/******************************************************************************
*
* Copyright (C) 2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* HAL Adaptation Interface (HAI). This interface regulates the interaction
* between standard Android HAL and Broadcom-specific HAL. It adapts
* Broadcom-specific features to the Android framework.
*
******************************************************************************/
#define LOG_TAG "NfcNciHal"
#include "OverrideLog.h"
#include "HalAdaptation.h"
#include "SyncEvent.h"
#include "config.h"
#include "nfc_hal_int.h"
#include "nfc_hal_post_reset.h"
#include <errno.h>
#include <pthread.h>
#include <cutils/properties.h>
#include "buildcfg.h"
#include "android_logmsg.h"
extern void delete_hal_non_volatile_store (bool forceDelete);
extern void verify_hal_non_volatile_store ();
extern void resetConfig ();
extern "C"
{
#include "userial.h"
}
extern void configureCrystalFrequency ();
///////////////////////////////////////
// private declaration, definition
static nfc_stack_callback_t* gAndroidHalCallback = NULL;
static nfc_stack_data_callback_t* gAndroidHalDataCallback = NULL;
static SyncEvent gOpenCompletedEvent;
static SyncEvent gPostInitCompletedEvent;
static SyncEvent gCloseCompletedEvent;
UINT32 ScrProtocolTraceFlag = SCR_PROTO_TRACE_ALL; //0x017F00;
static void BroadcomHalCallback (UINT8 event, tHAL_NFC_STATUS status);
static void BroadcomHalDataCallback (UINT16 data_len, UINT8* p_data);
static bool isColdBoot = true;
extern tNFC_HAL_CFG *p_nfc_hal_cfg;
extern const UINT8 nfca_version_string [];
extern const UINT8 nfa_version_string [];
tNFC_HAL_DM_PRE_SET_MEM nfc_hal_pre_set_mem_20795a1 [] =
{
{0x0016403c, 0x00000008},
{0x0016403c, 0x00000000},
{0x0014008c, 0x00000001},
{0, 0}
};
extern tNFC_HAL_DM_PRE_SET_MEM *p_nfc_hal_dm_pre_set_mem;
///////////////////////////////////////
int HaiInitializeLibrary (const bcm2079x_dev_t* device)
{
ALOGD ("%s: enter", __FUNCTION__);
ALOGE ("%s: ver=%s nfa=%s", __FUNCTION__, nfca_version_string, nfa_version_string);
int retval = EACCES;
unsigned long freq = 0;
unsigned long num = 0;
char temp[120];
int8_t prop_value;
UINT8 logLevel = 0;
logLevel = InitializeGlobalAppLogLevel ();
if ( GetNumValue ( NAME_GLOBAL_RESET, &num, sizeof ( num ) ) )
{
if (num == 1)
{
// Send commands to disable boc
p_nfc_hal_dm_pre_set_mem = nfc_hal_pre_set_mem_20795a1;
}
}
configureCrystalFrequency ();
verify_hal_non_volatile_store ();
if ( GetNumValue ( NAME_PRESERVE_STORAGE, (char*)&num, sizeof ( num ) ) &&
(num == 1) )
ALOGD ("%s: preserve HAL NV store", __FUNCTION__);
else
{
delete_hal_non_volatile_store (false);
}
if ( GetNumValue ( NAME_USE_RAW_NCI_TRACE, &num, sizeof ( num ) ) )
{
if (num == 1)
{
// display protocol traces in raw format
ProtoDispAdapterUseRawOutput (TRUE);
}
}
// Initialize protocol logging level
InitializeProtocolLogLevel ();
tUSERIAL_OPEN_CFG cfg;
struct tUART_CONFIG uart;
if ( GetStrValue ( NAME_UART_PARITY, temp, sizeof ( temp ) ) )
{
if ( strcmp ( temp, "even" ) == 0 )
uart.m_iParity = USERIAL_PARITY_EVEN;
else if ( strcmp ( temp, "odd" ) == 0 )
uart.m_iParity = USERIAL_PARITY_ODD;
else if ( strcmp ( temp, "none" ) == 0 )
uart.m_iParity = USERIAL_PARITY_NONE;
}
else
uart.m_iParity = USERIAL_PARITY_NONE;
if ( GetStrValue ( NAME_UART_STOPBITS, temp, sizeof ( temp ) ) )
{
if ( strcmp ( temp, "1" ) == 0 )
uart.m_iStopbits = USERIAL_STOPBITS_1;
else if ( strcmp ( temp, "2" ) == 0 )
uart.m_iStopbits = USERIAL_STOPBITS_2;
else if ( strcmp ( temp, "1.5" ) == 0 )
uart.m_iStopbits = USERIAL_STOPBITS_1_5;
}
else if ( GetNumValue ( NAME_UART_STOPBITS, &num, sizeof ( num ) ) )
{
if ( num == 1 )
uart.m_iStopbits = USERIAL_STOPBITS_1;
else if ( num == 2 )
uart.m_iStopbits = USERIAL_STOPBITS_2;
}
else
uart.m_iStopbits = USERIAL_STOPBITS_1;
if ( GetNumValue ( NAME_UART_DATABITS, &num, sizeof ( num ) ) )
{
if ( 5 <= num && num <= 8 )
uart.m_iDatabits = ( 1 << ( num + 1 ) );
}
else
uart.m_iDatabits = USERIAL_DATABITS_8;
if ( GetNumValue ( NAME_UART_BAUD, &num, sizeof ( num ) ) )
{
if ( num == 300 ) uart.m_iBaudrate = USERIAL_BAUD_300;
else if ( num == 600 ) uart.m_iBaudrate = USERIAL_BAUD_600;
else if ( num == 1200 ) uart.m_iBaudrate = USERIAL_BAUD_1200;
else if ( num == 2400 ) uart.m_iBaudrate = USERIAL_BAUD_2400;
else if ( num == 9600 ) uart.m_iBaudrate = USERIAL_BAUD_9600;
else if ( num == 19200 ) uart.m_iBaudrate = USERIAL_BAUD_19200;
else if ( num == 57600 ) uart.m_iBaudrate = USERIAL_BAUD_57600;
else if ( num == 115200 ) uart.m_iBaudrate = USERIAL_BAUD_115200;
else if ( num == 230400 ) uart.m_iBaudrate = USERIAL_BAUD_230400;
else if ( num == 460800 ) uart.m_iBaudrate = USERIAL_BAUD_460800;
else if ( num == 921600 ) uart.m_iBaudrate = USERIAL_BAUD_921600;
}
else if ( GetStrValue ( NAME_UART_BAUD, temp, sizeof ( temp ) ) )
{
if ( strcmp ( temp, "auto" ) == 0 )
uart.m_iBaudrate = USERIAL_BAUD_AUTO;
}
else
uart.m_iBaudrate = USERIAL_BAUD_115200;
memset (&cfg, 0, sizeof(tUSERIAL_OPEN_CFG));
cfg.fmt = uart.m_iDatabits | uart.m_iParity | uart.m_iStopbits;
cfg.baud = uart.m_iBaudrate;
ALOGD ("%s: uart config=0x%04x, %d\n", __func__, cfg.fmt, cfg.baud);
USERIAL_Init(&cfg);
if ( GetNumValue ( NAME_NFCC_ENABLE_TIMEOUT, &num, sizeof ( num ) ) )
{
p_nfc_hal_cfg->nfc_hal_nfcc_enable_timeout = num;
}
if ( GetNumValue ( NAME_NFA_MAX_EE_SUPPORTED, &num, sizeof ( num ) ) && num == 0 )
{
// Since NFA_MAX_EE_SUPPORTED is explicetly set to 0, no UICC support is needed.
p_nfc_hal_cfg->nfc_hal_hci_uicc_support = 0;
}
prop_value = property_get_bool("nfc.bcm2079x.isColdboot", 0);
if (prop_value) {
isColdBoot = true;
property_set("nfc.bcm2079x.isColdboot", "0");
}
// Set 'first boot' flag based on static variable that will get set to false
// after the stack has first initialized the EE.
p_nfc_hal_cfg->nfc_hal_first_boot = isColdBoot ? TRUE : FALSE;
HAL_NfcInitialize ();
HAL_NfcSetTraceLevel (logLevel); // Initialize HAL's logging level
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiTerminateLibrary ()
{
int retval = EACCES;
ALOGD ("%s: enter", __FUNCTION__);
HAL_NfcTerminate ();
gAndroidHalCallback = NULL;
gAndroidHalDataCallback = NULL;
GKI_shutdown ();
resetConfig ();
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiOpen (const bcm2079x_dev_t* device, nfc_stack_callback_t* halCallbackFunc, nfc_stack_data_callback_t* halDataCallbackFunc)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
gAndroidHalCallback = halCallbackFunc;
gAndroidHalDataCallback = halDataCallbackFunc;
SyncEventGuard guard (gOpenCompletedEvent);
HAL_NfcOpen (BroadcomHalCallback, BroadcomHalDataCallback);
gOpenCompletedEvent.wait ();
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
void BroadcomHalCallback (UINT8 event, tHAL_NFC_STATUS status)
{
ALOGD ("%s: enter; event=0x%X", __FUNCTION__, event);
switch (event)
{
case HAL_NFC_OPEN_CPLT_EVT:
{
ALOGD ("%s: HAL_NFC_OPEN_CPLT_EVT; status=0x%X", __FUNCTION__, status);
SyncEventGuard guard (gOpenCompletedEvent);
gOpenCompletedEvent.notifyOne ();
break;
}
case HAL_NFC_POST_INIT_CPLT_EVT:
{
ALOGD ("%s: HAL_NFC_POST_INIT_CPLT_EVT", __FUNCTION__);
SyncEventGuard guard (gPostInitCompletedEvent);
gPostInitCompletedEvent.notifyOne ();
break;
}
case HAL_NFC_CLOSE_CPLT_EVT:
{
ALOGD ("%s: HAL_NFC_CLOSE_CPLT_EVT", __FUNCTION__);
SyncEventGuard guard (gCloseCompletedEvent);
gCloseCompletedEvent.notifyOne ();
break;
}
case HAL_NFC_ERROR_EVT:
{
ALOGD ("%s: HAL_NFC_ERROR_EVT", __FUNCTION__);
{
SyncEventGuard guard (gOpenCompletedEvent);
gOpenCompletedEvent.notifyOne ();
}
{
SyncEventGuard guard (gPostInitCompletedEvent);
gPostInitCompletedEvent.notifyOne ();
}
{
SyncEventGuard guard (gCloseCompletedEvent);
gCloseCompletedEvent.notifyOne ();
}
break;
}
}
gAndroidHalCallback (event, status);
ALOGD ("%s: exit; event=0x%X", __FUNCTION__, event);
}
void BroadcomHalDataCallback (UINT16 data_len, UINT8* p_data)
{
ALOGD ("%s: enter; len=%u", __FUNCTION__, data_len);
gAndroidHalDataCallback (data_len, p_data);
}
int HaiClose (const bcm2079x_dev_t* device)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
SyncEventGuard guard (gCloseCompletedEvent);
HAL_NfcClose ();
gCloseCompletedEvent.wait ();
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiCoreInitialized (const bcm2079x_dev_t* device, uint8_t* coreInitResponseParams)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
SyncEventGuard guard (gPostInitCompletedEvent);
HAL_NfcCoreInitialized (coreInitResponseParams);
gPostInitCompletedEvent.wait ();
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiWrite (const bcm2079x_dev_t* dev, uint16_t dataLen, const uint8_t* data)
{
ALOGD ("%s: enter; len=%u", __FUNCTION__, dataLen);
int retval = EACCES;
HAL_NfcWrite (dataLen, const_cast<UINT8*> (data));
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiPreDiscover (const bcm2079x_dev_t* device)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
// This function is a clear indication that the stack is initializing
// EE. So we can reset the cold-boot flag here.
isColdBoot = false;
retval = HAL_NfcPreDiscover () ? 1 : 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiControlGranted (const bcm2079x_dev_t* device)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
HAL_NfcControlGranted ();
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiPowerCycle (const bcm2079x_dev_t* device)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
HAL_NfcPowerCycle ();
retval = 0;
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}
int HaiGetMaxNfcee (const bcm2079x_dev_t* device, uint8_t* maxNfcee)
{
ALOGD ("%s: enter", __FUNCTION__);
int retval = EACCES;
// This function is a clear indication that the stack is initializing
// EE. So we can reset the cold-boot flag here.
isColdBoot = false;
if ( maxNfcee )
{
*maxNfcee = HAL_NfcGetMaxNfcee ();
ALOGD("%s: max_ee from HAL to use %d", __FUNCTION__, *maxNfcee);
retval = 0;
}
ALOGD ("%s: exit %d", __FUNCTION__, retval);
return retval;
}