/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
*******************************************************************************
* @file
* ihevcd_mv_pred.c
*
* @brief
* Contains functions for motion vector prediction
*
* @author
* Ittiam
*
* @par List of Functions:
* - ihevcd_scale_mv()
* - ihevcd_mv_pred()
*
* @remarks
* None
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "ihevc_typedefs.h"
#include "iv.h"
#include "ivd.h"
#include "ihevcd_cxa.h"
#include "ithread.h"
#include "ihevc_defs.h"
#include "ihevc_debug.h"
#include "ihevc_structs.h"
#include "ihevc_macros.h"
#include "ihevc_platform_macros.h"
#include "ihevc_cabac_tables.h"
#include "ihevc_disp_mgr.h"
#include "ihevc_buf_mgr.h"
#include "ihevc_dpb_mgr.h"
#include "ihevcd_defs.h"
#include "ihevcd_function_selector.h"
#include "ihevcd_structs.h"
#include "ihevcd_error.h"
#include "ihevcd_nal.h"
#include "ihevcd_bitstream.h"
#include "ihevcd_fmt_conv.h"
#include "ihevcd_job_queue.h"
#include "ihevcd_debug.h"
#include "ihevcd_mv_merge.h"
/**
*******************************************************************************
*
* @brief Function scaling motion vector
*
*
* @par Description:
* Scales mv based on difference between current POC and current
* reference POC and neighbour reference poc
*
* @param[inout] mv
* motion vector to be scaled
*
* @param[in] cur_ref_poc
* Current PU refernce pic poc
*
* @param[in] nbr_ref_poc
* Neighbor PU reference pic poc
*
* @param[in] cur_poc
* Picture order count of current pic
*
* @returns
* None
*
* @remarks
*
*******************************************************************************
*/
void ihevcd_scale_mv(mv_t *ps_mv,
WORD32 cur_ref_poc,
WORD32 nbr_ref_poc,
WORD32 cur_poc)
{
WORD32 td, tb, tx;
WORD32 dist_scale_factor;
WORD32 mvx, mvy;
td = CLIP_S8(cur_poc - nbr_ref_poc);
tb = CLIP_S8(cur_poc - cur_ref_poc);
if(0 != td)
{
tx = (16384 + (abs(td) >> 1)) / td;
dist_scale_factor = (tb * tx + 32) >> 6;
dist_scale_factor = CLIP3(dist_scale_factor, -4096, 4095);
mvx = ps_mv->i2_mvx;
mvy = ps_mv->i2_mvy;
mvx = SIGN(dist_scale_factor * mvx)
* ((abs(dist_scale_factor * mvx) + 127) >> 8);
mvy = SIGN(dist_scale_factor * mvy)
* ((abs(dist_scale_factor * mvy) + 127) >> 8);
ps_mv->i2_mvx = CLIP_S16(mvx);
ps_mv->i2_mvy = CLIP_S16(mvy);
}
}
/**
*******************************************************************************
*
* @brief Function scaling temporal motion vector
*
*
* @par Description:
* Scales mv based on difference between current POC and current
* reference POC and neighbour reference poc
*
* @param[inout] mv
* motion vector to be scaled
*
* @param[in] cur_ref_poc
* Current PU refernce pic poc
*
* @param[in] nbr_ref_poc
* Neighbor PU reference pic poc
*
* @param[in] cur_poc
* Picture order count of current pic
*
* @returns
* None
*
* @remarks
*
*******************************************************************************
*/
void ihevcd_scale_collocated_mv(mv_t *ps_mv,
WORD32 cur_ref_poc,
WORD32 col_ref_poc,
WORD32 col_poc,
WORD32 cur_poc)
{
WORD32 td, tb, tx;
WORD32 dist_scale_factor;
WORD32 mvx, mvy;
td = CLIP_S8(col_poc - col_ref_poc);
tb = CLIP_S8(cur_poc - cur_ref_poc);
tx = (16384 + (abs(td) >> 1)) / td;
dist_scale_factor = (tb * tx + 32) >> 6;
dist_scale_factor = CLIP3(dist_scale_factor, -4096, 4095);
mvx = ps_mv->i2_mvx;
mvy = ps_mv->i2_mvy;
mvx = SIGN(dist_scale_factor * mvx)
* ((abs(dist_scale_factor * mvx) + 127) >> 8);
mvy = SIGN(dist_scale_factor * mvy)
* ((abs(dist_scale_factor * mvy) + 127) >> 8);
ps_mv->i2_mvx = CLIP_S16(mvx);
ps_mv->i2_mvy = CLIP_S16(mvy);
}
#define CHECK_NBR_MV_ST(pi4_avail_flag, cur_ref_poc, u1_nbr_pred_flag, nbr_ref_poc, \
ps_mv, ps_nbr_mv ) \
{ \
if((u1_nbr_pred_flag) && (cur_ref_poc == nbr_ref_poc)) \
{ \
*pi4_avail_flag = 1; \
*ps_mv = *ps_nbr_mv; \
break ; \
} \
}
#define CHECK_NBR_MV_LT(pi4_avail_flag, u1_cur_ref_lt, cur_poc, cur_ref_poc, \
u1_nbr_pred_flag, u1_nbr_ref_lt, nbr_ref_poc, \
ps_mv, ps_nbr_mv ) \
{ \
WORD32 cur_lt, nbr_lt; \
cur_lt = (LONG_TERM_REF == (u1_cur_ref_lt)); \
nbr_lt = (LONG_TERM_REF == (u1_nbr_ref_lt)); \
if((u1_nbr_pred_flag) && (cur_lt == nbr_lt)) \
{ \
*pi4_avail_flag = 1; \
*ps_mv = *ps_nbr_mv; \
if(SHORT_TERM_REF == u1_nbr_ref_lt) \
{ \
ihevcd_scale_mv(ps_mv, cur_ref_poc, nbr_ref_poc, \
cur_poc); \
} \
break ; \
} \
}
void GET_MV_NBR_ST(ref_list_t **ps_ref_pic_list, WORD32 *pi4_avail_flag, pic_buf_t *ps_cur_pic_buf_lx, pu_t **aps_nbr_pu, mv_t *ps_mv, WORD32 num_nbrs, WORD32 lx)
{
WORD32 i, nbr_pred_lx;
pic_buf_t *ps_nbr_pic_buf_lx;
/* Short Term */
/* L0 */
if(0 == lx)
{
for(i = 0; i < num_nbrs; i++)
{
nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf));
CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx,
ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv);
nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode);
nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf));
CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx,
ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv);
}
}
/* L1 */
else
{
for(i = 0; i < num_nbrs; i++)
{
nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf));
CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx,
ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv);
nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf));
CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx,
ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv);
}
}
}
void GET_MV_NBR_LT(ref_list_t **ps_ref_pic_list, slice_header_t *ps_slice_hdr, WORD32 *pi4_avail_flag, pic_buf_t *ps_cur_pic_buf_lx, pu_t **aps_nbr_pu, mv_t *ps_mv, WORD32 num_nbrs, WORD32 lx)
{
WORD32 i, nbr_pred_lx;
pic_buf_t *ps_nbr_pic_buf_lx;
/* Long Term*/
/* L0 */
if(0 == lx)
{
for(i = 0; i < num_nbrs; i++)
{
nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf));
CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc,
nbr_pred_lx,
ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc,
ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv);
nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf));
CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc,
nbr_pred_lx,
ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc,
ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv);
}
}
/* L1 */
else
{
for(i = 0; i < num_nbrs; i++)
{
nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf));
CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc,
nbr_pred_lx,
ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc,
ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv);
nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode);
ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf));
CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc,
nbr_pred_lx,
ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc,
ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv);
}
}
}
/**
*******************************************************************************
*
* @brief
* This function performs Motion Vector prediction and return a list of mv
*
* @par Description:
* MV predictor list is computed using neighbor mvs and colocated mv
*
* @param[in] ps_ctxt
* pointer to mv predictor context
*
* @param[in] ps_top_nbr_4x4
* pointer to top 4x4 nbr structure
*
* @param[in] ps_left_nbr_4x4
* pointer to left 4x4 nbr structure
*
* @param[in] ps_top_left_nbr_4x4
* pointer to top left 4x4 nbr structure
*
* @param[in] left_nbr_4x4_strd
* left nbr buffer stride in terms of 4x4 units
*
* @param[in] ps_avail_flags
* Neighbor availability flags container
*
* @param[in] ps_col_mv
* Colocated MV pointer
*
* @param[in] ps_pu
* Current Partition PU strucrture pointer
*
* @param[inout] ps_pred_mv
* pointer to store predicted MV list
*
* @returns
* None
* @remarks
*
*
*******************************************************************************
*/
void ihevcd_mv_pred(mv_ctxt_t *ps_mv_ctxt,
UWORD32 *pu4_top_pu_idx,
UWORD32 *pu4_left_pu_idx,
UWORD32 *pu4_top_left_pu_idx,
WORD32 left_nbr_4x4_strd,
pu_t *ps_pu,
WORD32 lb_avail,
WORD32 l_avail,
WORD32 tr_avail,
WORD32 t_avail,
WORD32 tl_avail,
pu_mv_t *ps_pred_mv)
{
slice_header_t *ps_slice_hdr;
ref_list_t *ps_ref_pic_list[2];
pu_t *ps_pic_pu;
WORD32 max_l0_mvp_cand, max_l1_mvp_cand;
WORD32 l0_done_flag, l1_done_flag;
WORD32 num_l0_mvp_cand, num_l1_mvp_cand;
WORD32 is_scaled_flag_list /* Indicates whether A0 or A1 is available */;
WORD32 avail_a_flag[2];
mv_t as_mv_a[2];
WORD32 part_pos_x;
WORD32 part_pos_y;
WORD32 part_wd;
WORD32 part_ht;
pic_buf_t *ps_cur_pic_buf_l0, *ps_cur_pic_buf_l1;
WORD32 nbr_avail[3]; /*[A0/A1] */ /* [B0/B1/B2] */
pu_t *aps_nbr_pu[3]; /*[A0/A1] */ /* [B0/B1/B2] */
WORD32 num_nbrs = 0;
/*******************************************/
/* Neighbor location: Graphical indication */
/* */
/* B2 _____________B1 B0 */
/* | | */
/* | | */
/* | | */
/* | PU ht| */
/* | | */
/* | | */
/* A1|______wd_______| */
/* A0 */
/* */
/*******************************************/
ps_slice_hdr = ps_mv_ctxt->ps_slice_hdr;
ps_pic_pu = ps_mv_ctxt->ps_pic_pu;
max_l0_mvp_cand = ps_pu->b1_l0_mvp_idx + 1;
max_l1_mvp_cand = ps_pu->b1_l1_mvp_idx + 1;
num_l0_mvp_cand = 0;
num_l1_mvp_cand = 0;
/* Initializing reference list */
ps_ref_pic_list[0] = ps_slice_hdr->as_ref_pic_list0;
ps_ref_pic_list[1] = ps_slice_hdr->as_ref_pic_list1;
if(PSLICE == ps_slice_hdr->i1_slice_type)
ps_ref_pic_list[1] = ps_slice_hdr->as_ref_pic_list0;
ps_cur_pic_buf_l0 = (pic_buf_t *)((ps_ref_pic_list[0][ps_pu->mv.i1_l0_ref_idx].pv_pic_buf));
ps_cur_pic_buf_l1 = (pic_buf_t *)((ps_ref_pic_list[1][ps_pu->mv.i1_l1_ref_idx].pv_pic_buf));
is_scaled_flag_list = 0;
part_pos_x = ps_pu->b4_pos_x << 2;
part_pos_y = ps_pu->b4_pos_y << 2;
part_wd = (ps_pu->b4_wd + 1) << 2;
part_ht = (ps_pu->b4_ht + 1) << 2;
/************************************************************/
/* Calculating of motion vector A from neighbors A0 and A1 */
/************************************************************/
{
nbr_avail[0] = 0;
nbr_avail[1] = 0;
/* Pointers to A0 and A1 */
{
WORD32 y_a0, y_a1;
WORD32 pu_idx_a0, pu_idx_a1;
/* TODO: y_a0, y_a1 is coded assuming left nbr pointer starts at PU */
y_a0 = (part_ht >> 2);
y_a1 = ((part_ht - 1) >> 2);
pu_idx_a0 = *(pu4_left_pu_idx + (y_a0 * left_nbr_4x4_strd));
pu_idx_a1 = *(pu4_left_pu_idx + (y_a1 * left_nbr_4x4_strd));
if(lb_avail && (!ps_pic_pu[pu_idx_a0].b1_intra_flag))
{
aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_a0];
num_nbrs++;
nbr_avail[0] = 1;
}
if(l_avail && (!ps_pic_pu[pu_idx_a1].b1_intra_flag))
{
aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_a1];
num_nbrs++;
nbr_avail[1] = 1;
}
}
/* Setting is scaled flag based on availability of A0 and A1 */
if((nbr_avail[0] == 1) || (nbr_avail[1]))
{
is_scaled_flag_list = 1;
}
avail_a_flag[0] = 0;
avail_a_flag[1] = 0;
/* L0 */
GET_MV_NBR_ST(ps_ref_pic_list, &avail_a_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_a[0], num_nbrs, 0);
if(0 == avail_a_flag[0])
{
GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_a_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_a[0], num_nbrs, 0);
}
/* L1 */
if(PRED_L0 != ps_pu->b2_pred_mode)
{
GET_MV_NBR_ST(ps_ref_pic_list, &avail_a_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_a[1], num_nbrs, 1);
if(0 == avail_a_flag[1])
{
GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_a_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_a[1], num_nbrs, 1);
}
}
l0_done_flag = (PRED_L1 == ps_pu->b2_pred_mode);
l1_done_flag = (PRED_L0 == ps_pu->b2_pred_mode);
if(avail_a_flag[0])
{
num_l0_mvp_cand++;
if(max_l0_mvp_cand == num_l0_mvp_cand)
{
ps_pred_mv->s_l0_mv = as_mv_a[0];
l0_done_flag = 1;
}
}
if(avail_a_flag[1])
{
num_l1_mvp_cand++;
if(max_l1_mvp_cand == num_l1_mvp_cand)
{
ps_pred_mv->s_l1_mv = as_mv_a[1];
l1_done_flag = 1;
}
}
if(l0_done_flag && l1_done_flag)
return;
}
/************************************************************/
/* Calculating of motion vector B from neighbors B0 and B1 */
/************************************************************/
{
WORD32 avail_b_flag[2];
mv_t as_mv_b[2];
/* Pointers to B0, B1 and B2 */
{
WORD32 x_b0, x_b1, x_b2;
WORD32 pu_idx_b0, pu_idx_b1, pu_idx_b2;
/* Relative co-ordiante of Xp,Yp w.r.t CTB start will work */
/* as long as minCTB = 16 */
x_b0 = (part_pos_x + part_wd);
x_b1 = (part_pos_x + part_wd - 1);
x_b2 = (part_pos_x - 1);
/* Getting offset back to given pointer */
x_b0 = x_b0 - part_pos_x;
x_b1 = x_b1 - part_pos_x;
x_b2 = x_b2 - part_pos_x;
/* Below derivation are based on top pointer */
/* is pointing first pixel of PU */
pu_idx_b0 = *(pu4_top_pu_idx + (x_b0 >> 2));
pu_idx_b0 = pu_idx_b0 * tr_avail;
pu_idx_b1 = *(pu4_top_pu_idx + (x_b1 >> 2));
pu_idx_b1 = pu_idx_b1 * t_avail;
/* At CTB boundary, use top-left passed in */
if(part_pos_y)
{
pu_idx_b2 = *pu4_top_left_pu_idx;
}
else
{
/* Not at CTB boundary, use top and */
/* add correction to go to top-left */
pu_idx_b2 = *((pu4_top_pu_idx)+(x_b2 >> 2));
}
pu_idx_b2 = pu_idx_b2 * tl_avail;
num_nbrs = 0;
nbr_avail[0] = 0;
nbr_avail[1] = 0;
nbr_avail[2] = 0;
if(tr_avail && (!ps_pic_pu[pu_idx_b0].b1_intra_flag))
{
aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_b0];
num_nbrs++;
nbr_avail[0] = 1;
}
if(t_avail && (!ps_pic_pu[pu_idx_b1].b1_intra_flag))
{
aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_b1];
num_nbrs++;
nbr_avail[1] = 1;
}
if(tl_avail && (!ps_pic_pu[pu_idx_b2].b1_intra_flag))
{
aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_b2];
num_nbrs++;
nbr_avail[2] = 1;
}
}
/* L0 */
avail_b_flag[0] = 0;
avail_b_flag[1] = 0;
GET_MV_NBR_ST(ps_ref_pic_list, &avail_b_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_b[0], num_nbrs, 0);
/* L1 */
if(PRED_L0 != ps_pu->b2_pred_mode)
{
/* B0 Short Term */
GET_MV_NBR_ST(ps_ref_pic_list, &avail_b_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_b[1], num_nbrs, 1);
}
if(avail_b_flag[0])
{
if(((0 == num_l0_mvp_cand)
|| (as_mv_a[0].i2_mvx != as_mv_b[0].i2_mvx)
|| (as_mv_a[0].i2_mvy != as_mv_b[0].i2_mvy)))
{
num_l0_mvp_cand++;
if(max_l0_mvp_cand == num_l0_mvp_cand)
{
ps_pred_mv->s_l0_mv = as_mv_b[0];
l0_done_flag = 1;
}
}
}
if(avail_b_flag[1])
{
if(((0 == num_l1_mvp_cand)
|| (as_mv_a[1].i2_mvx != as_mv_b[1].i2_mvx)
|| (as_mv_a[1].i2_mvy != as_mv_b[1].i2_mvy)))
{
num_l1_mvp_cand++;
if(max_l1_mvp_cand == num_l1_mvp_cand)
{
ps_pred_mv->s_l1_mv = as_mv_b[1];
l1_done_flag = 1;
}
}
}
if(l0_done_flag && l1_done_flag)
return;
if((is_scaled_flag_list == 0) && (avail_b_flag[0] == 1))
{
avail_a_flag[0] = 1;
as_mv_a[0] = as_mv_b[0];
}
if((is_scaled_flag_list == 0) && (avail_b_flag[1] == 1))
{
avail_a_flag[1] = 1;
as_mv_a[1] = as_mv_b[1];
}
if(0 == is_scaled_flag_list)
{
avail_b_flag[0] = avail_b_flag[1] = 0;
GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_b_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_b[0], num_nbrs, 0);
if(PRED_L0 != ps_pu->b2_pred_mode)
{
GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_b_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_b[1], num_nbrs, 1);
}
if(avail_b_flag[0])
{
if(((0 == num_l0_mvp_cand)
|| (as_mv_a[0].i2_mvx != as_mv_b[0].i2_mvx)
|| (as_mv_a[0].i2_mvy != as_mv_b[0].i2_mvy)))
{
num_l0_mvp_cand++;
if(max_l0_mvp_cand == num_l0_mvp_cand)
{
ps_pred_mv->s_l0_mv = as_mv_b[0];
l0_done_flag = 1;
}
}
}
if(avail_b_flag[1])
{
if(((0 == num_l1_mvp_cand)
|| (as_mv_a[1].i2_mvx != as_mv_b[1].i2_mvx)
|| (as_mv_a[1].i2_mvy != as_mv_b[1].i2_mvy)))
{
num_l1_mvp_cand++;
if(max_l1_mvp_cand == num_l1_mvp_cand)
{
ps_pred_mv->s_l1_mv = as_mv_b[1];
l1_done_flag = 1;
}
}
}
if(l0_done_flag && l1_done_flag)
return;
}
/***********************************************************/
/* Collocated MV prediction */
/***********************************************************/
if((2 != num_l0_mvp_cand) || (2 != num_l1_mvp_cand))
{
mv_t as_mv_col[2], s_mv_col_l0, s_mv_col_l1;
WORD32 avail_col_flag[2] = { 0 };
WORD32 x_col, y_col, avail_col_l0, avail_col_l1;
// ihevcd_collocated_mvp((mv_ctxt_t *)ps_mv_ctxt,ps_pu,part_pos_x,part_pos_y,part_wd,part_ht,as_mv_col,avail_col_flag,1);
x_col = part_pos_x + part_wd;
y_col = part_pos_y + part_ht;
ihevcd_collocated_mvp(ps_mv_ctxt, ps_pu, as_mv_col, avail_col_flag, 1, x_col, y_col);
avail_col_l0 = avail_col_flag[0];
avail_col_l1 = avail_col_flag[1];
if(avail_col_l0 || avail_col_l1)
{
s_mv_col_l0 = as_mv_col[0];
s_mv_col_l1 = as_mv_col[1];
}
if(avail_col_l0 == 0 || avail_col_l1 == 0)
{
/* Checking Collocated MV availability at Center of PU */
x_col = part_pos_x + (part_wd >> 1);
y_col = part_pos_y + (part_ht >> 1);
ihevcd_collocated_mvp(ps_mv_ctxt, ps_pu, as_mv_col, avail_col_flag, 1, x_col, y_col);
if(avail_col_l0 == 0)
{
s_mv_col_l0 = as_mv_col[0];
}
if(avail_col_l1 == 0)
{
s_mv_col_l1 = as_mv_col[1];
}
avail_col_l0 |= avail_col_flag[0];
avail_col_l1 |= avail_col_flag[1];
}
/* Checking if mvp index matches collocated mv */
if(avail_col_l0)
{
if(2 != num_l0_mvp_cand)
{
num_l0_mvp_cand++;
if(max_l0_mvp_cand == num_l0_mvp_cand)
{
ps_pred_mv->s_l0_mv = s_mv_col_l0;
l0_done_flag = 1;
}
}
}
if(avail_col_l1)
{
if(2 != num_l1_mvp_cand)
{
num_l1_mvp_cand++;
if(max_l1_mvp_cand == num_l1_mvp_cand)
{
ps_pred_mv->s_l1_mv = s_mv_col_l1;
l1_done_flag = 1;
}
}
}
if(l0_done_flag && l1_done_flag)
return;
}
if(0 == l0_done_flag)
{
ps_pred_mv->s_l0_mv.i2_mvx = 0;
ps_pred_mv->s_l0_mv.i2_mvy = 0;
}
if(0 == l1_done_flag)
{
ps_pred_mv->s_l1_mv.i2_mvx = 0;
ps_pred_mv->s_l1_mv.i2_mvy = 0;
}
}
}