//===-- head_find.c ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file compiles into a dylib and can be used on darwin to find data that
// is contained in active malloc blocks. To use this make the project, then
// load the shared library in a debug session while you are stopped:
//
// (lldb) process load /path/to/libheap.dylib
//
// Now you can use the "find_pointer_in_heap" and "find_cstring_in_heap"
// functions in the expression parser.
//
// This will grep everything in all active allocation blocks and print and
// malloc blocks that contain the pointer 0x112233000000:
//
// (lldb) expression find_pointer_in_heap (0x112233000000)
//
// This will grep everything in all active allocation blocks and print and
// malloc blocks that contain the C string "hello" (as a substring, no
// NULL termination included):
//
// (lldb) expression find_cstring_in_heap ("hello")
//
// The results will be printed to the STDOUT of the inferior program. The
// return value of the "find_pointer_in_heap" function is the number of
// pointer references that were found. A quick example shows
//
// (lldb) expr find_pointer_in_heap(0x0000000104000410)
// (uint32_t) $5 = 0x00000002
// 0x104000740: 0x0000000104000410 found in malloc block 0x104000730 + 16 (malloc_size = 48)
// 0x100820060: 0x0000000104000410 found in malloc block 0x100820000 + 96 (malloc_size = 4096)
//
// From the above output we see that 0x104000410 was found in the malloc block
// at 0x104000730 and 0x100820000. If we want to see what these blocks are, we
// can display the memory for this block using the "address" ("A" for short)
// format. The address format shows pointers, and if those pointers point to
// objects that have symbols or know data contents, it will display information
// about the pointers:
//
// (lldb) memory read --format address --count 1 0x104000730
// 0x104000730: 0x0000000100002460 (void *)0x0000000100002488: MyString
//
// We can see that the first block is a "MyString" object that contains our
// pointer value at offset 16.
//
// Looking at the next pointers, are a bit more tricky:
// (lldb) memory read -fA 0x100820000 -c1
// 0x100820000: 0x4f545541a1a1a1a1
// (lldb) memory read 0x100820000
// 0x100820000: a1 a1 a1 a1 41 55 54 4f 52 45 4c 45 41 53 45 21 ....AUTORELEASE!
// 0x100820010: 78 00 82 00 01 00 00 00 60 f9 e8 75 ff 7f 00 00 x.......`..u....
//
// This is an objective C auto release pool object that contains our pointer.
// C++ classes will show up if they are virtual as something like:
// (lldb) memory read --format address --count 1 0x104008000
// 0x104008000: 0x109008000 vtable for lldb_private::Process
//
// This is a clue that the 0x104008000 is a "lldb_private::Process *".
//===----------------------------------------------------------------------===//
// C includes
#include <assert.h>
#include <ctype.h>
#include <dlfcn.h>
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <malloc/malloc.h>
#include <objc/objc-runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
// C++ includes
#include <vector>
//----------------------------------------------------------------------
// Redefine private types from "/usr/local/include/stack_logging.h"
//----------------------------------------------------------------------
typedef struct {
uint32_t type_flags;
uint64_t stack_identifier;
uint64_t argument;
mach_vm_address_t address;
} mach_stack_logging_record_t;
//----------------------------------------------------------------------
// Redefine private defines from "/usr/local/include/stack_logging.h"
//----------------------------------------------------------------------
#define stack_logging_type_free 0
#define stack_logging_type_generic 1
#define stack_logging_type_alloc 2
#define stack_logging_type_dealloc 4
// This bit is made up by this code
#define stack_logging_type_vm_region 8
//----------------------------------------------------------------------
// Redefine private function prototypes from
// "/usr/local/include/stack_logging.h"
//----------------------------------------------------------------------
extern "C" kern_return_t
__mach_stack_logging_set_file_path (
task_t task,
char* file_path
);
extern "C" kern_return_t
__mach_stack_logging_get_frames (
task_t task,
mach_vm_address_t address,
mach_vm_address_t *stack_frames_buffer,
uint32_t max_stack_frames,
uint32_t *count
);
extern "C" kern_return_t
__mach_stack_logging_enumerate_records (
task_t task,
mach_vm_address_t address,
void enumerator(mach_stack_logging_record_t, void *),
void *context
);
extern "C" kern_return_t
__mach_stack_logging_frames_for_uniqued_stack (
task_t task,
uint64_t stack_identifier,
mach_vm_address_t *stack_frames_buffer,
uint32_t max_stack_frames,
uint32_t *count
);
extern "C" void *gdb_class_getClass (void *objc_class);
static void
range_info_callback (task_t task,
void *baton,
unsigned type,
uint64_t ptr_addr,
uint64_t ptr_size);
//----------------------------------------------------------------------
// Redefine private gloval variables prototypes from
// "/usr/local/include/stack_logging.h"
//----------------------------------------------------------------------
extern "C" int stack_logging_enable_logging;
//----------------------------------------------------------------------
// Local defines
//----------------------------------------------------------------------
#define MAX_FRAMES 1024
//----------------------------------------------------------------------
// Local Typedefs and Types
//----------------------------------------------------------------------
typedef void range_callback_t (task_t task, void *baton, unsigned type, uint64_t ptr_addr, uint64_t ptr_size);
typedef void zone_callback_t (void *info, const malloc_zone_t *zone);
typedef int (*comare_function_t)(const void *, const void *);
struct range_callback_info_t
{
zone_callback_t *zone_callback;
range_callback_t *range_callback;
void *baton;
int check_vm_regions;
};
enum data_type_t
{
eDataTypeAddress,
eDataTypeContainsData,
eDataTypeObjC,
eDataTypeHeapInfo
};
struct aligned_data_t
{
const uint8_t *buffer;
uint32_t size;
uint32_t align;
};
struct objc_data_t
{
void *match_isa; // Set to NULL for all objective C objects
bool match_superclasses;
};
struct range_contains_data_callback_info_t
{
data_type_t type;
const void *lookup_addr;
union
{
uintptr_t addr;
aligned_data_t data;
objc_data_t objc;
};
uint32_t match_count;
bool done;
bool unique;
};
struct malloc_match
{
void *addr;
intptr_t size;
intptr_t offset;
uintptr_t type;
};
struct malloc_stack_entry
{
const void *address;
uint64_t argument;
uint32_t type_flags;
uint32_t num_frames;
mach_vm_address_t frames[MAX_FRAMES];
};
struct malloc_block_contents
{
union {
Class isa;
void *pointers[2];
};
};
static int
compare_void_ptr (const void *a, const void *b)
{
Class a_ptr = *(Class *)a;
Class b_ptr = *(Class *)b;
if (a_ptr < b_ptr) return -1;
if (a_ptr > b_ptr) return +1;
return 0;
}
class MatchResults
{
enum {
k_max_entries = 8 * 1024
};
public:
MatchResults () :
m_size(0)
{
}
void
clear()
{
m_size = 0;
bzero (&m_entries, sizeof(m_entries));
}
bool
empty() const
{
return m_size == 0;
}
void
push_back (const malloc_match& m, bool unique = false)
{
if (unique)
{
// Don't add the entry if there is already a match for this address
for (uint32_t i=0; i<m_size; ++i)
{
if (((uint8_t *)m_entries[i].addr + m_entries[i].offset) == ((uint8_t *)m.addr + m.offset))
return; // Duplicate entry
}
}
if (m_size < k_max_entries - 1)
{
m_entries[m_size] = m;
m_size++;
}
}
malloc_match *
data ()
{
// If empty, return NULL
if (empty())
return NULL;
// In not empty, terminate and return the result
malloc_match terminator_entry = { NULL, 0, 0, 0 };
// We always leave room for an empty entry at the end
m_entries[m_size] = terminator_entry;
return m_entries;
}
protected:
malloc_match m_entries[k_max_entries];
uint32_t m_size;
};
class MallocStackLoggingEntries
{
enum { k_max_entries = 128 };
public:
MallocStackLoggingEntries () :
m_size(0)
{
}
void
clear()
{
m_size = 0;
}
bool
empty() const
{
return m_size == 0;
}
malloc_stack_entry *
next ()
{
if (m_size < k_max_entries - 1)
{
malloc_stack_entry * result = m_entries + m_size;
++m_size;
return result;
}
return NULL; // Out of entries...
}
malloc_stack_entry *
data ()
{
// If empty, return NULL
if (empty())
return NULL;
// In not empty, terminate and return the result
m_entries[m_size].address = NULL;
m_entries[m_size].argument = 0;
m_entries[m_size].type_flags = 0;
m_entries[m_size].num_frames = 0;
return m_entries;
}
protected:
malloc_stack_entry m_entries[k_max_entries];
uint32_t m_size;
};
//----------------------------------------------------------------------
// A safe way to allocate memory and keep it from interfering with the
// malloc enumerators.
//----------------------------------------------------------------------
void *
safe_malloc(size_t n_bytes)
{
if (n_bytes > 0)
{
const int k_page_size = getpagesize();
const mach_vm_size_t vm_size = ((n_bytes + k_page_size - 1)/k_page_size) * k_page_size;
vm_address_t address = 0;
kern_return_t kerr = vm_allocate (mach_task_self(), &address, vm_size, true);
if (kerr == KERN_SUCCESS)
return (void *)address;
}
return NULL;
}
//----------------------------------------------------------------------
// ObjCClasses
//----------------------------------------------------------------------
class ObjCClasses
{
public:
ObjCClasses() :
m_objc_class_ptrs (NULL),
m_size (0)
{
}
bool
Update()
{
// TODO: find out if class list has changed and update if needed
if (m_objc_class_ptrs == NULL)
{
m_size = objc_getClassList(NULL, 0);
if (m_size > 0)
{
// Allocate the class pointers
m_objc_class_ptrs = (Class *)safe_malloc (m_size * sizeof(Class));
m_size = objc_getClassList(m_objc_class_ptrs, m_size);
// Sort Class pointers for quick lookup
::qsort (m_objc_class_ptrs, m_size, sizeof(Class), compare_void_ptr);
}
else
return false;
}
return true;
}
uint32_t
FindClassIndex (Class isa)
{
Class *matching_class = (Class *)bsearch (&isa,
m_objc_class_ptrs,
m_size,
sizeof(Class),
compare_void_ptr);
if (matching_class)
{
uint32_t idx = matching_class - m_objc_class_ptrs;
return idx;
}
return UINT32_MAX;
}
Class
GetClassAtIndex (uint32_t idx) const
{
if (idx < m_size)
return m_objc_class_ptrs[idx];
return NULL;
}
uint32_t
GetSize() const
{
return m_size;
}
private:
Class *m_objc_class_ptrs;
uint32_t m_size;
};
//----------------------------------------------------------------------
// Local global variables
//----------------------------------------------------------------------
MatchResults g_matches;
MallocStackLoggingEntries g_malloc_stack_history;
ObjCClasses g_objc_classes;
//----------------------------------------------------------------------
// ObjCClassInfo
//----------------------------------------------------------------------
enum HeapInfoSortType
{
eSortTypeNone,
eSortTypeBytes,
eSortTypeCount
};
class ObjCClassInfo
{
public:
ObjCClassInfo() :
m_entries (NULL),
m_size (0),
m_sort_type (eSortTypeNone)
{
}
void
Update (const ObjCClasses &objc_classes)
{
m_size = objc_classes.GetSize();
m_entries = (Entry *)safe_malloc (m_size * sizeof(Entry));
m_sort_type = eSortTypeNone;
Reset ();
}
bool
AddInstance (uint32_t idx, uint64_t ptr_size)
{
if (m_size == 0)
Update (g_objc_classes);
// Update the totals for the classes
if (idx < m_size)
{
m_entries[idx].bytes += ptr_size;
++m_entries[idx].count;
return true;
}
return false;
}
void
Reset ()
{
m_sort_type = eSortTypeNone;
for (uint32_t i=0; i<m_size; ++i)
{
// In case we sort the entries after gathering the data, we will
// want to know the index into the m_objc_class_ptrs[] array.
m_entries[i].idx = i;
m_entries[i].bytes = 0;
m_entries[i].count = 0;
}
}
void
SortByTotalBytes (const ObjCClasses &objc_classes, bool print)
{
if (m_sort_type != eSortTypeBytes && m_size > 0)
{
::qsort (m_entries, m_size, sizeof(Entry), (comare_function_t)compare_bytes);
m_sort_type = eSortTypeBytes;
}
if (print && m_size > 0)
{
puts("Objective C objects by total bytes:");
puts("Total Bytes Class Name");
puts("----------- -----------------------------------------------------------------");
for (uint32_t i=0; i<m_size && m_entries[i].bytes > 0; ++i)
{
printf ("%11llu %s\n", m_entries[i].bytes, class_getName (objc_classes.GetClassAtIndex(m_entries[i].idx)));
}
}
}
void
SortByTotalCount (const ObjCClasses &objc_classes, bool print)
{
if (m_sort_type != eSortTypeCount && m_size > 0)
{
::qsort (m_entries, m_size, sizeof(Entry), (comare_function_t)compare_count);
m_sort_type = eSortTypeCount;
}
if (print && m_size > 0)
{
puts("Objective C objects by total count:");
puts("Count Class Name");
puts("-------- -----------------------------------------------------------------");
for (uint32_t i=0; i<m_size && m_entries[i].count > 0; ++i)
{
printf ("%8u %s\n", m_entries[i].count, class_getName (objc_classes.GetClassAtIndex(m_entries[i].idx)));
}
}
}
private:
struct Entry
{
uint32_t idx; // Index into the m_objc_class_ptrs[] array
uint32_t count; // Number of object instances that were found
uint64_t bytes; // Total number of bytes for each objc class
};
static int
compare_bytes (const Entry *a, const Entry *b)
{
// Reverse the comparisong to most bytes entries end up at top of list
if (a->bytes > b->bytes) return -1;
if (a->bytes < b->bytes) return +1;
return 0;
}
static int
compare_count (const Entry *a, const Entry *b)
{
// Reverse the comparisong to most count entries end up at top of list
if (a->count > b->count) return -1;
if (a->count < b->count) return +1;
return 0;
}
Entry *m_entries;
uint32_t m_size;
HeapInfoSortType m_sort_type;
};
ObjCClassInfo g_objc_class_snapshot;
//----------------------------------------------------------------------
// task_peek
//
// Reads memory from this tasks address space. This callback is needed
// by the code that iterates through all of the malloc blocks to read
// the memory in this process.
//----------------------------------------------------------------------
static kern_return_t
task_peek (task_t task, vm_address_t remote_address, vm_size_t size, void **local_memory)
{
*local_memory = (void*) remote_address;
return KERN_SUCCESS;
}
static const void
foreach_zone_in_this_process (range_callback_info_t *info)
{
if (info == NULL || info->zone_callback == NULL)
return;
vm_address_t *zones = NULL;
unsigned int num_zones = 0;
kern_return_t err = malloc_get_all_zones (0, task_peek, &zones, &num_zones);
if (KERN_SUCCESS == err)
{
for (unsigned int i=0; i<num_zones; ++i)
{
info->zone_callback (info, (const malloc_zone_t *)zones[i]);
}
}
if (info->check_vm_regions)
{
#if defined (VM_REGION_SUBMAP_SHORT_INFO_COUNT_64)
typedef vm_region_submap_short_info_data_64_t RegionInfo;
enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 };
#else
typedef vm_region_submap_info_data_64_t RegionInfo;
enum { kRegionInfoSize = VM_REGION_SUBMAP_INFO_COUNT_64 };
#endif
task_t task = mach_task_self();
mach_vm_address_t vm_region_base_addr;
mach_vm_size_t vm_region_size;
natural_t vm_region_depth;
RegionInfo vm_region_info;
((range_contains_data_callback_info_t *)info->baton)->unique = true;
for (vm_region_base_addr = 0, vm_region_size = 1; vm_region_size != 0; vm_region_base_addr += vm_region_size)
{
mach_msg_type_number_t vm_region_info_size = kRegionInfoSize;
const kern_return_t err = mach_vm_region_recurse (task,
&vm_region_base_addr,
&vm_region_size,
&vm_region_depth,
(vm_region_recurse_info_t)&vm_region_info,
&vm_region_info_size);
if (err)
break;
// Check all read + write regions. This will cover the thread stacks
// and any regions of memory that aren't covered by the heap
if (vm_region_info.protection & VM_PROT_WRITE &&
vm_region_info.protection & VM_PROT_READ)
{
//printf ("checking vm_region: [0x%16.16llx - 0x%16.16llx)\n", (uint64_t)vm_region_base_addr, (uint64_t)vm_region_base_addr + vm_region_size);
range_info_callback (task,
info->baton,
stack_logging_type_vm_region,
vm_region_base_addr,
vm_region_size);
}
}
}
}
//----------------------------------------------------------------------
// dump_malloc_block_callback
//
// A simple callback that will dump each malloc block and all available
// info from the enumeration callback perpective.
//----------------------------------------------------------------------
static void
dump_malloc_block_callback (task_t task, void *baton, unsigned type, uint64_t ptr_addr, uint64_t ptr_size)
{
printf ("task = 0x%4.4x: baton = %p, type = %u, ptr_addr = 0x%llx + 0x%llu\n", task, baton, type, ptr_addr, ptr_size);
}
static void
ranges_callback (task_t task, void *baton, unsigned type, vm_range_t *ptrs, unsigned count)
{
range_callback_info_t *info = (range_callback_info_t *)baton;
while(count--) {
info->range_callback (task, info->baton, type, ptrs->address, ptrs->size);
ptrs++;
}
}
static void
enumerate_range_in_zone (void *baton, const malloc_zone_t *zone)
{
range_callback_info_t *info = (range_callback_info_t *)baton;
if (zone && zone->introspect)
zone->introspect->enumerator (mach_task_self(),
info,
MALLOC_PTR_IN_USE_RANGE_TYPE,
(vm_address_t)zone,
task_peek,
ranges_callback);
}
static void
range_info_callback (task_t task, void *baton, unsigned type, uint64_t ptr_addr, uint64_t ptr_size)
{
const uint64_t end_addr = ptr_addr + ptr_size;
range_contains_data_callback_info_t *info = (range_contains_data_callback_info_t *)baton;
switch (info->type)
{
case eDataTypeAddress:
// Check if the current malloc block contains an address specified by "info->addr"
if (ptr_addr <= info->addr && info->addr < end_addr)
{
++info->match_count;
malloc_match match = { (void *)ptr_addr, ptr_size, info->addr - ptr_addr, type };
g_matches.push_back(match, info->unique);
}
break;
case eDataTypeContainsData:
// Check if the current malloc block contains data specified in "info->data"
{
const uint32_t size = info->data.size;
if (size < ptr_size) // Make sure this block can contain this data
{
uint8_t *ptr_data = NULL;
if (task_peek (task, ptr_addr, ptr_size, (void **)&ptr_data) == KERN_SUCCESS)
{
const void *buffer = info->data.buffer;
assert (ptr_data);
const uint32_t align = info->data.align;
for (uint64_t addr = ptr_addr;
addr < end_addr && ((end_addr - addr) >= size);
addr += align, ptr_data += align)
{
if (memcmp (buffer, ptr_data, size) == 0)
{
++info->match_count;
malloc_match match = { (void *)ptr_addr, ptr_size, addr - ptr_addr, type };
g_matches.push_back(match, info->unique);
}
}
}
else
{
printf ("0x%llx: error: couldn't read %llu bytes\n", ptr_addr, ptr_size);
}
}
}
break;
case eDataTypeObjC:
// Check if the current malloc block contains an objective C object
// of any sort where the first pointer in the object is an OBJC class
// pointer (an isa)
{
malloc_block_contents *block_contents = NULL;
if (task_peek (task, ptr_addr, sizeof(void *), (void **)&block_contents) == KERN_SUCCESS)
{
// We assume that g_objc_classes is up to date
// that the class list was verified to have some classes in it
// before calling this function
const uint32_t objc_class_idx = g_objc_classes.FindClassIndex (block_contents->isa);
if (objc_class_idx != UINT32_MAX)
{
bool match = false;
if (info->objc.match_isa == 0)
{
// Match any objective C object
match = true;
}
else
{
// Only match exact isa values in the current class or
// optionally in the super classes
if (info->objc.match_isa == block_contents->isa)
match = true;
else if (info->objc.match_superclasses)
{
Class super = class_getSuperclass(block_contents->isa);
while (super)
{
match = super == info->objc.match_isa;
if (match)
break;
super = class_getSuperclass(super);
}
}
}
if (match)
{
//printf (" success\n");
++info->match_count;
malloc_match match = { (void *)ptr_addr, ptr_size, 0, type };
g_matches.push_back(match, info->unique);
}
else
{
//printf (" error: wrong class: %s\n", dl_info.dli_sname);
}
}
else
{
//printf ("\terror: symbol not objc class: %s\n", dl_info.dli_sname);
return;
}
}
}
break;
case eDataTypeHeapInfo:
// Check if the current malloc block contains an objective C object
// of any sort where the first pointer in the object is an OBJC class
// pointer (an isa)
{
malloc_block_contents *block_contents = NULL;
if (task_peek (task, ptr_addr, sizeof(void *), (void **)&block_contents) == KERN_SUCCESS)
{
// We assume that g_objc_classes is up to date
// that the class list was verified to have some classes in it
// before calling this function
const uint32_t objc_class_idx = g_objc_classes.FindClassIndex (block_contents->isa);
if (objc_class_idx != UINT32_MAX)
{
// This is an objective C object
g_objc_class_snapshot.AddInstance (objc_class_idx, ptr_size);
}
else
{
// Classify other heap info
}
}
}
break;
}
}
static void
get_stack_for_address_enumerator(mach_stack_logging_record_t stack_record, void *task_ptr)
{
malloc_stack_entry *stack_entry = g_malloc_stack_history.next();
if (stack_entry)
{
stack_entry->address = (void *)stack_record.address;
stack_entry->type_flags = stack_record.type_flags;
stack_entry->argument = stack_record.argument;
stack_entry->num_frames = 0;
stack_entry->frames[0] = 0;
kern_return_t err = __mach_stack_logging_frames_for_uniqued_stack (*(task_t *)task_ptr,
stack_record.stack_identifier,
stack_entry->frames,
MAX_FRAMES,
&stack_entry->num_frames);
// Terminate the frames with zero if there is room
if (stack_entry->num_frames < MAX_FRAMES)
stack_entry->frames[stack_entry->num_frames] = 0;
}
}
malloc_stack_entry *
get_stack_history_for_address (const void * addr, int history)
{
if (!stack_logging_enable_logging)
return NULL;
g_malloc_stack_history.clear();
kern_return_t err;
task_t task = mach_task_self();
if (history)
{
err = __mach_stack_logging_enumerate_records (task,
(mach_vm_address_t)addr,
get_stack_for_address_enumerator,
&task);
}
else
{
malloc_stack_entry *stack_entry = g_malloc_stack_history.next();
if (stack_entry)
{
stack_entry->address = addr;
stack_entry->type_flags = stack_logging_type_alloc;
stack_entry->argument = 0;
stack_entry->num_frames = 0;
stack_entry->frames[0] = 0;
err = __mach_stack_logging_get_frames(task, (mach_vm_address_t)addr, stack_entry->frames, MAX_FRAMES, &stack_entry->num_frames);
if (err == 0 && stack_entry->num_frames > 0)
{
// Terminate the frames with zero if there is room
if (stack_entry->num_frames < MAX_FRAMES)
stack_entry->frames[stack_entry->num_frames] = 0;
}
else
{
g_malloc_stack_history.clear();
}
}
}
// Return data if there is any
return g_malloc_stack_history.data();
}
//----------------------------------------------------------------------
// find_pointer_in_heap
//
// Finds a pointer value inside one or more currently valid malloc
// blocks.
//----------------------------------------------------------------------
malloc_match *
find_pointer_in_heap (const void * addr, int check_vm_regions)
{
g_matches.clear();
// Setup "info" to look for a malloc block that contains data
// that is the a pointer
if (addr)
{
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeContainsData; // Check each block for data
data_info.data.buffer = (uint8_t *)&addr; // What data? The pointer value passed in
data_info.data.size = sizeof(addr); // How many bytes? The byte size of a pointer
data_info.data.align = sizeof(addr); // Align to a pointer byte size
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = { enumerate_range_in_zone, range_info_callback, &data_info, check_vm_regions };
foreach_zone_in_this_process (&info);
}
return g_matches.data();
}
//----------------------------------------------------------------------
// find_pointer_in_memory
//
// Finds a pointer value inside one or more currently valid malloc
// blocks.
//----------------------------------------------------------------------
malloc_match *
find_pointer_in_memory (uint64_t memory_addr, uint64_t memory_size, const void * addr)
{
g_matches.clear();
// Setup "info" to look for a malloc block that contains data
// that is the a pointer
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeContainsData; // Check each block for data
data_info.data.buffer = (uint8_t *)&addr; // What data? The pointer value passed in
data_info.data.size = sizeof(addr); // How many bytes? The byte size of a pointer
data_info.data.align = sizeof(addr); // Align to a pointer byte size
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_info_callback (mach_task_self(), &data_info, stack_logging_type_generic, memory_addr, memory_size);
return g_matches.data();
}
//----------------------------------------------------------------------
// find_objc_objects_in_memory
//
// Find all instances of ObjC classes 'c', or all ObjC classes if 'c' is
// NULL. If 'c' is non NULL, then also check objects to see if they
// inherit from 'c'
//----------------------------------------------------------------------
malloc_match *
find_objc_objects_in_memory (void *isa, int check_vm_regions)
{
g_matches.clear();
if (g_objc_classes.Update())
{
// Setup "info" to look for a malloc block that contains data
// that is the a pointer
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeObjC; // Check each block for data
data_info.objc.match_isa = isa;
data_info.objc.match_superclasses = true;
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = { enumerate_range_in_zone, range_info_callback, &data_info, check_vm_regions };
foreach_zone_in_this_process (&info);
}
return g_matches.data();
}
//----------------------------------------------------------------------
// get_heap_info
//
// Gather information for all allocations on the heap and report
// statistics.
//----------------------------------------------------------------------
void
get_heap_info (int sort_type)
{
if (g_objc_classes.Update())
{
// Reset all stats
g_objc_class_snapshot.Reset ();
// Setup "info" to look for a malloc block that contains data
// that is the a pointer
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeHeapInfo; // Check each block for data
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
const int check_vm_regions = false;
range_callback_info_t info = { enumerate_range_in_zone, range_info_callback, &data_info, check_vm_regions };
foreach_zone_in_this_process (&info);
// Sort and print byte total bytes
switch (sort_type)
{
case eSortTypeNone:
default:
case eSortTypeBytes:
g_objc_class_snapshot.SortByTotalBytes(g_objc_classes, true);
break;
case eSortTypeCount:
g_objc_class_snapshot.SortByTotalCount(g_objc_classes, true);
break;
}
}
else
{
printf ("error: no objective C classes\n");
}
}
//----------------------------------------------------------------------
// find_cstring_in_heap
//
// Finds a C string inside one or more currently valid malloc blocks.
//----------------------------------------------------------------------
malloc_match *
find_cstring_in_heap (const char *s, int check_vm_regions)
{
g_matches.clear();
if (s == NULL || s[0] == '\0')
{
printf ("error: invalid argument (empty cstring)\n");
return NULL;
}
// Setup "info" to look for a malloc block that contains data
// that is the C string passed in aligned on a 1 byte boundary
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeContainsData; // Check each block for data
data_info.data.buffer = (uint8_t *)s; // What data? The C string passed in
data_info.data.size = strlen(s); // How many bytes? The length of the C string
data_info.data.align = 1; // Data doesn't need to be aligned, so set the alignment to 1
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = { enumerate_range_in_zone, range_info_callback, &data_info, check_vm_regions };
foreach_zone_in_this_process (&info);
return g_matches.data();
}
//----------------------------------------------------------------------
// find_block_for_address
//
// Find the malloc block that whose address range contains "addr".
//----------------------------------------------------------------------
malloc_match *
find_block_for_address (const void *addr, int check_vm_regions)
{
g_matches.clear();
// Setup "info" to look for a malloc block that contains data
// that is the C string passed in aligned on a 1 byte boundary
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeAddress; // Check each block to see if the block contains the address passed in
data_info.addr = (uintptr_t)addr; // What data? The C string passed in
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = { enumerate_range_in_zone, range_info_callback, &data_info, check_vm_regions };
foreach_zone_in_this_process (&info);
return g_matches.data();
}