwningPtr<llvm::MCRelocationInfo> RelInfo(curr_target->createMCRelocationInfo(triple, *m_context_ap.get()));
if (!RelInfo)
{
m_is_valid = false;
return;
}
m_disasm_ap->setupForSymbolicDisassembly(NULL,
DisassemblerLLVMC::SymbolLookupCallback,
(void *) &owner,
m_context_ap.get(),
RelInfo);
unsigned asm_printer_variant;
if (flavor == ~0U)
asm_printer_variant = m_asm_info_ap->getAssemblerDialect();
else
{
asm_printer_variant = flavor;
}
m_instr_printer_ap.reset(curr_target->createMCInstPrinter(asm_printer_variant,
*m_asm_info_ap.get(),
*m_instr_info_ap.get(),
*m_reg_info_ap.get(),
*m_subtarget_info_ap.get()));
if (m_instr_printer_ap.get() == NULL)
{
m_disasm_ap.reset();
m_is_valid = false;
}
}
else
m_is_valid = false;
}
DisassemblerLLVMC::LLVMCDisassembler::~LLVMCDisassembler()
{
}
namespace {
// This is the memory object we use in GetInstruction.
class LLDBDisasmMemoryObject : public llvm::MemoryObject {
const uint8_t *m_bytes;
uint64_t m_size;
uint64_t m_base_PC;
public:
LLDBDisasmMemoryObject(const uint8_t *bytes, uint64_t size, uint64_t basePC) :
m_bytes(bytes), m_size(size), m_base_PC(basePC) {}
uint64_t getBase() const { return m_base_PC; }
uint64_t getExtent() const { return m_size; }
int readByte(uint64_t addr, uint8_t *byte) const {
if (addr - m_base_PC >= m_size)
return -1;
*byte = m_bytes[addr - m_base_PC];
return 0;
}
};
} // End Anonymous Namespace
uint64_t
DisassemblerLLVMC::LLVMCDisassembler::GetMCInst (const uint8_t *opcode_data,
size_t opcode_data_len,
lldb::addr_t pc,
llvm::MCInst &mc_inst)
{
LLDBDisasmMemoryObject memory_object (opcode_data, opcode_data_len, pc);
llvm::MCDisassembler::DecodeStatus status;
uint64_t new_inst_size;
status = m_disasm_ap->getInstruction(mc_inst,
new_inst_size,
memory_object,
pc,
llvm::nulls(),
llvm::nulls());
if (status == llvm::MCDisassembler::Success)
return new_inst_size;
else
return 0;
}
uint64_t
DisassemblerLLVMC::LLVMCDisassembler::PrintMCInst (llvm::MCInst &mc_inst,
char *dst,
size_t dst_len)
{
llvm::StringRef unused_annotations;
llvm::SmallString<64> inst_string;
llvm::raw_svector_ostream inst_stream(inst_string);
m_instr_printer_ap->printInst (&mc_inst, inst_stream, unused_annotations);
inst_stream.flush();
const size_t output_size = std::min(dst_len - 1, inst_string.size());
std::memcpy(dst, inst_string.data(), output_size);
dst[output_size] = '\0';
return output_size;
}
void
DisassemblerLLVMC::LLVMCDisassembler::SetStyle (bool use_hex_immed, HexImmediateStyle hex_style)
{
m_instr_printer_ap->setPrintImmHex(use_hex_immed);
switch(hex_style)
{
case eHexStyleC: m_instr_printer_ap->setPrintImmHex(llvm::HexStyle::C); break;
case eHexStyleAsm: m_instr_printer_ap->setPrintImmHex(llvm::HexStyle::Asm); break;
}
}
bool
DisassemblerLLVMC::LLVMCDisassembler::CanBranch (llvm::MCInst &mc_inst)
{
return m_instr_info_ap->get(mc_inst.getOpcode()).mayAffectControlFlow(mc_inst, *m_reg_info_ap.get());
}
bool
DisassemblerLLVMC::FlavorValidForArchSpec (const lldb_private::ArchSpec &arch, const char *flavor)
{
llvm::Triple triple = arch.GetTriple();
if (flavor == NULL || strcmp (flavor, "default") == 0)
return true;
if (triple.getArch() == llvm::Triple::x86 || triple.getArch() == llvm::Triple::x86_64)
{
if (strcmp (flavor, "intel") == 0 || strcmp (flavor, "att") == 0)
return true;
else
return false;
}
else
return false;
}
Disassembler *
DisassemblerLLVMC::CreateInstance (const ArchSpec &arch, const char *flavor)
{
if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch)
{
std::unique_ptr<DisassemblerLLVMC> disasm_ap (new DisassemblerLLVMC(arch, flavor));
if (disasm_ap.get() && disasm_ap->IsValid())
return disasm_ap.release();
}
return NULL;
}
DisassemblerLLVMC::DisassemblerLLVMC (const ArchSpec &arch, const char *flavor_string) :
Disassembler(arch, flavor_string),
m_exe_ctx (NULL),
m_inst (NULL),
m_data_from_file (false)
{
if (!FlavorValidForArchSpec (arch, m_flavor.c_str()))
{
m_flavor.assign("default");
}
const char *triple = arch.GetTriple().getTriple().c_str();
unsigned flavor = ~0U;
// So far the only supported flavor is "intel" on x86. The base class will set this
// correctly coming in.
if (arch.GetTriple().getArch() == llvm::Triple::x86
|| arch.GetTriple().getArch() == llvm::Triple::x86_64)
{
if (m_flavor == "intel")
{
flavor = 1;
}
else if (m_flavor == "att")
{
flavor = 0;
}
}
ArchSpec thumb_arch(arch);
if (arch.GetTriple().getArch() == llvm::Triple::arm)
{
std::string thumb_arch_name (thumb_arch.GetTriple().getArchName().str());
// Replace "arm" with "thumb" so we get all thumb variants correct
if (thumb_arch_name.size() > 3)
{
thumb_arch_name.erase(0,3);
thumb_arch_name.insert(0, "thumb");
}
else
{
thumb_arch_name = "thumbv7";
}
thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name.c_str()));
}
// Cortex-M3 devices (e.g. armv7m) can only execute thumb (T2) instructions,
// so hardcode the primary disassembler to thumb mode.
if (arch.GetTriple().getArch() == llvm::Triple::arm
&& (arch.GetCore() == ArchSpec::Core::eCore_arm_armv7m || arch.GetCore() == ArchSpec::Core::eCore_arm_armv7em))
{
triple = thumb_arch.GetTriple().getTriple().c_str();
}
m_disasm_ap.reset (new LLVMCDisassembler(triple, flavor, *this));
if (!m_disasm_ap->IsValid())
{
// We use m_disasm_ap.get() to tell whether we are valid or not, so if this isn't good for some reason,
// we reset it, and then we won't be valid and FindPlugin will fail and we won't get used.
m_disasm_ap.reset();
}
// For arm CPUs that can execute arm or thumb instructions, also create a thumb instruction disassembler.
if (arch.GetTriple().getArch() == llvm::Triple::arm)
{
std::string thumb_triple(thumb_arch.GetTriple().getTriple());
m_alternate_disasm_ap.reset(new LLVMCDisassembler(thumb_triple.c_str(), flavor, *this));
if (!m_alternate_disasm_ap->IsValid())
{
m_disasm_ap.reset();
m_alternate_disasm_ap.reset();
}
}
}
DisassemblerLLVMC::~DisassemblerLLVMC()
{
}
size_t
DisassemblerLLVMC::DecodeInstructions (const Address &base_addr,
const DataExtractor& data,
lldb::offset_t data_offset,
size_t num_instructions,
bool append,
bool data_from_file)
{
if (!append)
m_instruction_list.Clear();
if (!IsValid())
return 0;
m_data_from_file = data_from_file;
uint32_t data_cursor = data_offset;
const size_t data_byte_size = data.GetByteSize();
uint32_t instructions_parsed = 0;
Address inst_addr(base_addr);
while (data_cursor < data_byte_size && instructions_parsed < num_instructions)
{
AddressClass address_class = eAddressClassCode;
if (m_alternate_disasm_ap.get() != NULL)
address_class = inst_addr.GetAddressClass ();
InstructionSP inst_sp(new InstructionLLVMC(*this,
inst_addr,
address_class));
if (!inst_sp)
break;
uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
if (inst_size == 0)
break;
m_instruction_list.Append(inst_sp);
data_cursor += inst_size;
inst_addr.Slide(inst_size);
instructions_parsed++;
}
return data_cursor - data_offset;
}
void
DisassemblerLLVMC::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
"Disassembler that uses LLVM MC to disassemble i386, x86_64 and ARM.",
CreateInstance);
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
}
void
DisassemblerLLVMC::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
ConstString
DisassemblerLLVMC::GetPluginNameStatic()
{
static ConstString g_name("llvm-mc");
return g_name;
}
int DisassemblerLLVMC::OpInfoCallback (void *disassembler,
uint64_t pc,
uint64_t offset,
uint64_t size,
int tag_type,
void *tag_bug)
{
return static_cast<DisassemblerLLVMC*>(disassembler)->OpInfo (pc,
offset,
size,
tag_type,
tag_bug);
}
const char *DisassemblerLLVMC::SymbolLookupCallback (void *disassembler,
uint64_t value,
uint64_t *type,
uint64_t pc,
const char **name)
{
return static_cast<DisassemblerLLVMC*>(disassembler)->SymbolLookup(value,
type,
pc,
name);
}
int DisassemblerLLVMC::OpInfo (uint64_t PC,
uint64_t Offset,
uint64_t Size,
int tag_type,
void *tag_bug)
{
switch (tag_type)
{
default:
break;
case 1:
bzero (tag_bug, sizeof(::LLVMOpInfo1));
break;
}
return 0;
}
const char *DisassemblerLLVMC::SymbolLookup (uint64_t value,
uint64_t *type_ptr,
uint64_t pc,
const char **name)
{
if (*type_ptr)
{
if (m_exe_ctx && m_inst)
{
//std::string remove_this_prior_to_checkin;
Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : NULL;
Address value_so_addr;
if (m_inst->UsingFileAddress())
{
ModuleSP module_sp(m_inst->GetAddress().GetModule());
if (module_sp)
module_sp->ResolveFileAddress(value, value_so_addr);
}
else if (target && !target->GetSectionLoadList().IsEmpty())
{
target->GetSectionLoadList().ResolveLoadAddress(value, value_so_addr);
}
if (value_so_addr.IsValid() && value_so_addr.GetSection())
{
StreamString ss;
value_so_addr.Dump (&ss,
target,
Address::DumpStyleResolvedDescriptionNoModule,
Address::DumpStyleSectionNameOffset);
if (!ss.GetString().empty())
{
m_inst->AppendComment(ss.GetString());
}
}
}
}
*type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
*name = NULL;
return NULL;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
ConstString
DisassemblerLLVMC::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
DisassemblerLLVMC::GetPluginVersion()
{
return 1;
}