C++程序  |  3986行  |  98.42 KB

/*
 * Copyright © 2009-2011 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdarg.h>
#include <string.h>

#include "libdrm.h"
#include "xf86drm.h"
#include "intel_chipset.h"
#include "intel_bufmgr.h"

/* Struct for tracking drm_intel_decode state. */
struct drm_intel_decode {
	/** stdio file where the output should land.  Defaults to stdout. */
	FILE *out;

	/** PCI device ID. */
	uint32_t devid;

	/**
	 * Shorthand device identifier: 3 is 915, 4 is 965, 5 is
	 * Ironlake, etc.
	 */
	int gen;

	/** GPU address of the start of the current packet. */
	uint32_t hw_offset;
	/** CPU virtual address of the start of the current packet. */
	uint32_t *data;
	/** DWORDs of remaining batchbuffer data starting from the packet. */
	uint32_t count;

	/** GPU address of the start of the batchbuffer data. */
	uint32_t base_hw_offset;
	/** CPU Virtual address of the start of the batchbuffer data. */
	uint32_t *base_data;
	/** Number of DWORDs of batchbuffer data. */
	uint32_t base_count;

	/** @{
	 * GPU head and tail pointers, which will be noted in the dump, or ~0.
	 */
	uint32_t head, tail;
	/** @} */

	/**
	 * Whether to dump the dwords after MI_BATCHBUFFER_END.
	 *
	 * This sometimes provides clues in corrupted batchbuffers,
	 * and is used by the intel-gpu-tools.
	 */
	bool dump_past_end;

	bool overflowed;
};

static FILE *out;
static uint32_t saved_s2 = 0, saved_s4 = 0;
static char saved_s2_set = 0, saved_s4_set = 0;
static uint32_t head_offset = 0xffffffff;	/* undefined */
static uint32_t tail_offset = 0xffffffff;	/* undefined */

#ifndef ARRAY_SIZE
#define ARRAY_SIZE(A) (sizeof(A)/sizeof(A[0]))
#endif

#define BUFFER_FAIL(_count, _len, _name) do {			\
    fprintf(out, "Buffer size too small in %s (%d < %d)\n",	\
	    (_name), (_count), (_len));				\
    return _count;						\
} while (0)

static float int_as_float(uint32_t intval)
{
	union intfloat {
		uint32_t i;
		float f;
	} uval;

	uval.i = intval;
	return uval.f;
}

static void DRM_PRINTFLIKE(3, 4)
instr_out(struct drm_intel_decode *ctx, unsigned int index,
	  const char *fmt, ...)
{
	va_list va;
	const char *parseinfo;
	uint32_t offset = ctx->hw_offset + index * 4;

	if (index > ctx->count) {
		if (!ctx->overflowed) {
			fprintf(out, "ERROR: Decode attempted to continue beyond end of batchbuffer\n");
			ctx->overflowed = true;
		}
		return;
	}

	if (offset == head_offset)
		parseinfo = "HEAD";
	else if (offset == tail_offset)
		parseinfo = "TAIL";
	else
		parseinfo = "    ";

	fprintf(out, "0x%08x: %s 0x%08x: %s", offset, parseinfo,
		ctx->data[index], index == 0 ? "" : "   ");
	va_start(va, fmt);
	vfprintf(out, fmt, va);
	va_end(va);
}

static int
decode_MI_SET_CONTEXT(struct drm_intel_decode *ctx)
{
	uint32_t data = ctx->data[1];
	if (ctx->gen > 7)
		return 1;

	instr_out(ctx, 0, "MI_SET_CONTEXT\n");
	instr_out(ctx, 1, "gtt offset = 0x%x%s%s\n",
		  data & ~0xfff,
		  data & (1<<1)? ", Force Restore": "",
		  data & (1<<0)? ", Restore Inhibit": "");

	return 2;
}

static int
decode_MI_WAIT_FOR_EVENT(struct drm_intel_decode *ctx)
{
	const char *cc_wait;
	int cc_shift = 0;
	uint32_t data = ctx->data[0];

	if (ctx->gen <= 5)
		cc_shift = 9;
	else
		cc_shift = 16;

	switch ((data >> cc_shift) & 0x1f) {
	case 1:
		cc_wait = ", cc wait 1";
		break;
	case 2:
		cc_wait = ", cc wait 2";
		break;
	case 3:
		cc_wait = ", cc wait 3";
		break;
	case 4:
		cc_wait = ", cc wait 4";
		break;
	case 5:
		cc_wait = ", cc wait 4";
		break;
	default:
		cc_wait = "";
		break;
	}

	if (ctx->gen <= 5) {
		instr_out(ctx, 0, "MI_WAIT_FOR_EVENT%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
			  data & (1<<18)? ", pipe B start vblank wait": "",
			  data & (1<<17)? ", pipe A start vblank wait": "",
			  data & (1<<16)? ", overlay flip pending wait": "",
			  data & (1<<14)? ", pipe B hblank wait": "",
			  data & (1<<13)? ", pipe A hblank wait": "",
			  cc_wait,
			  data & (1<<8)? ", plane C pending flip wait": "",
			  data & (1<<7)? ", pipe B vblank wait": "",
			  data & (1<<6)? ", plane B pending flip wait": "",
			  data & (1<<5)? ", pipe B scan line wait": "",
			  data & (1<<4)? ", fbc idle wait": "",
			  data & (1<<3)? ", pipe A vblank wait": "",
			  data & (1<<2)? ", plane A pending flip wait": "",
			  data & (1<<1)? ", plane A scan line wait": "");
	} else {
		instr_out(ctx, 0, "MI_WAIT_FOR_EVENT%s%s%s%s%s%s%s%s%s%s%s%s\n",
			  data & (1<<20)? ", sprite C pending flip wait": "", /* ivb */
			  cc_wait,
			  data & (1<<13)? ", pipe B hblank wait": "",
			  data & (1<<11)? ", pipe B vblank wait": "",
			  data & (1<<10)? ", sprite B pending flip wait": "",
			  data & (1<<9)? ", plane B pending flip wait": "",
			  data & (1<<8)? ", plane B scan line wait": "",
			  data & (1<<5)? ", pipe A hblank wait": "",
			  data & (1<<3)? ", pipe A vblank wait": "",
			  data & (1<<2)? ", sprite A pending flip wait": "",
			  data & (1<<1)? ", plane A pending flip wait": "",
			  data & (1<<0)? ", plane A scan line wait": "");
	}

	return 1;
}

static int
decode_mi(struct drm_intel_decode *ctx)
{
	unsigned int opcode, len = -1;
	const char *post_sync_op = "";
	uint32_t *data = ctx->data;

	struct {
		uint32_t opcode;
		int len_mask;
		unsigned int min_len;
		unsigned int max_len;
		const char *name;
		int (*func)(struct drm_intel_decode *ctx);
	} opcodes_mi[] = {
		{ 0x08, 0, 1, 1, "MI_ARB_ON_OFF" },
		{ 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" },
		{ 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" },
		{ 0x31, 0x3f, 2, 2, "MI_BATCH_BUFFER_START" },
		{ 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" },
		{ 0x04, 0, 1, 1, "MI_FLUSH" },
		{ 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" },
		{ 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" },
		{ 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" },
		{ 0x00, 0, 1, 1, "MI_NOOP" },
		{ 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" },
		{ 0x07, 0, 1, 1, "MI_REPORT_HEAD" },
		{ 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT", decode_MI_SET_CONTEXT },
		{ 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" },
		{ 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" },
		{ 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" },
		{ 0x02, 0, 1, 1, "MI_USER_INTERRUPT" },
		{ 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT", decode_MI_WAIT_FOR_EVENT },
		{ 0x16, 0x7f, 3, 3, "MI_SEMAPHORE_MBOX" },
		{ 0x26, 0x1f, 3, 4, "MI_FLUSH_DW" },
		{ 0x28, 0x3f, 3, 3, "MI_REPORT_PERF_COUNT" },
		{ 0x29, 0xff, 3, 3, "MI_LOAD_REGISTER_MEM" },
		{ 0x0b, 0, 1, 1, "MI_SUSPEND_FLUSH"},
	}, *opcode_mi = NULL;

	/* check instruction length */
	for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]);
	     opcode++) {
		if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) {
			len = 1;
			if (opcodes_mi[opcode].max_len > 1) {
				len =
				    (data[0] & opcodes_mi[opcode].len_mask) + 2;
				if (len < opcodes_mi[opcode].min_len
				    || len > opcodes_mi[opcode].max_len) {
					fprintf(out,
						"Bad length (%d) in %s, [%d, %d]\n",
						len, opcodes_mi[opcode].name,
						opcodes_mi[opcode].min_len,
						opcodes_mi[opcode].max_len);
				}
			}
			opcode_mi = &opcodes_mi[opcode];
			break;
		}
	}

	if (opcode_mi && opcode_mi->func)
		return opcode_mi->func(ctx);

	switch ((data[0] & 0x1f800000) >> 23) {
	case 0x0a:
		instr_out(ctx, 0, "MI_BATCH_BUFFER_END\n");
		return -1;
	case 0x16:
		instr_out(ctx, 0, "MI_SEMAPHORE_MBOX%s%s%s%s %u\n",
			  data[0] & (1 << 22) ? " global gtt," : "",
			  data[0] & (1 << 21) ? " update semaphore," : "",
			  data[0] & (1 << 20) ? " compare semaphore," : "",
			  data[0] & (1 << 18) ? " use compare reg" : "",
			  (data[0] & (0x3 << 16)) >> 16);
		instr_out(ctx, 1, "value\n");
		instr_out(ctx, 2, "address\n");
		return len;
	case 0x21:
		instr_out(ctx, 0, "MI_STORE_DATA_INDEX%s\n",
			  data[0] & (1 << 21) ? " use per-process HWS," : "");
		instr_out(ctx, 1, "index\n");
		instr_out(ctx, 2, "dword\n");
		if (len == 4)
			instr_out(ctx, 3, "upper dword\n");
		return len;
	case 0x00:
		if (data[0] & (1 << 22))
			instr_out(ctx, 0,
				  "MI_NOOP write NOPID reg, val=0x%x\n",
				  data[0] & ((1 << 22) - 1));
		else
			instr_out(ctx, 0, "MI_NOOP\n");
		return len;
	case 0x26:
		switch (data[0] & (0x3 << 14)) {
		case (0 << 14):
			post_sync_op = "no write";
			break;
		case (1 << 14):
			post_sync_op = "write data";
			break;
		case (2 << 14):
			post_sync_op = "reserved";
			break;
		case (3 << 14):
			post_sync_op = "write TIMESTAMP";
			break;
		}
		instr_out(ctx, 0,
			  "MI_FLUSH_DW%s%s%s%s post_sync_op='%s' %s%s\n",
			  data[0] & (1 << 22) ?
			  " enable protected mem (BCS-only)," : "",
			  data[0] & (1 << 21) ? " store in hws," : "",
			  data[0] & (1 << 18) ? " invalidate tlb," : "",
			  data[0] & (1 << 17) ? " flush gfdt," : "",
			  post_sync_op,
			  data[0] & (1 << 8) ? " enable notify interrupt," : "",
			  data[0] & (1 << 7) ?
			  " invalidate video state (BCS-only)," : "");
		if (data[0] & (1 << 21))
			instr_out(ctx, 1, "hws index\n");
		else
			instr_out(ctx, 1, "address\n");
		instr_out(ctx, 2, "dword\n");
		if (len == 4)
			instr_out(ctx, 3, "upper dword\n");
		return len;
	}

	for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]);
	     opcode++) {
		if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) {
			unsigned int i;

			instr_out(ctx, 0, "%s\n",
				  opcodes_mi[opcode].name);
			for (i = 1; i < len; i++) {
				instr_out(ctx, i, "dword %d\n", i);
			}

			return len;
		}
	}

	instr_out(ctx, 0, "MI UNKNOWN\n");
	return 1;
}

static void
decode_2d_br00(struct drm_intel_decode *ctx, const char *cmd)
{
	instr_out(ctx, 0,
		  "%s (rgb %sabled, alpha %sabled, src tile %d, dst tile %d)\n",
		  cmd,
		  (ctx->data[0] & (1 << 20)) ? "en" : "dis",
		  (ctx->data[0] & (1 << 21)) ? "en" : "dis",
		  (ctx->data[0] >> 15) & 1,
		  (ctx->data[0] >> 11) & 1);
}

static void
decode_2d_br01(struct drm_intel_decode *ctx)
{
	const char *format;
	switch ((ctx->data[1] >> 24) & 0x3) {
	case 0:
		format = "8";
		break;
	case 1:
		format = "565";
		break;
	case 2:
		format = "1555";
		break;
	case 3:
		format = "8888";
		break;
	}

	instr_out(ctx, 1,
		  "format %s, pitch %d, rop 0x%02x, "
		  "clipping %sabled, %s%s \n",
		  format,
		  (short)(ctx->data[1] & 0xffff),
		  (ctx->data[1] >> 16) & 0xff,
		  ctx->data[1] & (1 << 30) ? "en" : "dis",
		  ctx->data[1] & (1 << 31) ? "solid pattern enabled, " : "",
		  ctx->data[1] & (1 << 31) ?
		  "mono pattern transparency enabled, " : "");

}

static int
decode_2d(struct drm_intel_decode *ctx)
{
	unsigned int opcode, len;
	uint32_t *data = ctx->data;

	struct {
		uint32_t opcode;
		unsigned int min_len;
		unsigned int max_len;
		const char *name;
	} opcodes_2d[] = {
		{ 0x40, 5, 5, "COLOR_BLT" },
		{ 0x43, 6, 6, "SRC_COPY_BLT" },
		{ 0x01, 8, 8, "XY_SETUP_BLT" },
		{ 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" },
		{ 0x03, 3, 3, "XY_SETUP_CLIP_BLT" },
		{ 0x24, 2, 2, "XY_PIXEL_BLT" },
		{ 0x25, 3, 3, "XY_SCANLINES_BLT" },
		{ 0x26, 4, 4, "Y_TEXT_BLT" },
		{ 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" },
		{ 0x50, 6, 6, "XY_COLOR_BLT" },
		{ 0x51, 6, 6, "XY_PAT_BLT" },
		{ 0x76, 8, 8, "XY_PAT_CHROMA_BLT" },
		{ 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" },
		{ 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" },
		{ 0x52, 9, 9, "XY_MONO_PAT_BLT" },
		{ 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" },
		{ 0x53, 8, 8, "XY_SRC_COPY_BLT" },
		{ 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" },
		{ 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" },
		{ 0x55, 9, 9, "XY_FULL_BLT" },
		{ 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" },
		{ 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" },
		{ 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" },
		{ 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" },
		{ 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT"},
	};

	switch ((data[0] & 0x1fc00000) >> 22) {
	case 0x25:
		instr_out(ctx, 0,
			  "XY_SCANLINES_BLT (pattern seed (%d, %d), dst tile %d)\n",
			  (data[0] >> 12) & 0x8,
			  (data[0] >> 8) & 0x8, (data[0] >> 11) & 1);

		len = (data[0] & 0x000000ff) + 2;
		if (len != 3)
			fprintf(out, "Bad count in XY_SCANLINES_BLT\n");

		instr_out(ctx, 1, "dest (%d,%d)\n",
			  data[1] & 0xffff, data[1] >> 16);
		instr_out(ctx, 2, "dest (%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);
		return len;
	case 0x01:
		decode_2d_br00(ctx, "XY_SETUP_BLT");

		len = (data[0] & 0x000000ff) + 2;
		if (len != 8)
			fprintf(out, "Bad count in XY_SETUP_BLT\n");

		decode_2d_br01(ctx);
		instr_out(ctx, 2, "cliprect (%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);
		instr_out(ctx, 3, "cliprect (%d,%d)\n",
			  data[3] & 0xffff, data[3] >> 16);
		instr_out(ctx, 4, "setup dst offset 0x%08x\n",
			  data[4]);
		instr_out(ctx, 5, "setup background color\n");
		instr_out(ctx, 6, "setup foreground color\n");
		instr_out(ctx, 7, "color pattern offset\n");
		return len;
	case 0x03:
		decode_2d_br00(ctx, "XY_SETUP_CLIP_BLT");

		len = (data[0] & 0x000000ff) + 2;
		if (len != 3)
			fprintf(out, "Bad count in XY_SETUP_CLIP_BLT\n");

		instr_out(ctx, 1, "cliprect (%d,%d)\n",
			  data[1] & 0xffff, data[2] >> 16);
		instr_out(ctx, 2, "cliprect (%d,%d)\n",
			  data[2] & 0xffff, data[3] >> 16);
		return len;
	case 0x11:
		decode_2d_br00(ctx, "XY_SETUP_MONO_PATTERN_SL_BLT");

		len = (data[0] & 0x000000ff) + 2;
		if (len != 9)
			fprintf(out,
				"Bad count in XY_SETUP_MONO_PATTERN_SL_BLT\n");

		decode_2d_br01(ctx);
		instr_out(ctx, 2, "cliprect (%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);
		instr_out(ctx, 3, "cliprect (%d,%d)\n",
			  data[3] & 0xffff, data[3] >> 16);
		instr_out(ctx, 4, "setup dst offset 0x%08x\n",
			  data[4]);
		instr_out(ctx, 5, "setup background color\n");
		instr_out(ctx, 6, "setup foreground color\n");
		instr_out(ctx, 7, "mono pattern dw0\n");
		instr_out(ctx, 8, "mono pattern dw1\n");
		return len;
	case 0x50:
		decode_2d_br00(ctx, "XY_COLOR_BLT");

		len = (data[0] & 0x000000ff) + 2;
		if (len != 6)
			fprintf(out, "Bad count in XY_COLOR_BLT\n");

		decode_2d_br01(ctx);
		instr_out(ctx, 2, "(%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);
		instr_out(ctx, 3, "(%d,%d)\n",
			  data[3] & 0xffff, data[3] >> 16);
		instr_out(ctx, 4, "offset 0x%08x\n", data[4]);
		instr_out(ctx, 5, "color\n");
		return len;
	case 0x53:
		decode_2d_br00(ctx, "XY_SRC_COPY_BLT");

		len = (data[0] & 0x000000ff) + 2;
		if (len != 8)
			fprintf(out, "Bad count in XY_SRC_COPY_BLT\n");

		decode_2d_br01(ctx);
		instr_out(ctx, 2, "dst (%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);
		instr_out(ctx, 3, "dst (%d,%d)\n",
			  data[3] & 0xffff, data[3] >> 16);
		instr_out(ctx, 4, "dst offset 0x%08x\n", data[4]);
		instr_out(ctx, 5, "src (%d,%d)\n",
			  data[5] & 0xffff, data[5] >> 16);
		instr_out(ctx, 6, "src pitch %d\n",
			  (short)(data[6] & 0xffff));
		instr_out(ctx, 7, "src offset 0x%08x\n", data[7]);
		return len;
	}

	for (opcode = 0; opcode < sizeof(opcodes_2d) / sizeof(opcodes_2d[0]);
	     opcode++) {
		if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) {
			unsigned int i;

			len = 1;
			instr_out(ctx, 0, "%s\n",
				  opcodes_2d[opcode].name);
			if (opcodes_2d[opcode].max_len > 1) {
				len = (data[0] & 0x000000ff) + 2;
				if (len < opcodes_2d[opcode].min_len ||
				    len > opcodes_2d[opcode].max_len) {
					fprintf(out, "Bad count in %s\n",
						opcodes_2d[opcode].name);
				}
			}

			for (i = 1; i < len; i++) {
				instr_out(ctx, i, "dword %d\n", i);
			}

			return len;
		}
	}

	instr_out(ctx, 0, "2D UNKNOWN\n");
	return 1;
}

static int
decode_3d_1c(struct drm_intel_decode *ctx)
{
	uint32_t *data = ctx->data;
	uint32_t opcode;

	opcode = (data[0] & 0x00f80000) >> 19;

	switch (opcode) {
	case 0x11:
		instr_out(ctx, 0,
			  "3DSTATE_DEPTH_SUBRECTANGLE_DISABLE\n");
		return 1;
	case 0x10:
		instr_out(ctx, 0, "3DSTATE_SCISSOR_ENABLE %s\n",
			  data[0] & 1 ? "enabled" : "disabled");
		return 1;
	case 0x01:
		instr_out(ctx, 0, "3DSTATE_MAP_COORD_SET_I830\n");
		return 1;
	case 0x0a:
		instr_out(ctx, 0, "3DSTATE_MAP_CUBE_I830\n");
		return 1;
	case 0x05:
		instr_out(ctx, 0, "3DSTATE_MAP_TEX_STREAM_I830\n");
		return 1;
	}

	instr_out(ctx, 0, "3D UNKNOWN: 3d_1c opcode = 0x%x\n",
		  opcode);
	return 1;
}

/** Sets the string dstname to describe the destination of the PS instruction */
static void
i915_get_instruction_dst(uint32_t *data, int i, char *dstname, int do_mask)
{
	uint32_t a0 = data[i];
	int dst_nr = (a0 >> 14) & 0xf;
	char dstmask[8];
	const char *sat;

	if (do_mask) {
		if (((a0 >> 10) & 0xf) == 0xf) {
			dstmask[0] = 0;
		} else {
			int dstmask_index = 0;

			dstmask[dstmask_index++] = '.';
			if (a0 & (1 << 10))
				dstmask[dstmask_index++] = 'x';
			if (a0 & (1 << 11))
				dstmask[dstmask_index++] = 'y';
			if (a0 & (1 << 12))
				dstmask[dstmask_index++] = 'z';
			if (a0 & (1 << 13))
				dstmask[dstmask_index++] = 'w';
			dstmask[dstmask_index++] = 0;
		}

		if (a0 & (1 << 22))
			sat = ".sat";
		else
			sat = "";
	} else {
		dstmask[0] = 0;
		sat = "";
	}

	switch ((a0 >> 19) & 0x7) {
	case 0:
		if (dst_nr > 15)
			fprintf(out, "bad destination reg R%d\n", dst_nr);
		sprintf(dstname, "R%d%s%s", dst_nr, dstmask, sat);
		break;
	case 4:
		if (dst_nr > 0)
			fprintf(out, "bad destination reg oC%d\n", dst_nr);
		sprintf(dstname, "oC%s%s", dstmask, sat);
		break;
	case 5:
		if (dst_nr > 0)
			fprintf(out, "bad destination reg oD%d\n", dst_nr);
		sprintf(dstname, "oD%s%s", dstmask, sat);
		break;
	case 6:
		if (dst_nr > 3)
			fprintf(out, "bad destination reg U%d\n", dst_nr);
		sprintf(dstname, "U%d%s%s", dst_nr, dstmask, sat);
		break;
	default:
		sprintf(dstname, "RESERVED");
		break;
	}
}

static const char *
i915_get_channel_swizzle(uint32_t select)
{
	switch (select & 0x7) {
	case 0:
		return (select & 8) ? "-x" : "x";
	case 1:
		return (select & 8) ? "-y" : "y";
	case 2:
		return (select & 8) ? "-z" : "z";
	case 3:
		return (select & 8) ? "-w" : "w";
	case 4:
		return (select & 8) ? "-0" : "0";
	case 5:
		return (select & 8) ? "-1" : "1";
	default:
		return (select & 8) ? "-bad" : "bad";
	}
}

static void
i915_get_instruction_src_name(uint32_t src_type, uint32_t src_nr, char *name)
{
	switch (src_type) {
	case 0:
		sprintf(name, "R%d", src_nr);
		if (src_nr > 15)
			fprintf(out, "bad src reg %s\n", name);
		break;
	case 1:
		if (src_nr < 8)
			sprintf(name, "T%d", src_nr);
		else if (src_nr == 8)
			sprintf(name, "DIFFUSE");
		else if (src_nr == 9)
			sprintf(name, "SPECULAR");
		else if (src_nr == 10)
			sprintf(name, "FOG");
		else {
			fprintf(out, "bad src reg T%d\n", src_nr);
			sprintf(name, "RESERVED");
		}
		break;
	case 2:
		sprintf(name, "C%d", src_nr);
		if (src_nr > 31)
			fprintf(out, "bad src reg %s\n", name);
		break;
	case 4:
		sprintf(name, "oC");
		if (src_nr > 0)
			fprintf(out, "bad src reg oC%d\n", src_nr);
		break;
	case 5:
		sprintf(name, "oD");
		if (src_nr > 0)
			fprintf(out, "bad src reg oD%d\n", src_nr);
		break;
	case 6:
		sprintf(name, "U%d", src_nr);
		if (src_nr > 3)
			fprintf(out, "bad src reg %s\n", name);
		break;
	default:
		fprintf(out, "bad src reg type %d\n", src_type);
		sprintf(name, "RESERVED");
		break;
	}
}

static void i915_get_instruction_src0(uint32_t *data, int i, char *srcname)
{
	uint32_t a0 = data[i];
	uint32_t a1 = data[i + 1];
	int src_nr = (a0 >> 2) & 0x1f;
	const char *swizzle_x = i915_get_channel_swizzle((a1 >> 28) & 0xf);
	const char *swizzle_y = i915_get_channel_swizzle((a1 >> 24) & 0xf);
	const char *swizzle_z = i915_get_channel_swizzle((a1 >> 20) & 0xf);
	const char *swizzle_w = i915_get_channel_swizzle((a1 >> 16) & 0xf);
	char swizzle[100];

	i915_get_instruction_src_name((a0 >> 7) & 0x7, src_nr, srcname);
	sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z,
		swizzle_w);
	if (strcmp(swizzle, ".xyzw") != 0)
		strcat(srcname, swizzle);
}

static void i915_get_instruction_src1(uint32_t *data, int i, char *srcname)
{
	uint32_t a1 = data[i + 1];
	uint32_t a2 = data[i + 2];
	int src_nr = (a1 >> 8) & 0x1f;
	const char *swizzle_x = i915_get_channel_swizzle((a1 >> 4) & 0xf);
	const char *swizzle_y = i915_get_channel_swizzle((a1 >> 0) & 0xf);
	const char *swizzle_z = i915_get_channel_swizzle((a2 >> 28) & 0xf);
	const char *swizzle_w = i915_get_channel_swizzle((a2 >> 24) & 0xf);
	char swizzle[100];

	i915_get_instruction_src_name((a1 >> 13) & 0x7, src_nr, srcname);
	sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z,
		swizzle_w);
	if (strcmp(swizzle, ".xyzw") != 0)
		strcat(srcname, swizzle);
}

static void i915_get_instruction_src2(uint32_t *data, int i, char *srcname)
{
	uint32_t a2 = data[i + 2];
	int src_nr = (a2 >> 16) & 0x1f;
	const char *swizzle_x = i915_get_channel_swizzle((a2 >> 12) & 0xf);
	const char *swizzle_y = i915_get_channel_swizzle((a2 >> 8) & 0xf);
	const char *swizzle_z = i915_get_channel_swizzle((a2 >> 4) & 0xf);
	const char *swizzle_w = i915_get_channel_swizzle((a2 >> 0) & 0xf);
	char swizzle[100];

	i915_get_instruction_src_name((a2 >> 21) & 0x7, src_nr, srcname);
	sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z,
		swizzle_w);
	if (strcmp(swizzle, ".xyzw") != 0)
		strcat(srcname, swizzle);
}

static void
i915_get_instruction_addr(uint32_t src_type, uint32_t src_nr, char *name)
{
	switch (src_type) {
	case 0:
		sprintf(name, "R%d", src_nr);
		if (src_nr > 15)
			fprintf(out, "bad src reg %s\n", name);
		break;
	case 1:
		if (src_nr < 8)
			sprintf(name, "T%d", src_nr);
		else if (src_nr == 8)
			sprintf(name, "DIFFUSE");
		else if (src_nr == 9)
			sprintf(name, "SPECULAR");
		else if (src_nr == 10)
			sprintf(name, "FOG");
		else {
			fprintf(out, "bad src reg T%d\n", src_nr);
			sprintf(name, "RESERVED");
		}
		break;
	case 4:
		sprintf(name, "oC");
		if (src_nr > 0)
			fprintf(out, "bad src reg oC%d\n", src_nr);
		break;
	case 5:
		sprintf(name, "oD");
		if (src_nr > 0)
			fprintf(out, "bad src reg oD%d\n", src_nr);
		break;
	default:
		fprintf(out, "bad src reg type %d\n", src_type);
		sprintf(name, "RESERVED");
		break;
	}
}

static void
i915_decode_alu1(struct drm_intel_decode *ctx,
		 int i, char *instr_prefix, const char *op_name)
{
	char dst[100], src0[100];

	i915_get_instruction_dst(ctx->data, i, dst, 1);
	i915_get_instruction_src0(ctx->data, i, src0);

	instr_out(ctx, i++, "%s: %s %s, %s\n", instr_prefix,
		  op_name, dst, src0);
	instr_out(ctx, i++, "%s\n", instr_prefix);
	instr_out(ctx, i++, "%s\n", instr_prefix);
}

static void
i915_decode_alu2(struct drm_intel_decode *ctx,
		 int i, char *instr_prefix, const char *op_name)
{
	char dst[100], src0[100], src1[100];

	i915_get_instruction_dst(ctx->data, i, dst, 1);
	i915_get_instruction_src0(ctx->data, i, src0);
	i915_get_instruction_src1(ctx->data, i, src1);

	instr_out(ctx, i++, "%s: %s %s, %s, %s\n", instr_prefix,
		  op_name, dst, src0, src1);
	instr_out(ctx, i++, "%s\n", instr_prefix);
	instr_out(ctx, i++, "%s\n", instr_prefix);
}

static void
i915_decode_alu3(struct drm_intel_decode *ctx,
		 int i, char *instr_prefix, const char *op_name)
{
	char dst[100], src0[100], src1[100], src2[100];

	i915_get_instruction_dst(ctx->data, i, dst, 1);
	i915_get_instruction_src0(ctx->data, i, src0);
	i915_get_instruction_src1(ctx->data, i, src1);
	i915_get_instruction_src2(ctx->data, i, src2);

	instr_out(ctx, i++, "%s: %s %s, %s, %s, %s\n", instr_prefix,
		  op_name, dst, src0, src1, src2);
	instr_out(ctx, i++, "%s\n", instr_prefix);
	instr_out(ctx, i++, "%s\n", instr_prefix);
}

static void
i915_decode_tex(struct drm_intel_decode *ctx, int i,
		const char *instr_prefix, const char *tex_name)
{
	uint32_t t0 = ctx->data[i];
	uint32_t t1 = ctx->data[i + 1];
	char dst_name[100];
	char addr_name[100];
	int sampler_nr;

	i915_get_instruction_dst(ctx->data, i, dst_name, 0);
	i915_get_instruction_addr((t1 >> 24) & 0x7,
				  (t1 >> 17) & 0xf, addr_name);
	sampler_nr = t0 & 0xf;

	instr_out(ctx, i++, "%s: %s %s, S%d, %s\n", instr_prefix,
		  tex_name, dst_name, sampler_nr, addr_name);
	instr_out(ctx, i++, "%s\n", instr_prefix);
	instr_out(ctx, i++, "%s\n", instr_prefix);
}

static void
i915_decode_dcl(struct drm_intel_decode *ctx, int i, char *instr_prefix)
{
	uint32_t d0 = ctx->data[i];
	const char *sampletype;
	int dcl_nr = (d0 >> 14) & 0xf;
	const char *dcl_x = d0 & (1 << 10) ? "x" : "";
	const char *dcl_y = d0 & (1 << 11) ? "y" : "";
	const char *dcl_z = d0 & (1 << 12) ? "z" : "";
	const char *dcl_w = d0 & (1 << 13) ? "w" : "";
	char dcl_mask[10];

	switch ((d0 >> 19) & 0x3) {
	case 1:
		sprintf(dcl_mask, ".%s%s%s%s", dcl_x, dcl_y, dcl_z, dcl_w);
		if (strcmp(dcl_mask, ".") == 0)
			fprintf(out, "bad (empty) dcl mask\n");

		if (dcl_nr > 10)
			fprintf(out, "bad T%d dcl register number\n", dcl_nr);
		if (dcl_nr < 8) {
			if (strcmp(dcl_mask, ".x") != 0 &&
			    strcmp(dcl_mask, ".xy") != 0 &&
			    strcmp(dcl_mask, ".xz") != 0 &&
			    strcmp(dcl_mask, ".w") != 0 &&
			    strcmp(dcl_mask, ".xyzw") != 0) {
				fprintf(out, "bad T%d.%s dcl mask\n", dcl_nr,
					dcl_mask);
			}
			instr_out(ctx, i++, "%s: DCL T%d%s\n",
				  instr_prefix, dcl_nr, dcl_mask);
		} else {
			if (strcmp(dcl_mask, ".xz") == 0)
				fprintf(out, "errataed bad dcl mask %s\n",
					dcl_mask);
			else if (strcmp(dcl_mask, ".xw") == 0)
				fprintf(out, "errataed bad dcl mask %s\n",
					dcl_mask);
			else if (strcmp(dcl_mask, ".xzw") == 0)
				fprintf(out, "errataed bad dcl mask %s\n",
					dcl_mask);

			if (dcl_nr == 8) {
				instr_out(ctx, i++,
					  "%s: DCL DIFFUSE%s\n", instr_prefix,
					  dcl_mask);
			} else if (dcl_nr == 9) {
				instr_out(ctx, i++,
					  "%s: DCL SPECULAR%s\n", instr_prefix,
					  dcl_mask);
			} else if (dcl_nr == 10) {
				instr_out(ctx, i++,
					  "%s: DCL FOG%s\n", instr_prefix,
					  dcl_mask);
			}
		}
		instr_out(ctx, i++, "%s\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		break;
	case 3:
		switch ((d0 >> 22) & 0x3) {
		case 0:
			sampletype = "2D";
			break;
		case 1:
			sampletype = "CUBE";
			break;
		case 2:
			sampletype = "3D";
			break;
		default:
			sampletype = "RESERVED";
			break;
		}
		if (dcl_nr > 15)
			fprintf(out, "bad S%d dcl register number\n", dcl_nr);
		instr_out(ctx, i++, "%s: DCL S%d %s\n",
			  instr_prefix, dcl_nr, sampletype);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		break;
	default:
		instr_out(ctx, i++, "%s: DCL RESERVED%d\n",
			  instr_prefix, dcl_nr);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
	}
}

static void
i915_decode_instruction(struct drm_intel_decode *ctx,
			int i, char *instr_prefix)
{
	switch ((ctx->data[i] >> 24) & 0x1f) {
	case 0x0:
		instr_out(ctx, i++, "%s: NOP\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		break;
	case 0x01:
		i915_decode_alu2(ctx, i, instr_prefix, "ADD");
		break;
	case 0x02:
		i915_decode_alu1(ctx, i, instr_prefix, "MOV");
		break;
	case 0x03:
		i915_decode_alu2(ctx, i, instr_prefix, "MUL");
		break;
	case 0x04:
		i915_decode_alu3(ctx, i, instr_prefix, "MAD");
		break;
	case 0x05:
		i915_decode_alu3(ctx, i, instr_prefix, "DP2ADD");
		break;
	case 0x06:
		i915_decode_alu2(ctx, i, instr_prefix, "DP3");
		break;
	case 0x07:
		i915_decode_alu2(ctx, i, instr_prefix, "DP4");
		break;
	case 0x08:
		i915_decode_alu1(ctx, i, instr_prefix, "FRC");
		break;
	case 0x09:
		i915_decode_alu1(ctx, i, instr_prefix, "RCP");
		break;
	case 0x0a:
		i915_decode_alu1(ctx, i, instr_prefix, "RSQ");
		break;
	case 0x0b:
		i915_decode_alu1(ctx, i, instr_prefix, "EXP");
		break;
	case 0x0c:
		i915_decode_alu1(ctx, i, instr_prefix, "LOG");
		break;
	case 0x0d:
		i915_decode_alu2(ctx, i, instr_prefix, "CMP");
		break;
	case 0x0e:
		i915_decode_alu2(ctx, i, instr_prefix, "MIN");
		break;
	case 0x0f:
		i915_decode_alu2(ctx, i, instr_prefix, "MAX");
		break;
	case 0x10:
		i915_decode_alu1(ctx, i, instr_prefix, "FLR");
		break;
	case 0x11:
		i915_decode_alu1(ctx, i, instr_prefix, "MOD");
		break;
	case 0x12:
		i915_decode_alu1(ctx, i, instr_prefix, "TRC");
		break;
	case 0x13:
		i915_decode_alu2(ctx, i, instr_prefix, "SGE");
		break;
	case 0x14:
		i915_decode_alu2(ctx, i, instr_prefix, "SLT");
		break;
	case 0x15:
		i915_decode_tex(ctx, i, instr_prefix, "TEXLD");
		break;
	case 0x16:
		i915_decode_tex(ctx, i, instr_prefix, "TEXLDP");
		break;
	case 0x17:
		i915_decode_tex(ctx, i, instr_prefix, "TEXLDB");
		break;
	case 0x19:
		i915_decode_dcl(ctx, i, instr_prefix);
		break;
	default:
		instr_out(ctx, i++, "%s: unknown\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		instr_out(ctx, i++, "%s\n", instr_prefix);
		break;
	}
}

static const char *
decode_compare_func(uint32_t op)
{
	switch (op & 0x7) {
	case 0:
		return "always";
	case 1:
		return "never";
	case 2:
		return "less";
	case 3:
		return "equal";
	case 4:
		return "lequal";
	case 5:
		return "greater";
	case 6:
		return "notequal";
	case 7:
		return "gequal";
	}
	return "";
}

static const char *
decode_stencil_op(uint32_t op)
{
	switch (op & 0x7) {
	case 0:
		return "keep";
	case 1:
		return "zero";
	case 2:
		return "replace";
	case 3:
		return "incr_sat";
	case 4:
		return "decr_sat";
	case 5:
		return "greater";
	case 6:
		return "incr";
	case 7:
		return "decr";
	}
	return "";
}

#if 0
static const char *
decode_logic_op(uint32_t op)
{
	switch (op & 0xf) {
	case 0:
		return "clear";
	case 1:
		return "nor";
	case 2:
		return "and_inv";
	case 3:
		return "copy_inv";
	case 4:
		return "and_rvrse";
	case 5:
		return "inv";
	case 6:
		return "xor";
	case 7:
		return "nand";
	case 8:
		return "and";
	case 9:
		return "equiv";
	case 10:
		return "noop";
	case 11:
		return "or_inv";
	case 12:
		return "copy";
	case 13:
		return "or_rvrse";
	case 14:
		return "or";
	case 15:
		return "set";
	}
	return "";
}
#endif

static const char *
decode_blend_fact(uint32_t op)
{
	switch (op & 0xf) {
	case 1:
		return "zero";
	case 2:
		return "one";
	case 3:
		return "src_colr";
	case 4:
		return "inv_src_colr";
	case 5:
		return "src_alpha";
	case 6:
		return "inv_src_alpha";
	case 7:
		return "dst_alpha";
	case 8:
		return "inv_dst_alpha";
	case 9:
		return "dst_colr";
	case 10:
		return "inv_dst_colr";
	case 11:
		return "src_alpha_sat";
	case 12:
		return "cnst_colr";
	case 13:
		return "inv_cnst_colr";
	case 14:
		return "cnst_alpha";
	case 15:
		return "inv_const_alpha";
	}
	return "";
}

static const char *
decode_tex_coord_mode(uint32_t mode)
{
	switch (mode & 0x7) {
	case 0:
		return "wrap";
	case 1:
		return "mirror";
	case 2:
		return "clamp_edge";
	case 3:
		return "cube";
	case 4:
		return "clamp_border";
	case 5:
		return "mirror_once";
	}
	return "";
}

static const char *
decode_sample_filter(uint32_t mode)
{
	switch (mode & 0x7) {
	case 0:
		return "nearest";
	case 1:
		return "linear";
	case 2:
		return "anisotropic";
	case 3:
		return "4x4_1";
	case 4:
		return "4x4_2";
	case 5:
		return "4x4_flat";
	case 6:
		return "6x5_mono";
	}
	return "";
}

static int
decode_3d_1d(struct drm_intel_decode *ctx)
{
	unsigned int len, i, c, idx, word, map, sampler, instr;
	const char *format, *zformat, *type;
	uint32_t opcode;
	uint32_t *data = ctx->data;
	uint32_t devid = ctx->devid;

	struct {
		uint32_t opcode;
		int i830_only;
		unsigned int min_len;
		unsigned int max_len;
		const char *name;
	} opcodes_3d_1d[] = {
		{ 0x86, 0, 4, 4, "3DSTATE_CHROMA_KEY" },
		{ 0x88, 0, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" },
		{ 0x99, 0, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" },
		{ 0x9a, 0, 2, 2, "3DSTATE_DEFAULT_SPECULAR" },
		{ 0x98, 0, 2, 2, "3DSTATE_DEFAULT_Z" },
		{ 0x97, 0, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" },
		{ 0x9d, 0, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" },
		{ 0x9e, 0, 4, 4, "3DSTATE_MONO_FILTER" },
		{ 0x89, 0, 4, 4, "3DSTATE_FOG_MODE" },
		{ 0x8f, 0, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" },
		{ 0x83, 0, 2, 2, "3DSTATE_SPAN_STIPPLE" },
		{ 0x8c, 1, 2, 2, "3DSTATE_MAP_COORD_TRANSFORM_I830" },
		{ 0x8b, 1, 2, 2, "3DSTATE_MAP_VERTEX_TRANSFORM_I830" },
		{ 0x8d, 1, 3, 3, "3DSTATE_W_STATE_I830" },
		{ 0x01, 1, 2, 2, "3DSTATE_COLOR_FACTOR_I830" },
		{ 0x02, 1, 2, 2, "3DSTATE_MAP_COORD_SETBIND_I830"},
	}, *opcode_3d_1d;

	opcode = (data[0] & 0x00ff0000) >> 16;

	switch (opcode) {
	case 0x07:
		/* This instruction is unusual.  A 0 length means just
		 * 1 DWORD instead of 2.  The 0 length is specified in
		 * one place to be unsupported, but stated to be
		 * required in another, and 0 length LOAD_INDIRECTs
		 * appear to cause no harm at least.
		 */
		instr_out(ctx, 0, "3DSTATE_LOAD_INDIRECT\n");
		len = (data[0] & 0x000000ff) + 1;
		i = 1;
		if (data[0] & (0x01 << 8)) {
			instr_out(ctx, i++, "SIS.0\n");
			instr_out(ctx, i++, "SIS.1\n");
		}
		if (data[0] & (0x02 << 8)) {
			instr_out(ctx, i++, "DIS.0\n");
		}
		if (data[0] & (0x04 << 8)) {
			instr_out(ctx, i++, "SSB.0\n");
			instr_out(ctx, i++, "SSB.1\n");
		}
		if (data[0] & (0x08 << 8)) {
			instr_out(ctx, i++, "MSB.0\n");
			instr_out(ctx, i++, "MSB.1\n");
		}
		if (data[0] & (0x10 << 8)) {
			instr_out(ctx, i++, "PSP.0\n");
			instr_out(ctx, i++, "PSP.1\n");
		}
		if (data[0] & (0x20 << 8)) {
			instr_out(ctx, i++, "PSC.0\n");
			instr_out(ctx, i++, "PSC.1\n");
		}
		if (len != i) {
			fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n");
			return len;
		}
		return len;
	case 0x04:
		instr_out(ctx, 0,
			  "3DSTATE_LOAD_STATE_IMMEDIATE_1\n");
		len = (data[0] & 0x0000000f) + 2;
		i = 1;
		for (word = 0; word <= 8; word++) {
			if (data[0] & (1 << (4 + word))) {
				/* save vertex state for decode */
				if (!IS_GEN2(devid)) {
					int tex_num;

					if (word == 2) {
						saved_s2_set = 1;
						saved_s2 = data[i];
					}
					if (word == 4) {
						saved_s4_set = 1;
						saved_s4 = data[i];
					}

					switch (word) {
					case 0:
						instr_out(ctx, i,
							  "S0: vbo offset: 0x%08x%s\n",
							  data[i] & (~1),
							  data[i] & 1 ?
							  ", auto cache invalidate disabled"
							  : "");
						break;
					case 1:
						instr_out(ctx, i,
							  "S1: vertex width: %i, vertex pitch: %i\n",
							  (data[i] >> 24) &
							  0x3f,
							  (data[i] >> 16) &
							  0x3f);
						break;
					case 2:
						instr_out(ctx, i,
							  "S2: texcoord formats: ");
						for (tex_num = 0;
						     tex_num < 8; tex_num++) {
							switch ((data[i] >>
								 tex_num *
								 4) & 0xf) {
							case 0:
								fprintf(out,
									"%i=2D ",
									tex_num);
								break;
							case 1:
								fprintf(out,
									"%i=3D ",
									tex_num);
								break;
							case 2:
								fprintf(out,
									"%i=4D ",
									tex_num);
								break;
							case 3:
								fprintf(out,
									"%i=1D ",
									tex_num);
								break;
							case 4:
								fprintf(out,
									"%i=2D_16 ",
									tex_num);
								break;
							case 5:
								fprintf(out,
									"%i=4D_16 ",
									tex_num);
								break;
							case 0xf:
								fprintf(out,
									"%i=NP ",
									tex_num);
								break;
							}
						}
						fprintf(out, "\n");

						break;
					case 3:
						instr_out(ctx, i,
							  "S3: not documented\n");
						break;
					case 4:
						{
							const char *cullmode = "";
							const char *vfmt_xyzw = "";
							switch ((data[i] >> 13)
								& 0x3) {
							case 0:
								cullmode =
								    "both";
								break;
							case 1:
								cullmode =
								    "none";
								break;
							case 2:
								cullmode = "cw";
								break;
							case 3:
								cullmode =
								    "ccw";
								break;
							}
							switch (data[i] &
								(7 << 6 | 1 <<
								 2)) {
							case 1 << 6:
								vfmt_xyzw =
								    "XYZ,";
								break;
							case 2 << 6:
								vfmt_xyzw =
								    "XYZW,";
								break;
							case 3 << 6:
								vfmt_xyzw =
								    "XY,";
								break;
							case 4 << 6:
								vfmt_xyzw =
								    "XYW,";
								break;
							case 1 << 6 | 1 << 2:
								vfmt_xyzw =
								    "XYZF,";
								break;
							case 2 << 6 | 1 << 2:
								vfmt_xyzw =
								    "XYZWF,";
								break;
							case 3 << 6 | 1 << 2:
								vfmt_xyzw =
								    "XYF,";
								break;
							case 4 << 6 | 1 << 2:
								vfmt_xyzw =
								    "XYWF,";
								break;
							}
							instr_out(ctx, i,
								  "S4: point_width=%i, line_width=%.1f,"
								  "%s%s%s%s%s cullmode=%s, vfmt=%s%s%s%s%s%s "
								  "%s%s%s%s%s\n",
								  (data[i] >>
								   23) & 0x1ff,
								  ((data[i] >>
								    19) & 0xf) /
								  2.0,
								  data[i] & (0xf
									     <<
									     15)
								  ?
								  " flatshade="
								  : "",
								  data[i] & (1
									     <<
									     18)
								  ? "Alpha," :
								  "",
								  data[i] & (1
									     <<
									     17)
								  ? "Fog," : "",
								  data[i] & (1
									     <<
									     16)
								  ? "Specular,"
								  : "",
								  data[i] & (1
									     <<
									     15)
								  ? "Color," :
								  "", cullmode,
								  data[i] & (1
									     <<
									     12)
								  ?
								  "PointWidth,"
								  : "",
								  data[i] & (1
									     <<
									     11)
								  ? "SpecFog," :
								  "",
								  data[i] & (1
									     <<
									     10)
								  ? "Color," :
								  "",
								  data[i] & (1
									     <<
									     9)
								  ? "DepthOfs,"
								  : "",
								  vfmt_xyzw,
								  data[i] & (1
									     <<
									     9)
								  ? "FogParam,"
								  : "",
								  data[i] & (1
									     <<
									     5)
								  ?
								  "force default diffuse, "
								  : "",
								  data[i] & (1
									     <<
									     4)
								  ?
								  "force default specular, "
								  : "",
								  data[i] & (1
									     <<
									     3)
								  ?
								  "local depth ofs enable, "
								  : "",
								  data[i] & (1
									     <<
									     1)
								  ?
								  "point sprite enable, "
								  : "",
								  data[i] & (1
									     <<
									     0)
								  ?
								  "line AA enable, "
								  : "");
							break;
						}
					case 5:
						{
							instr_out(ctx, i,
								  "S5:%s%s%s%s%s"
								  "%s%s%s%s stencil_ref=0x%x, stencil_test=%s, "
								  "stencil_fail=%s, stencil_pass_z_fail=%s, "
								  "stencil_pass_z_pass=%s, %s%s%s%s\n",
								  data[i] & (0xf
									     <<
									     28)
								  ?
								  " write_disable="
								  : "",
								  data[i] & (1
									     <<
									     31)
								  ? "Alpha," :
								  "",
								  data[i] & (1
									     <<
									     30)
								  ? "Red," : "",
								  data[i] & (1
									     <<
									     29)
								  ? "Green," :
								  "",
								  data[i] & (1
									     <<
									     28)
								  ? "Blue," :
								  "",
								  data[i] & (1
									     <<
									     27)
								  ?
								  " force default point size,"
								  : "",
								  data[i] & (1
									     <<
									     26)
								  ?
								  " last pixel enable,"
								  : "",
								  data[i] & (1
									     <<
									     25)
								  ?
								  " global depth ofs enable,"
								  : "",
								  data[i] & (1
									     <<
									     24)
								  ?
								  " fog enable,"
								  : "",
								  (data[i] >>
								   16) & 0xff,
								  decode_compare_func
								  (data[i] >>
								   13),
								  decode_stencil_op
								  (data[i] >>
								   10),
								  decode_stencil_op
								  (data[i] >>
								   7),
								  decode_stencil_op
								  (data[i] >>
								   4),
								  data[i] & (1
									     <<
									     3)
								  ?
								  "stencil write enable, "
								  : "",
								  data[i] & (1
									     <<
									     2)
								  ?
								  "stencil test enable, "
								  : "",
								  data[i] & (1
									     <<
									     1)
								  ?
								  "color dither enable, "
								  : "",
								  data[i] & (1
									     <<
									     0)
								  ?
								  "logicop enable, "
								  : "");
						}
						break;
					case 6:
						instr_out(ctx, i,
							  "S6: %salpha_test=%s, alpha_ref=0x%x, "
							  "depth_test=%s, %ssrc_blnd_fct=%s, dst_blnd_fct=%s, "
							  "%s%stristrip_provoking_vertex=%i\n",
							  data[i] & (1 << 31) ?
							  "alpha test enable, "
							  : "",
							  decode_compare_func
							  (data[i] >> 28),
							  data[i] & (0xff <<
								     20),
							  decode_compare_func
							  (data[i] >> 16),
							  data[i] & (1 << 15) ?
							  "cbuf blend enable, "
							  : "",
							  decode_blend_fact(data
									    [i]
									    >>
									    8),
							  decode_blend_fact(data
									    [i]
									    >>
									    4),
							  data[i] & (1 << 3) ?
							  "depth write enable, "
							  : "",
							  data[i] & (1 << 2) ?
							  "cbuf write enable, "
							  : "",
							  data[i] & (0x3));
						break;
					case 7:
						instr_out(ctx, i,
							  "S7: depth offset constant: 0x%08x\n",
							  data[i]);
						break;
					}
				} else {
					instr_out(ctx, i,
						  "S%d: 0x%08x\n", word, data[i]);
				}
				i++;
			}
		}
		if (len != i) {
			fprintf(out,
				"Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_1\n");
		}
		return len;
	case 0x03:
		instr_out(ctx, 0,
			  "3DSTATE_LOAD_STATE_IMMEDIATE_2\n");
		len = (data[0] & 0x0000000f) + 2;
		i = 1;
		for (word = 6; word <= 14; word++) {
			if (data[0] & (1 << word)) {
				if (word == 6)
					instr_out(ctx, i++,
						  "TBCF\n");
				else if (word >= 7 && word <= 10) {
					instr_out(ctx, i++,
						  "TB%dC\n", word - 7);
					instr_out(ctx, i++,
						  "TB%dA\n", word - 7);
				} else if (word >= 11 && word <= 14) {
					instr_out(ctx, i,
						  "TM%dS0: offset=0x%08x, %s\n",
						  word - 11,
						  data[i] & 0xfffffffe,
						  data[i] & 1 ? "use fence" :
						  "");
					i++;
					instr_out(ctx, i,
						  "TM%dS1: height=%i, width=%i, %s\n",
						  word - 11, data[i] >> 21,
						  (data[i] >> 10) & 0x3ff,
						  data[i] & 2 ? (data[i] & 1 ?
								 "y-tiled" :
								 "x-tiled") :
						  "");
					i++;
					instr_out(ctx, i,
						  "TM%dS2: pitch=%i, \n",
						  word - 11,
						  ((data[i] >> 21) + 1) * 4);
					i++;
					instr_out(ctx, i++,
						  "TM%dS3\n", word - 11);
					instr_out(ctx, i++,
						  "TM%dS4: dflt color\n",
						  word - 11);
				}
			}
		}
		if (len != i) {
			fprintf(out,
				"Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_2\n");
		}
		return len;
	case 0x00:
		instr_out(ctx, 0, "3DSTATE_MAP_STATE\n");
		len = (data[0] & 0x0000003f) + 2;
		instr_out(ctx, 1, "mask\n");

		i = 2;
		for (map = 0; map <= 15; map++) {
			if (data[1] & (1 << map)) {
				int width, height, pitch, dword;
				const char *tiling;

				dword = data[i];
				instr_out(ctx, i++,
					  "map %d MS2 %s%s%s\n", map,
					  dword & (1 << 31) ?
					  "untrusted surface, " : "",
					  dword & (1 << 1) ?
					  "vertical line stride enable, " : "",
					  dword & (1 << 0) ?
					  "vertical ofs enable, " : "");

				dword = data[i];
				width = ((dword >> 10) & ((1 << 11) - 1)) + 1;
				height = ((dword >> 21) & ((1 << 11) - 1)) + 1;

				tiling = "none";
				if (dword & (1 << 2))
					tiling = "fenced";
				else if (dword & (1 << 1))
					tiling = dword & (1 << 0) ? "Y" : "X";
				type = " BAD";
				format = "BAD";
				switch ((dword >> 7) & 0x7) {
				case 1:
					type = "8b";
					switch ((dword >> 3) & 0xf) {
					case 0:
						format = "I";
						break;
					case 1:
						format = "L";
						break;
					case 4:
						format = "A";
						break;
					case 5:
						format = " mono";
						break;
					}
					break;
				case 2:
					type = "16b";
					switch ((dword >> 3) & 0xf) {
					case 0:
						format = " rgb565";
						break;
					case 1:
						format = " argb1555";
						break;
					case 2:
						format = " argb4444";
						break;
					case 5:
						format = " ay88";
						break;
					case 6:
						format = " bump655";
						break;
					case 7:
						format = "I";
						break;
					case 8:
						format = "L";
						break;
					case 9:
						format = "A";
						break;
					}
					break;
				case 3:
					type = "32b";
					switch ((dword >> 3) & 0xf) {
					case 0:
						format = " argb8888";
						break;
					case 1:
						format = " abgr8888";
						break;
					case 2:
						format = " xrgb8888";
						break;
					case 3:
						format = " xbgr8888";
						break;
					case 4:
						format = " qwvu8888";
						break;
					case 5:
						format = " axvu8888";
						break;
					case 6:
						format = " lxvu8888";
						break;
					case 7:
						format = " xlvu8888";
						break;
					case 8:
						format = " argb2101010";
						break;
					case 9:
						format = " abgr2101010";
						break;
					case 10:
						format = " awvu2101010";
						break;
					case 11:
						format = " gr1616";
						break;
					case 12:
						format = " vu1616";
						break;
					case 13:
						format = " xI824";
						break;
					case 14:
						format = " xA824";
						break;
					case 15:
						format = " xL824";
						break;
					}
					break;
				case 5:
					type = "422";
					switch ((dword >> 3) & 0xf) {
					case 0:
						format = " yuv_swapy";
						break;
					case 1:
						format = " yuv";
						break;
					case 2:
						format = " yuv_swapuv";
						break;
					case 3:
						format = " yuv_swapuvy";
						break;
					}
					break;
				case 6:
					type = "compressed";
					switch ((dword >> 3) & 0x7) {
					case 0:
						format = " dxt1";
						break;
					case 1:
						format = " dxt2_3";
						break;
					case 2:
						format = " dxt4_5";
						break;
					case 3:
						format = " fxt1";
						break;
					case 4:
						format = " dxt1_rb";
						break;
					}
					break;
				case 7:
					type = "4b indexed";
					switch ((dword >> 3) & 0xf) {
					case 7:
						format = " argb8888";
						break;
					}
					break;
				}
				dword = data[i];
				instr_out(ctx, i++,
					  "map %d MS3 [width=%d, height=%d, format=%s%s, tiling=%s%s]\n",
					  map, width, height, type, format,
					  tiling,
					  dword & (1 << 9) ? " palette select" :
					  "");

				dword = data[i];
				pitch =
				    4 * (((dword >> 21) & ((1 << 11) - 1)) + 1);
				instr_out(ctx, i++,
					  "map %d MS4 [pitch=%d, max_lod=%i, vol_depth=%i, cube_face_ena=%x, %s]\n",
					  map, pitch, (dword >> 9) & 0x3f,
					  dword & 0xff, (dword >> 15) & 0x3f,
					  dword & (1 << 8) ? "miplayout legacy"
					  : "miplayout right");
			}
		}
		if (len != i) {
			fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n");
			return len;
		}
		return len;
	case 0x06:
		instr_out(ctx, 0,
			  "3DSTATE_PIXEL_SHADER_CONSTANTS\n");
		len = (data[0] & 0x000000ff) + 2;

		i = 2;
		for (c = 0; c <= 31; c++) {
			if (data[1] & (1 << c)) {
				instr_out(ctx, i, "C%d.X = %f\n", c,
					  int_as_float(data[i]));
				i++;
				instr_out(ctx, i, "C%d.Y = %f\n",
					  c, int_as_float(data[i]));
				i++;
				instr_out(ctx, i, "C%d.Z = %f\n",
					  c, int_as_float(data[i]));
				i++;
				instr_out(ctx, i, "C%d.W = %f\n",
					  c, int_as_float(data[i]));
				i++;
			}
		}
		if (len != i) {
			fprintf(out,
				"Bad count in 3DSTATE_PIXEL_SHADER_CONSTANTS\n");
		}
		return len;
	case 0x05:
		instr_out(ctx, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n");
		len = (data[0] & 0x000000ff) + 2;
		if ((len - 1) % 3 != 0 || len > 370) {
			fprintf(out,
				"Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n");
		}
		i = 1;
		for (instr = 0; instr < (len - 1) / 3; instr++) {
			char instr_prefix[10];

			sprintf(instr_prefix, "PS%03d", instr);
			i915_decode_instruction(ctx, i,
						instr_prefix);
			i += 3;
		}
		return len;
	case 0x01:
		if (IS_GEN2(devid))
			break;
		instr_out(ctx, 0, "3DSTATE_SAMPLER_STATE\n");
		instr_out(ctx, 1, "mask\n");
		len = (data[0] & 0x0000003f) + 2;
		i = 2;
		for (sampler = 0; sampler <= 15; sampler++) {
			if (data[1] & (1 << sampler)) {
				uint32_t dword;
				const char *mip_filter = "";

				dword = data[i];
				switch ((dword >> 20) & 0x3) {
				case 0:
					mip_filter = "none";
					break;
				case 1:
					mip_filter = "nearest";
					break;
				case 3:
					mip_filter = "linear";
					break;
				}
				instr_out(ctx, i++,
					  "sampler %d SS2:%s%s%s "
					  "base_mip_level=%i, mip_filter=%s, mag_filter=%s, min_filter=%s "
					  "lod_bias=%.2f,%s max_aniso=%i, shadow_func=%s\n",
					  sampler,
					  dword & (1 << 31) ? " reverse gamma,"
					  : "",
					  dword & (1 << 30) ? " packed2planar,"
					  : "",
					  dword & (1 << 29) ?
					  " colorspace conversion," : "",
					  (dword >> 22) & 0x1f, mip_filter,
					  decode_sample_filter(dword >> 17),
					  decode_sample_filter(dword >> 14),
					  ((dword >> 5) & 0x1ff) / (0x10 * 1.0),
					  dword & (1 << 4) ? " shadow," : "",
					  dword & (1 << 3) ? 4 : 2,
					  decode_compare_func(dword));
				dword = data[i];
				instr_out(ctx, i++,
					  "sampler %d SS3: min_lod=%.2f,%s "
					  "tcmode_x=%s, tcmode_y=%s, tcmode_z=%s,%s texmap_idx=%i,%s\n",
					  sampler,
					  ((dword >> 24) & 0xff) / (0x10 * 1.0),
					  dword & (1 << 17) ?
					  " kill pixel enable," : "",
					  decode_tex_coord_mode(dword >> 12),
					  decode_tex_coord_mode(dword >> 9),
					  decode_tex_coord_mode(dword >> 6),
					  dword & (1 << 5) ?
					  " normalized coords," : "",
					  (dword >> 1) & 0xf,
					  dword & (1 << 0) ? " deinterlacer," :
					  "");
				dword = data[i];
				instr_out(ctx, i++,
					  "sampler %d SS4: border color\n",
					  sampler);
			}
		}
		if (len != i) {
			fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n");
		}
		return len;
	case 0x85:
		len = (data[0] & 0x0000000f) + 2;

		if (len != 2)
			fprintf(out,
				"Bad count in 3DSTATE_DEST_BUFFER_VARIABLES\n");

		instr_out(ctx, 0,
			  "3DSTATE_DEST_BUFFER_VARIABLES\n");

		switch ((data[1] >> 8) & 0xf) {
		case 0x0:
			format = "g8";
			break;
		case 0x1:
			format = "x1r5g5b5";
			break;
		case 0x2:
			format = "r5g6b5";
			break;
		case 0x3:
			format = "a8r8g8b8";
			break;
		case 0x4:
			format = "ycrcb_swapy";
			break;
		case 0x5:
			format = "ycrcb_normal";
			break;
		case 0x6:
			format = "ycrcb_swapuv";
			break;
		case 0x7:
			format = "ycrcb_swapuvy";
			break;
		case 0x8:
			format = "a4r4g4b4";
			break;
		case 0x9:
			format = "a1r5g5b5";
			break;
		case 0xa:
			format = "a2r10g10b10";
			break;
		default:
			format = "BAD";
			break;
		}
		switch ((data[1] >> 2) & 0x3) {
		case 0x0:
			zformat = "u16";
			break;
		case 0x1:
			zformat = "f16";
			break;
		case 0x2:
			zformat = "u24x8";
			break;
		default:
			zformat = "BAD";
			break;
		}
		instr_out(ctx, 1,
			  "%s format, %s depth format, early Z %sabled\n",
			  format, zformat,
			  (data[1] & (1 << 31)) ? "en" : "dis");
		return len;

	case 0x8e:
		{
			const char *name, *tiling;

			len = (data[0] & 0x0000000f) + 2;
			if (len != 3)
				fprintf(out,
					"Bad count in 3DSTATE_BUFFER_INFO\n");

			switch ((data[1] >> 24) & 0x7) {
			case 0x3:
				name = "color";
				break;
			case 0x7:
				name = "depth";
				break;
			default:
				name = "unknown";
				break;
			}

			tiling = "none";
			if (data[1] & (1 << 23))
				tiling = "fenced";
			else if (data[1] & (1 << 22))
				tiling = data[1] & (1 << 21) ? "Y" : "X";

			instr_out(ctx, 0, "3DSTATE_BUFFER_INFO\n");
			instr_out(ctx, 1,
				  "%s, tiling = %s, pitch=%d\n", name, tiling,
				  data[1] & 0xffff);

			instr_out(ctx, 2, "address\n");
			return len;
		}
	case 0x81:
		len = (data[0] & 0x0000000f) + 2;

		if (len != 3)
			fprintf(out,
				"Bad count in 3DSTATE_SCISSOR_RECTANGLE\n");

		instr_out(ctx, 0, "3DSTATE_SCISSOR_RECTANGLE\n");
		instr_out(ctx, 1, "(%d,%d)\n",
			  data[1] & 0xffff, data[1] >> 16);
		instr_out(ctx, 2, "(%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);

		return len;
	case 0x80:
		len = (data[0] & 0x0000000f) + 2;

		if (len != 5)
			fprintf(out,
				"Bad count in 3DSTATE_DRAWING_RECTANGLE\n");

		instr_out(ctx, 0, "3DSTATE_DRAWING_RECTANGLE\n");
		instr_out(ctx, 1, "%s\n",
			  data[1] & (1 << 30) ? "depth ofs disabled " : "");
		instr_out(ctx, 2, "(%d,%d)\n",
			  data[2] & 0xffff, data[2] >> 16);
		instr_out(ctx, 3, "(%d,%d)\n",
			  data[3] & 0xffff, data[3] >> 16);
		instr_out(ctx, 4, "(%d,%d)\n",
			  data[4] & 0xffff, data[4] >> 16);

		return len;
	case 0x9c:
		len = (data[0] & 0x0000000f) + 2;

		if (len != 7)
			fprintf(out, "Bad count in 3DSTATE_CLEAR_PARAMETERS\n");

		instr_out(ctx, 0, "3DSTATE_CLEAR_PARAMETERS\n");
		instr_out(ctx, 1, "prim_type=%s, clear=%s%s%s\n",
			  data[1] & (1 << 16) ? "CLEAR_RECT" : "ZONE_INIT",
			  data[1] & (1 << 2) ? "color," : "",
			  data[1] & (1 << 1) ? "depth," : "",
			  data[1] & (1 << 0) ? "stencil," : "");
		instr_out(ctx, 2, "clear color\n");
		instr_out(ctx, 3, "clear depth/stencil\n");
		instr_out(ctx, 4, "color value (rgba8888)\n");
		instr_out(ctx, 5, "depth value %f\n",
			  int_as_float(data[5]));
		instr_out(ctx, 6, "clear stencil\n");
		return len;
	}

	for (idx = 0; idx < ARRAY_SIZE(opcodes_3d_1d); idx++) {
		opcode_3d_1d = &opcodes_3d_1d[idx];
		if (opcode_3d_1d->i830_only && !IS_GEN2(devid))
			continue;

		if (((data[0] & 0x00ff0000) >> 16) == opcode_3d_1d->opcode) {
			len = 1;

			instr_out(ctx, 0, "%s\n",
				  opcode_3d_1d->name);
			if (opcode_3d_1d->max_len > 1) {
				len = (data[0] & 0x0000ffff) + 2;
				if (len < opcode_3d_1d->min_len ||
				    len > opcode_3d_1d->max_len) {
					fprintf(out, "Bad count in %s\n",
						opcode_3d_1d->name);
				}
			}

			for (i = 1; i < len; i++) {
				instr_out(ctx, i, "dword %d\n", i);
			}

			return len;
		}
	}

	instr_out(ctx, 0, "3D UNKNOWN: 3d_1d opcode = 0x%x\n",
		  opcode);
	return 1;
}

static int
decode_3d_primitive(struct drm_intel_decode *ctx)
{
	uint32_t *data = ctx->data;
	uint32_t count = ctx->count;
	char immediate = (data[0] & (1 << 23)) == 0;
	unsigned int len, i, j, ret;
	const char *primtype;
	int original_s2 = saved_s2;
	int original_s4 = saved_s4;

	switch ((data[0] >> 18) & 0xf) {
	case 0x0:
		primtype = "TRILIST";
		break;
	case 0x1:
		primtype = "TRISTRIP";
		break;
	case 0x2:
		primtype = "TRISTRIP_REVERSE";
		break;
	case 0x3:
		primtype = "TRIFAN";
		break;
	case 0x4:
		primtype = "POLYGON";
		break;
	case 0x5:
		primtype = "LINELIST";
		break;
	case 0x6:
		primtype = "LINESTRIP";
		break;
	case 0x7:
		primtype = "RECTLIST";
		break;
	case 0x8:
		primtype = "POINTLIST";
		break;
	case 0x9:
		primtype = "DIB";
		break;
	case 0xa:
		primtype = "CLEAR_RECT";
		saved_s4 = 3 << 6;
		saved_s2 = ~0;
		break;
	default:
		primtype = "unknown";
		break;
	}

	/* XXX: 3DPRIM_DIB not supported */
	if (immediate) {
		len = (data[0] & 0x0003ffff) + 2;
		instr_out(ctx, 0, "3DPRIMITIVE inline %s\n",
			  primtype);
		if (count < len)
			BUFFER_FAIL(count, len, "3DPRIMITIVE inline");
		if (!saved_s2_set || !saved_s4_set) {
			fprintf(out, "unknown vertex format\n");
			for (i = 1; i < len; i++) {
				instr_out(ctx, i,
					  "           vertex data (%f float)\n",
					  int_as_float(data[i]));
			}
		} else {
			unsigned int vertex = 0;
			for (i = 1; i < len;) {
				unsigned int tc;

#define VERTEX_OUT(fmt, ...) do {					\
    if (i < len)							\
	instr_out(ctx, i, " V%d."fmt"\n", vertex, __VA_ARGS__); \
    else								\
	fprintf(out, " missing data in V%d\n", vertex);			\
    i++;								\
} while (0)

				VERTEX_OUT("X = %f", int_as_float(data[i]));
				VERTEX_OUT("Y = %f", int_as_float(data[i]));
				switch (saved_s4 >> 6 & 0x7) {
				case 0x1:
					VERTEX_OUT("Z = %f",
						   int_as_float(data[i]));
					break;
				case 0x2:
					VERTEX_OUT("Z = %f",
						   int_as_float(data[i]));
					VERTEX_OUT("W = %f",
						   int_as_float(data[i]));
					break;
				case 0x3:
					break;
				case 0x4:
					VERTEX_OUT("W = %f",
						   int_as_float(data[i]));
					break;
				default:
					fprintf(out, "bad S4 position mask\n");
				}

				if (saved_s4 & (1 << 10)) {
					VERTEX_OUT
					    ("color = (A=0x%02x, R=0x%02x, G=0x%02x, "
					     "B=0x%02x)", data[i] >> 24,
					     (data[i] >> 16) & 0xff,
					     (data[i] >> 8) & 0xff,
					     data[i] & 0xff);
				}
				if (saved_s4 & (1 << 11)) {
					VERTEX_OUT
					    ("spec = (A=0x%02x, R=0x%02x, G=0x%02x, "
					     "B=0x%02x)", data[i] >> 24,
					     (data[i] >> 16) & 0xff,
					     (data[i] >> 8) & 0xff,
					     data[i] & 0xff);
				}
				if (saved_s4 & (1 << 12))
					VERTEX_OUT("width = 0x%08x)", data[i]);

				for (tc = 0; tc <= 7; tc++) {
					switch ((saved_s2 >> (tc * 4)) & 0xf) {
					case 0x0:
						VERTEX_OUT("T%d.X = %f", tc,
							   int_as_float(data
									[i]));
						VERTEX_OUT("T%d.Y = %f", tc,
							   int_as_float(data
									[i]));
						break;
					case 0x1:
						VERTEX_OUT("T%d.X = %f", tc,
							   int_as_float(data
									[i]));
						VERTEX_OUT("T%d.Y = %f", tc,
							   int_as_float(data
									[i]));
						VERTEX_OUT("T%d.Z = %f", tc,
							   int_as_float(data
									[i]));
						break;
					case 0x2:
						VERTEX_OUT("T%d.X = %f", tc,
							   int_as_float(data
									[i]));
						VERTEX_OUT("T%d.Y = %f", tc,
							   int_as_float(data
									[i]));
						VERTEX_OUT("T%d.Z = %f", tc,
							   int_as_float(data
									[i]));
						VERTEX_OUT("T%d.W = %f", tc,
							   int_as_float(data
									[i]));
						break;
					case 0x3:
						VERTEX_OUT("T%d.X = %f", tc,
							   int_as_float(data
									[i]));
						break;
					case 0x4:
						VERTEX_OUT
						    ("T%d.XY = 0x%08x half-float",
						     tc, data[i]);
						break;
					case 0x5:
						VERTEX_OUT
						    ("T%d.XY = 0x%08x half-float",
						     tc, data[i]);
						VERTEX_OUT
						    ("T%d.ZW = 0x%08x half-float",
						     tc, data[i]);
						break;
					case 0xf:
						break;
					default:
						fprintf(out,
							"bad S2.T%d format\n",
							tc);
					}
				}
				vertex++;
			}
		}

		ret = len;
	} else {
		/* indirect vertices */
		len = data[0] & 0x0000ffff;	/* index count */
		if (data[0] & (1 << 17)) {
			/* random vertex access */
			if (count < (len + 1) / 2 + 1) {
				BUFFER_FAIL(count, (len + 1) / 2 + 1,
					    "3DPRIMITIVE random indirect");
			}
			instr_out(ctx, 0,
				  "3DPRIMITIVE random indirect %s (%d)\n",
				  primtype, len);
			if (len == 0) {
				/* vertex indices continue until 0xffff is
				 * found
				 */
				for (i = 1; i < count; i++) {
					if ((data[i] & 0xffff) == 0xffff) {
						instr_out(ctx, i,
							  "    indices: (terminator)\n");
						ret = i;
						goto out;
					} else if ((data[i] >> 16) == 0xffff) {
						instr_out(ctx, i,
							  "    indices: 0x%04x, (terminator)\n",
							  data[i] & 0xffff);
						ret = i;
						goto out;
					} else {
						instr_out(ctx, i,
							  "    indices: 0x%04x, 0x%04x\n",
							  data[i] & 0xffff,
							  data[i] >> 16);
					}
				}
				fprintf(out,
					"3DPRIMITIVE: no terminator found in index buffer\n");
				ret = count;
				goto out;
			} else {
				/* fixed size vertex index buffer */
				for (j = 1, i = 0; i < len; i += 2, j++) {
					if (i * 2 == len - 1) {
						instr_out(ctx, j,
							  "    indices: 0x%04x\n",
							  data[j] & 0xffff);
					} else {
						instr_out(ctx, j,
							  "    indices: 0x%04x, 0x%04x\n",
							  data[j] & 0xffff,
							  data[j] >> 16);
					}
				}
			}
			ret = (len + 1) / 2 + 1;
			goto out;
		} else {
			/* sequential vertex access */
			instr_out(ctx, 0,
				  "3DPRIMITIVE sequential indirect %s, %d starting from "
				  "%d\n", primtype, len, data[1] & 0xffff);
			instr_out(ctx, 1, "           start\n");
			ret = 2;
			goto out;
		}
	}

out:
	saved_s2 = original_s2;
	saved_s4 = original_s4;
	return ret;
}

static int
decode_3d(struct drm_intel_decode *ctx)
{
	uint32_t opcode;
	unsigned int idx;
	uint32_t *data = ctx->data;

	struct {
		uint32_t opcode;
		unsigned int min_len;
		unsigned int max_len;
		const char *name;
	} opcodes_3d[] = {
		{ 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" },
		{ 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" },
		{ 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" },
		{ 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" },
		{ 0x15, 1, 1, "3DSTATE_FOG_COLOR" },
		{ 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" },
		{ 0x0d, 1, 1, "3DSTATE_MODES_4" },
		{ 0x0c, 1, 1, "3DSTATE_MODES_5" },
		{ 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES"},
	}, *opcode_3d;

	opcode = (data[0] & 0x1f000000) >> 24;

	switch (opcode) {
	case 0x1f:
		return decode_3d_primitive(ctx);
	case 0x1d:
		return decode_3d_1d(ctx);
	case 0x1c:
		return decode_3d_1c(ctx);
	}

	for (idx = 0; idx < ARRAY_SIZE(opcodes_3d); idx++) {
		opcode_3d = &opcodes_3d[idx];
		if (opcode == opcode_3d->opcode) {
			unsigned int len = 1, i;

			instr_out(ctx, 0, "%s\n", opcode_3d->name);
			if (opcode_3d->max_len > 1) {
				len = (data[0] & 0xff) + 2;
				if (len < opcode_3d->min_len ||
				    len > opcode_3d->max_len) {
					fprintf(out, "Bad count in %s\n",
						opcode_3d->name);
				}
			}

			for (i = 1; i < len; i++) {
				instr_out(ctx, i, "dword %d\n", i);
			}
			return len;
		}
	}

	instr_out(ctx, 0, "3D UNKNOWN: 3d opcode = 0x%x\n", opcode);
	return 1;
}

static const char *get_965_surfacetype(unsigned int surfacetype)
{
	switch (surfacetype) {
	case 0:
		return "1D";
	case 1:
		return "2D";
	case 2:
		return "3D";
	case 3:
		return "CUBE";
	case 4:
		return "BUFFER";
	case 7:
		return "NULL";
	default:
		return "unknown";
	}
}

static const char *get_965_depthformat(unsigned int depthformat)
{
	switch (depthformat) {
	case 0:
		return "s8_z24float";
	case 1:
		return "z32float";
	case 2:
		return "z24s8";
	case 5:
		return "z16";
	default:
		return "unknown";
	}
}

static const char *get_965_element_component(uint32_t data, int component)
{
	uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7;

	switch (component_control) {
	case 0:
		return "nostore";
	case 1:
		switch (component) {
		case 0:
			return "X";
		case 1:
			return "Y";
		case 2:
			return "Z";
		case 3:
			return "W";
		default:
			return "fail";
		}
	case 2:
		return "0.0";
	case 3:
		return "1.0";
	case 4:
		return "0x1";
	case 5:
		return "VID";
	default:
		return "fail";
	}
}

static const char *get_965_prim_type(uint32_t primtype)
{
	switch (primtype) {
	case 0x01:
		return "point list";
	case 0x02:
		return "line list";
	case 0x03:
		return "line strip";
	case 0x04:
		return "tri list";
	case 0x05:
		return "tri strip";
	case 0x06:
		return "tri fan";
	case 0x07:
		return "quad list";
	case 0x08:
		return "quad strip";
	case 0x09:
		return "line list adj";
	case 0x0a:
		return "line strip adj";
	case 0x0b:
		return "tri list adj";
	case 0x0c:
		return "tri strip adj";
	case 0x0d:
		return "tri strip reverse";
	case 0x0e:
		return "polygon";
	case 0x0f:
		return "rect list";
	case 0x10:
		return "line loop";
	case 0x11:
		return "point list bf";
	case 0x12:
		return "line strip cont";
	case 0x13:
		return "line strip bf";
	case 0x14:
		return "line strip cont bf";
	case 0x15:
		return "tri fan no stipple";
	default:
		return "fail";
	}
}

static int
i965_decode_urb_fence(struct drm_intel_decode *ctx, int len)
{
	uint32_t vs_fence, clip_fence, gs_fence, sf_fence, vfe_fence, cs_fence;
	uint32_t *data = ctx->data;

	if (len != 3)
		fprintf(out, "Bad count in URB_FENCE\n");

	vs_fence = data[1] & 0x3ff;
	gs_fence = (data[1] >> 10) & 0x3ff;
	clip_fence = (data[1] >> 20) & 0x3ff;
	sf_fence = data[2] & 0x3ff;
	vfe_fence = (data[2] >> 10) & 0x3ff;
	cs_fence = (data[2] >> 20) & 0x7ff;

	instr_out(ctx, 0, "URB_FENCE: %s%s%s%s%s%s\n",
		  (data[0] >> 13) & 1 ? "cs " : "",
		  (data[0] >> 12) & 1 ? "vfe " : "",
		  (data[0] >> 11) & 1 ? "sf " : "",
		  (data[0] >> 10) & 1 ? "clip " : "",
		  (data[0] >> 9) & 1 ? "gs " : "",
		  (data[0] >> 8) & 1 ? "vs " : "");
	instr_out(ctx, 1,
		  "vs fence: %d, clip_fence: %d, gs_fence: %d\n",
		  vs_fence, clip_fence, gs_fence);
	instr_out(ctx, 2,
		  "sf fence: %d, vfe_fence: %d, cs_fence: %d\n",
		  sf_fence, vfe_fence, cs_fence);
	if (gs_fence < vs_fence)
		fprintf(out, "gs fence < vs fence!\n");
	if (clip_fence < gs_fence)
		fprintf(out, "clip fence < gs fence!\n");
	if (sf_fence < clip_fence)
		fprintf(out, "sf fence < clip fence!\n");
	if (cs_fence < sf_fence)
		fprintf(out, "cs fence < sf fence!\n");

	return len;
}

static void
state_base_out(struct drm_intel_decode *ctx, unsigned int index,
	       const char *name)
{
	if (ctx->data[index] & 1) {
		instr_out(ctx, index,
			  "%s state base address 0x%08x\n", name,
			  ctx->data[index] & ~1);
	} else {
		instr_out(ctx, index, "%s state base not updated\n",
			  name);
	}
}

static void
state_max_out(struct drm_intel_decode *ctx, unsigned int index,
	      const char *name)
{
	if (ctx->data[index] & 1) {
		if (ctx->data[index] == 1) {
			instr_out(ctx, index,
				  "%s state upper bound disabled\n", name);
		} else {
			instr_out(ctx, index,
				  "%s state upper bound 0x%08x\n", name,
				  ctx->data[index] & ~1);
		}
	} else {
		instr_out(ctx, index,
			  "%s state upper bound not updated\n", name);
	}
}

static int
gen7_3DSTATE_VIEWPORT_STATE_POINTERS_CC(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS_CC\n");
	instr_out(ctx, 1, "pointer to CC viewport\n");

	return 2;
}

static int
gen7_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP\n");
	instr_out(ctx, 1, "pointer to SF_CLIP viewport\n");

	return 2;
}

static int
gen7_3DSTATE_BLEND_STATE_POINTERS(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_BLEND_STATE_POINTERS\n");
	instr_out(ctx, 1, "pointer to BLEND_STATE at 0x%08x (%s)\n",
		  ctx->data[1] & ~1,
		  (ctx->data[1] & 1) ? "changed" : "unchanged");

	return 2;
}

static int
gen7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_DEPTH_STENCIL_STATE_POINTERS\n");
	instr_out(ctx, 1,
		  "pointer to DEPTH_STENCIL_STATE at 0x%08x (%s)\n",
		  ctx->data[1] & ~1,
		  (ctx->data[1] & 1) ? "changed" : "unchanged");

	return 2;
}

static int
gen7_3DSTATE_HIER_DEPTH_BUFFER(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_HIER_DEPTH_BUFFER\n");
	instr_out(ctx, 1, "pitch %db\n",
		  (ctx->data[1] & 0x1ffff) + 1);
	instr_out(ctx, 2, "pointer to HiZ buffer\n");

	return 3;
}

static int
gen6_3DSTATE_CC_STATE_POINTERS(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_CC_STATE_POINTERS\n");
	instr_out(ctx, 1, "blend change %d\n", ctx->data[1] & 1);
	instr_out(ctx, 2, "depth stencil change %d\n",
		  ctx->data[2] & 1);
	instr_out(ctx, 3, "cc change %d\n", ctx->data[3] & 1);

	return 4;
}

static int
gen7_3DSTATE_CC_STATE_POINTERS(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_CC_STATE_POINTERS\n");
	instr_out(ctx, 1, "pointer to COLOR_CALC_STATE at 0x%08x "
		  "(%s)\n",
		  ctx->data[1] & ~1,
		  (ctx->data[1] & 1) ? "changed" : "unchanged");

	return 2;
}

static int
gen7_3DSTATE_URB_unit(struct drm_intel_decode *ctx, const char *unit)
{
    int start_kb = ((ctx->data[1] >> 25) & 0x3f) * 8;
    /* the field is # of 512-bit rows - 1, we print bytes */
    int entry_size = (((ctx->data[1] >> 16) & 0x1ff) + 1);
    int nr_entries = ctx->data[1] & 0xffff;

    instr_out(ctx, 0, "3DSTATE_URB_%s\n", unit);
    instr_out(ctx, 1,
	      "%dKB start, size=%d 64B rows, nr_entries=%d, total size %dB\n",
	      start_kb, entry_size, nr_entries, nr_entries * 64 * entry_size);

    return 2;
}

static int
gen7_3DSTATE_URB_VS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_URB_unit(ctx, "VS");
}

static int
gen7_3DSTATE_URB_HS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_URB_unit(ctx, "HS");
}

static int
gen7_3DSTATE_URB_DS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_URB_unit(ctx, "DS");
}

static int
gen7_3DSTATE_URB_GS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_URB_unit(ctx, "GS");
}

static int
gen7_3DSTATE_CONSTANT(struct drm_intel_decode *ctx, const char *unit)
{
	int rlen[4];

	rlen[0] = (ctx->data[1] >> 0) & 0xffff;
	rlen[1] = (ctx->data[1] >> 16) & 0xffff;
	rlen[2] = (ctx->data[2] >> 0) & 0xffff;
	rlen[3] = (ctx->data[2] >> 16) & 0xffff;

	instr_out(ctx, 0, "3DSTATE_CONSTANT_%s\n", unit);
	instr_out(ctx, 1, "len 0 = %d, len 1 = %d\n", rlen[0], rlen[1]);
	instr_out(ctx, 2, "len 2 = %d, len 3 = %d\n", rlen[2], rlen[3]);
	instr_out(ctx, 3, "pointer to constbuf 0\n");
	instr_out(ctx, 4, "pointer to constbuf 1\n");
	instr_out(ctx, 5, "pointer to constbuf 2\n");
	instr_out(ctx, 6, "pointer to constbuf 3\n");

	return 7;
}

static int
gen7_3DSTATE_CONSTANT_VS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_CONSTANT(ctx, "VS");
}

static int
gen7_3DSTATE_CONSTANT_GS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_CONSTANT(ctx, "GS");
}

static int
gen7_3DSTATE_CONSTANT_PS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_CONSTANT(ctx, "PS");
}

static int
gen7_3DSTATE_CONSTANT_DS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_CONSTANT(ctx, "DS");
}

static int
gen7_3DSTATE_CONSTANT_HS(struct drm_intel_decode *ctx)
{
	return gen7_3DSTATE_CONSTANT(ctx, "HS");
}


static int
gen6_3DSTATE_WM(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0, "3DSTATE_WM\n");
	instr_out(ctx, 1, "kernel start pointer 0\n");
	instr_out(ctx, 2,
		  "SPF=%d, VME=%d, Sampler Count %d, "
		  "Binding table count %d\n",
		  (ctx->data[2] >> 31) & 1,
		  (ctx->data[2] >> 30) & 1,
		  (ctx->data[2] >> 27) & 7,
		  (ctx->data[2] >> 18) & 0xff);
	instr_out(ctx, 3, "scratch offset\n");
	instr_out(ctx, 4,
		  "Depth Clear %d, Depth Resolve %d, HiZ Resolve %d, "
		  "Dispatch GRF start[0] %d, start[1] %d, start[2] %d\n",
		  (ctx->data[4] & (1 << 30)) != 0,
		  (ctx->data[4] & (1 << 28)) != 0,
		  (ctx->data[4] & (1 << 27)) != 0,
		  (ctx->data[4] >> 16) & 0x7f,
		  (ctx->data[4] >> 8) & 0x7f,
		  (ctx->data[4] & 0x7f));
	instr_out(ctx, 5,
		  "MaxThreads %d, PS KillPixel %d, PS computed Z %d, "
		  "PS use sourceZ %d, Thread Dispatch %d, PS use sourceW %d, "
		  "Dispatch32 %d, Dispatch16 %d, Dispatch8 %d\n",
		  ((ctx->data[5] >> 25) & 0x7f) + 1,
		  (ctx->data[5] & (1 << 22)) != 0,
		  (ctx->data[5] & (1 << 21)) != 0,
		  (ctx->data[5] & (1 << 20)) != 0,
		  (ctx->data[5] & (1 << 19)) != 0,
		  (ctx->data[5] & (1 << 8)) != 0,
		  (ctx->data[5] & (1 << 2)) != 0,
		  (ctx->data[5] & (1 << 1)) != 0,
		  (ctx->data[5] & (1 << 0)) != 0);
	instr_out(ctx, 6,
		  "Num SF output %d, Pos XY offset %d, ZW interp mode %d , "
		  "Barycentric interp mode 0x%x, Point raster rule %d, "
		  "Multisample mode %d, "
		  "Multisample Dispatch mode %d\n",
		  (ctx->data[6] >> 20) & 0x3f,
		  (ctx->data[6] >> 18) & 3,
		  (ctx->data[6] >> 16) & 3,
		  (ctx->data[6] >> 10) & 0x3f,
		  (ctx->data[6] & (1 << 9)) != 0,
		  (ctx->data[6] >> 1) & 3,
		  (ctx->data[6] & 1));
	instr_out(ctx, 7, "kernel start pointer 1\n");
	instr_out(ctx, 8, "kernel start pointer 2\n");

	return 9;
}

static int
gen7_3DSTATE_WM(struct drm_intel_decode *ctx)
{
	const char *computed_depth = "";
	const char *early_depth = "";
	const char *zw_interp = "";

	switch ((ctx->data[1] >> 23) & 0x3) {
	case 0:
		computed_depth = "";
		break;
	case 1:
		computed_depth = "computed depth";
		break;
	case 2:
		computed_depth = "computed depth >=";
		break;
	case 3:
		computed_depth = "computed depth <=";
		break;
	}

	switch ((ctx->data[1] >> 21) & 0x3) {
	case 0:
		early_depth = "";
		break;
	case 1:
		early_depth = ", EDSC_PSEXEC";
		break;
	case 2:
		early_depth = ", EDSC_PREPS";
		break;
	case 3:
		early_depth = ", BAD EDSC";
		break;
	}

	switch ((ctx->data[1] >> 17) & 0x3) {
	case 0:
		early_depth = "";
		break;
	case 1:
		early_depth = ", BAD ZW interp";
		break;
	case 2:
		early_depth = ", ZW centroid";
		break;
	case 3:
		early_depth = ", ZW sample";
		break;
	}

	instr_out(ctx, 0, "3DSTATE_WM\n");
	instr_out(ctx, 1, "(%s%s%s%s%s%s)%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
		  (ctx->data[1] & (1 << 11)) ? "PP " : "",
		  (ctx->data[1] & (1 << 12)) ? "PC " : "",
		  (ctx->data[1] & (1 << 13)) ? "PS " : "",
		  (ctx->data[1] & (1 << 14)) ? "NPP " : "",
		  (ctx->data[1] & (1 << 15)) ? "NPC " : "",
		  (ctx->data[1] & (1 << 16)) ? "NPS " : "",
		  (ctx->data[1] & (1 << 30)) ? ", depth clear" : "",
		  (ctx->data[1] & (1 << 29)) ? "" : ", disabled",
		  (ctx->data[1] & (1 << 28)) ? ", depth resolve" : "",
		  (ctx->data[1] & (1 << 27)) ? ", hiz resolve" : "",
		  (ctx->data[1] & (1 << 25)) ? ", kill" : "",
		  computed_depth,
		  early_depth,
		  zw_interp,
		  (ctx->data[1] & (1 << 20)) ? ", source depth" : "",
		  (ctx->data[1] & (1 << 19)) ? ", source W" : "",
		  (ctx->data[1] & (1 << 10)) ? ", coverage" : "",
		  (ctx->data[1] & (1 << 4)) ? ", poly stipple" : "",
		  (ctx->data[1] & (1 << 3)) ? ", line stipple" : "",
		  (ctx->data[1] & (1 << 2)) ? ", point UL" : ", point UR"
		  );
	instr_out(ctx, 2, "MS\n");

	return 3;
}

static int
gen4_3DPRIMITIVE(struct drm_intel_decode *ctx)
{
	instr_out(ctx, 0,
		  "3DPRIMITIVE: %s %s\n",
		  get_965_prim_type((ctx->data[0] >> 10) & 0x1f),
		  (ctx->data[0] & (1 << 15)) ? "random" : "sequential");
	instr_out(ctx, 1, "vertex count\n");
	instr_out(ctx, 2, "start vertex\n");
	instr_out(ctx, 3, "instance count\n");
	instr_out(ctx, 4, "start instance\n");
	instr_out(ctx, 5, "index bias\n");

	return 6;
}

static int
gen7_3DPRIMITIVE(struct drm_intel_decode *ctx)
{
	bool indirect = !!(ctx->data[0] & (1 << 10));

	instr_out(ctx, 0,
		  "3DPRIMITIVE: %s%s\n",
		  indirect ? " indirect" : "",
		  (ctx->data[0] & (1 << 8)) ? " predicated" : "");
	instr_out(ctx, 1, "%s %s\n",
		  get_965_prim_type(ctx->data[1] & 0x3f),
		  (ctx->data[1] & (1 << 8)) ? "random" : "sequential");
	instr_out(ctx, 2, indirect ? "ignored" : "vertex count\n");
	instr_out(ctx, 3, indirect ? "ignored" : "start vertex\n");
	instr_out(ctx, 4, indirect ? "ignored" : "instance count\n");
	instr_out(ctx, 5, indirect ? "ignored" : "start instance\n");
	instr_out(ctx, 6, indirect ? "ignored" : "index bias\n");

	return 7;
}

static int
decode_3d_965(struct drm_intel_decode *ctx)
{
	uint32_t opcode;
	unsigned int len;
	unsigned int i, j, sba_len;
	const char *desc1 = NULL;
	uint32_t *data = ctx->data;
	uint32_t devid = ctx->devid;

	struct {
		uint32_t opcode;
		uint32_t len_mask;
		int unsigned min_len;
		int unsigned max_len;
		const char *name;
		int gen;
		int (*func)(struct drm_intel_decode *ctx);
	} opcodes_3d[] = {
		{ 0x6000, 0x00ff, 3, 3, "URB_FENCE" },
		{ 0x6001, 0xffff, 2, 2, "CS_URB_STATE" },
		{ 0x6002, 0x00ff, 2, 2, "CONSTANT_BUFFER" },
		{ 0x6101, 0xffff, 6, 10, "STATE_BASE_ADDRESS" },
		{ 0x6102, 0xffff, 2, 2, "STATE_SIP" },
		{ 0x6104, 0xffff, 1, 1, "3DSTATE_PIPELINE_SELECT" },
		{ 0x680b, 0xffff, 1, 1, "3DSTATE_VF_STATISTICS" },
		{ 0x6904, 0xffff, 1, 1, "3DSTATE_PIPELINE_SELECT" },
		{ 0x7800, 0xffff, 7, 7, "3DSTATE_PIPELINED_POINTERS" },
		{ 0x7801, 0x00ff, 4, 6, "3DSTATE_BINDING_TABLE_POINTERS" },
		{ 0x7802, 0x00ff, 4, 4, "3DSTATE_SAMPLER_STATE_POINTERS" },
		{ 0x7805, 0x00ff, 7, 7, "3DSTATE_DEPTH_BUFFER", 7 },
		{ 0x7805, 0x00ff, 3, 3, "3DSTATE_URB" },
		{ 0x7804, 0x00ff, 3, 3, "3DSTATE_CLEAR_PARAMS" },
		{ 0x7806, 0x00ff, 3, 3, "3DSTATE_STENCIL_BUFFER" },
		{ 0x790f, 0x00ff, 3, 3, "3DSTATE_HIER_DEPTH_BUFFER", 6 },
		{ 0x7807, 0x00ff, 3, 3, "3DSTATE_HIER_DEPTH_BUFFER", 7, gen7_3DSTATE_HIER_DEPTH_BUFFER },
		{ 0x7808, 0x00ff, 5, 257, "3DSTATE_VERTEX_BUFFERS" },
		{ 0x7809, 0x00ff, 3, 256, "3DSTATE_VERTEX_ELEMENTS" },
		{ 0x780a, 0x00ff, 3, 3, "3DSTATE_INDEX_BUFFER" },
		{ 0x780b, 0xffff, 1, 1, "3DSTATE_VF_STATISTICS" },
		{ 0x780d, 0x00ff, 4, 4, "3DSTATE_VIEWPORT_STATE_POINTERS" },
		{ 0x780e, 0xffff, 4, 4, NULL, 6, gen6_3DSTATE_CC_STATE_POINTERS },
		{ 0x780e, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_CC_STATE_POINTERS },
		{ 0x780f, 0x00ff, 2, 2, "3DSTATE_SCISSOR_POINTERS" },
		{ 0x7810, 0x00ff, 6, 6, "3DSTATE_VS" },
		{ 0x7811, 0x00ff, 7, 7, "3DSTATE_GS" },
		{ 0x7812, 0x00ff, 4, 4, "3DSTATE_CLIP" },
		{ 0x7813, 0x00ff, 20, 20, "3DSTATE_SF", 6 },
		{ 0x7813, 0x00ff, 7, 7, "3DSTATE_SF", 7 },
		{ 0x7814, 0x00ff, 3, 3, "3DSTATE_WM", 7, gen7_3DSTATE_WM },
		{ 0x7814, 0x00ff, 9, 9, "3DSTATE_WM", 6, gen6_3DSTATE_WM },
		{ 0x7815, 0x00ff, 5, 5, "3DSTATE_CONSTANT_VS_STATE", 6 },
		{ 0x7815, 0x00ff, 7, 7, "3DSTATE_CONSTANT_VS", 7, gen7_3DSTATE_CONSTANT_VS },
		{ 0x7816, 0x00ff, 5, 5, "3DSTATE_CONSTANT_GS_STATE", 6 },
		{ 0x7816, 0x00ff, 7, 7, "3DSTATE_CONSTANT_GS", 7, gen7_3DSTATE_CONSTANT_GS },
		{ 0x7817, 0x00ff, 5, 5, "3DSTATE_CONSTANT_PS_STATE", 6 },
		{ 0x7817, 0x00ff, 7, 7, "3DSTATE_CONSTANT_PS", 7, gen7_3DSTATE_CONSTANT_PS },
		{ 0x7818, 0xffff, 2, 2, "3DSTATE_SAMPLE_MASK" },
		{ 0x7819, 0x00ff, 7, 7, "3DSTATE_CONSTANT_HS", 7, gen7_3DSTATE_CONSTANT_HS },
		{ 0x781a, 0x00ff, 7, 7, "3DSTATE_CONSTANT_DS", 7, gen7_3DSTATE_CONSTANT_DS },
		{ 0x781b, 0x00ff, 7, 7, "3DSTATE_HS" },
		{ 0x781c, 0x00ff, 4, 4, "3DSTATE_TE" },
		{ 0x781d, 0x00ff, 6, 6, "3DSTATE_DS" },
		{ 0x781e, 0x00ff, 3, 3, "3DSTATE_STREAMOUT" },
		{ 0x781f, 0x00ff, 14, 14, "3DSTATE_SBE" },
		{ 0x7820, 0x00ff, 8, 8, "3DSTATE_PS" },
		{ 0x7821, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP },
		{ 0x7823, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_VIEWPORT_STATE_POINTERS_CC },
		{ 0x7824, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_BLEND_STATE_POINTERS },
		{ 0x7825, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS },
		{ 0x7826, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_VS" },
		{ 0x7827, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_HS" },
		{ 0x7828, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_DS" },
		{ 0x7829, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_GS" },
		{ 0x782a, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_PS" },
		{ 0x782b, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_VS" },
		{ 0x782c, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_HS" },
		{ 0x782d, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_DS" },
		{ 0x782e, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_GS" },
		{ 0x782f, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_PS" },
		{ 0x7830, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_VS },
		{ 0x7831, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_HS },
		{ 0x7832, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_DS },
		{ 0x7833, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_GS },
		{ 0x7900, 0xffff, 4, 4, "3DSTATE_DRAWING_RECTANGLE" },
		{ 0x7901, 0xffff, 5, 5, "3DSTATE_CONSTANT_COLOR" },
		{ 0x7905, 0xffff, 5, 7, "3DSTATE_DEPTH_BUFFER" },
		{ 0x7906, 0xffff, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" },
		{ 0x7907, 0xffff, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" },
		{ 0x7908, 0xffff, 3, 3, "3DSTATE_LINE_STIPPLE" },
		{ 0x7909, 0xffff, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" },
		{ 0x7909, 0xffff, 2, 2, "3DSTATE_CLEAR_PARAMS" },
		{ 0x790a, 0xffff, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" },
		{ 0x790b, 0xffff, 4, 4, "3DSTATE_GS_SVB_INDEX" },
		{ 0x790d, 0xffff, 3, 3, "3DSTATE_MULTISAMPLE", 6 },
		{ 0x790d, 0xffff, 4, 4, "3DSTATE_MULTISAMPLE", 7 },
		{ 0x7910, 0x00ff, 2, 2, "3DSTATE_CLEAR_PARAMS" },
		{ 0x7912, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_VS" },
		{ 0x7913, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_HS" },
		{ 0x7914, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_DS" },
		{ 0x7915, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_GS" },
		{ 0x7916, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_PS" },
		{ 0x7917, 0x00ff, 2, 2+128*2, "3DSTATE_SO_DECL_LIST" },
		{ 0x7918, 0x00ff, 4, 4, "3DSTATE_SO_BUFFER" },
		{ 0x7a00, 0x00ff, 4, 6, "PIPE_CONTROL" },
		{ 0x7b00, 0x00ff, 7, 7, NULL, 7, gen7_3DPRIMITIVE },
		{ 0x7b00, 0x00ff, 6, 6, NULL, 0, gen4_3DPRIMITIVE },
	}, *opcode_3d = NULL;

	opcode = (data[0] & 0xffff0000) >> 16;

	for (i = 0; i < ARRAY_SIZE(opcodes_3d); i++) {
		if (opcode != opcodes_3d[i].opcode)
			continue;

		/* If it's marked as not our gen, skip. */
		if (opcodes_3d[i].gen && opcodes_3d[i].gen != ctx->gen)
			continue;

		opcode_3d = &opcodes_3d[i];
		break;
	}

	if (opcode_3d) {
		if (opcode_3d->max_len == 1)
			len = 1;
		else
			len = (data[0] & opcode_3d->len_mask) + 2;

		if (len < opcode_3d->min_len ||
		    len > opcode_3d->max_len) {
			fprintf(out, "Bad length %d in %s, expected %d-%d\n",
				len, opcode_3d->name,
				opcode_3d->min_len, opcode_3d->max_len);
		}
	} else {
		len = (data[0] & 0x0000ffff) + 2;
	}

	switch (opcode) {
	case 0x6000:
		return i965_decode_urb_fence(ctx, len);
	case 0x6001:
		instr_out(ctx, 0, "CS_URB_STATE\n");
		instr_out(ctx, 1,
			  "entry_size: %d [%d bytes], n_entries: %d\n",
			  (data[1] >> 4) & 0x1f,
			  (((data[1] >> 4) & 0x1f) + 1) * 64, data[1] & 0x7);
		return len;
	case 0x6002:
		instr_out(ctx, 0, "CONSTANT_BUFFER: %s\n",
			  (data[0] >> 8) & 1 ? "valid" : "invalid");
		instr_out(ctx, 1,
			  "offset: 0x%08x, length: %d bytes\n", data[1] & ~0x3f,
			  ((data[1] & 0x3f) + 1) * 64);
		return len;
	case 0x6101:
		i = 0;
		instr_out(ctx, 0, "STATE_BASE_ADDRESS\n");
		i++;

		if (IS_GEN6(devid) || IS_GEN7(devid))
			sba_len = 10;
		else if (IS_GEN5(devid))
			sba_len = 8;
		else
			sba_len = 6;
		if (len != sba_len)
			fprintf(out, "Bad count in STATE_BASE_ADDRESS\n");

		state_base_out(ctx, i++, "general");
		state_base_out(ctx, i++, "surface");
		if (IS_GEN6(devid) || IS_GEN7(devid))
			state_base_out(ctx, i++, "dynamic");
		state_base_out(ctx, i++, "indirect");
		if (IS_GEN5(devid) || IS_GEN6(devid) || IS_GEN7(devid))
			state_base_out(ctx, i++, "instruction");

		state_max_out(ctx, i++, "general");
		if (IS_GEN6(devid) || IS_GEN7(devid))
			state_max_out(ctx, i++, "dynamic");
		state_max_out(ctx, i++, "indirect");
		if (IS_GEN5(devid) || IS_GEN6(devid) || IS_GEN7(devid))
			state_max_out(ctx, i++, "instruction");

		return len;
	case 0x7800:
		instr_out(ctx, 0, "3DSTATE_PIPELINED_POINTERS\n");
		instr_out(ctx, 1, "VS state\n");
		instr_out(ctx, 2, "GS state\n");
		instr_out(ctx, 3, "Clip state\n");
		instr_out(ctx, 4, "SF state\n");
		instr_out(ctx, 5, "WM state\n");
		instr_out(ctx, 6, "CC state\n");
		return len;
	case 0x7801:
		if (len != 6 && len != 4)
			fprintf(out,
				"Bad count in 3DSTATE_BINDING_TABLE_POINTERS\n");
		if (len == 6) {
			instr_out(ctx, 0,
				  "3DSTATE_BINDING_TABLE_POINTERS\n");
			instr_out(ctx, 1, "VS binding table\n");
			instr_out(ctx, 2, "GS binding table\n");
			instr_out(ctx, 3, "Clip binding table\n");
			instr_out(ctx, 4, "SF binding table\n");
			instr_out(ctx, 5, "WM binding table\n");
		} else {
			instr_out(ctx, 0,
				  "3DSTATE_BINDING_TABLE_POINTERS: VS mod %d, "
				  "GS mod %d, PS mod %d\n",
				  (data[0] & (1 << 8)) != 0,
				  (data[0] & (1 << 9)) != 0,
				  (data[0] & (1 << 12)) != 0);
			instr_out(ctx, 1, "VS binding table\n");
			instr_out(ctx, 2, "GS binding table\n");
			instr_out(ctx, 3, "WM binding table\n");
		}

		return len;
	case 0x7802:
		instr_out(ctx, 0,
			  "3DSTATE_SAMPLER_STATE_POINTERS: VS mod %d, "
			  "GS mod %d, PS mod %d\n", (data[0] & (1 << 8)) != 0,
			  (data[0] & (1 << 9)) != 0,
			  (data[0] & (1 << 12)) != 0);
		instr_out(ctx, 1, "VS sampler state\n");
		instr_out(ctx, 2, "GS sampler state\n");
		instr_out(ctx, 3, "WM sampler state\n");
		return len;
	case 0x7805:
		/* Actually 3DSTATE_DEPTH_BUFFER on gen7. */
		if (ctx->gen == 7)
			break;

		instr_out(ctx, 0, "3DSTATE_URB\n");
		instr_out(ctx, 1,
			  "VS entries %d, alloc size %d (1024bit row)\n",
			  data[1] & 0xffff, ((data[1] >> 16) & 0x07f) + 1);
		instr_out(ctx, 2,
			  "GS entries %d, alloc size %d (1024bit row)\n",
			  (data[2] >> 8) & 0x3ff, (data[2] & 7) + 1);
		return len;

	case 0x7808:
		if ((len - 1) % 4 != 0)
			fprintf(out, "Bad count in 3DSTATE_VERTEX_BUFFERS\n");
		instr_out(ctx, 0, "3DSTATE_VERTEX_BUFFERS\n");

		for (i = 1; i < len;) {
			int idx, access;
			if (IS_GEN6(devid)) {
				idx = 26;
				access = 20;
			} else {
				idx = 27;
				access = 26;
			}
			instr_out(ctx, i,
				  "buffer %d: %s, pitch %db\n", data[i] >> idx,
				  data[i] & (1 << access) ? "random" :
				  "sequential", data[i] & 0x07ff);
			i++;
			instr_out(ctx, i++, "buffer address\n");
			instr_out(ctx, i++, "max index\n");
			instr_out(ctx, i++, "mbz\n");
		}
		return len;

	case 0x7809:
		if ((len + 1) % 2 != 0)
			fprintf(out, "Bad count in 3DSTATE_VERTEX_ELEMENTS\n");
		instr_out(ctx, 0, "3DSTATE_VERTEX_ELEMENTS\n");

		for (i = 1; i < len;) {
			instr_out(ctx, i,
				  "buffer %d: %svalid, type 0x%04x, "
				  "src offset 0x%04x bytes\n",
				  data[i] >> ((IS_GEN6(devid) || IS_GEN7(devid)) ? 26 : 27),
				  data[i] & (1 << ((IS_GEN6(devid) || IS_GEN7(devid)) ? 25 : 26)) ?
				  "" : "in", (data[i] >> 16) & 0x1ff,
				  data[i] & 0x07ff);
			i++;
			instr_out(ctx, i, "(%s, %s, %s, %s), "
				  "dst offset 0x%02x bytes\n",
				  get_965_element_component(data[i], 0),
				  get_965_element_component(data[i], 1),
				  get_965_element_component(data[i], 2),
				  get_965_element_component(data[i], 3),
				  (data[i] & 0xff) * 4);
			i++;
		}
		return len;

	case 0x780d:
		instr_out(ctx, 0,
			  "3DSTATE_VIEWPORT_STATE_POINTERS\n");
		instr_out(ctx, 1, "clip\n");
		instr_out(ctx, 2, "sf\n");
		instr_out(ctx, 3, "cc\n");
		return len;

	case 0x780a:
		instr_out(ctx, 0, "3DSTATE_INDEX_BUFFER\n");
		instr_out(ctx, 1, "beginning buffer address\n");
		instr_out(ctx, 2, "ending buffer address\n");
		return len;

	case 0x780f:
		instr_out(ctx, 0, "3DSTATE_SCISSOR_POINTERS\n");
		instr_out(ctx, 1, "scissor rect offset\n");
		return len;

	case 0x7810:
		instr_out(ctx, 0, "3DSTATE_VS\n");
		instr_out(ctx, 1, "kernel pointer\n");
		instr_out(ctx, 2,
			  "SPF=%d, VME=%d, Sampler Count %d, "
			  "Binding table count %d\n", (data[2] >> 31) & 1,
			  (data[2] >> 30) & 1, (data[2] >> 27) & 7,
			  (data[2] >> 18) & 0xff);
		instr_out(ctx, 3, "scratch offset\n");
		instr_out(ctx, 4,
			  "Dispatch GRF start %d, VUE read length %d, "
			  "VUE read offset %d\n", (data[4] >> 20) & 0x1f,
			  (data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f);
		instr_out(ctx, 5,
			  "Max Threads %d, Vertex Cache %sable, "
			  "VS func %sable\n", ((data[5] >> 25) & 0x7f) + 1,
			  (data[5] & (1 << 1)) != 0 ? "dis" : "en",
			  (data[5] & 1) != 0 ? "en" : "dis");
		return len;

	case 0x7811:
		instr_out(ctx, 0, "3DSTATE_GS\n");
		instr_out(ctx, 1, "kernel pointer\n");
		instr_out(ctx, 2,
			  "SPF=%d, VME=%d, Sampler Count %d, "
			  "Binding table count %d\n", (data[2] >> 31) & 1,
			  (data[2] >> 30) & 1, (data[2] >> 27) & 7,
			  (data[2] >> 18) & 0xff);
		instr_out(ctx, 3, "scratch offset\n");
		instr_out(ctx, 4,
			  "Dispatch GRF start %d, VUE read length %d, "
			  "VUE read offset %d\n", (data[4] & 0xf),
			  (data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f);
		instr_out(ctx, 5,
			  "Max Threads %d, Rendering %sable\n",
			  ((data[5] >> 25) & 0x7f) + 1,
			  (data[5] & (1 << 8)) != 0 ? "en" : "dis");
		instr_out(ctx, 6,
			  "Reorder %sable, Discard Adjaceny %sable, "
			  "GS %sable\n",
			  (data[6] & (1 << 30)) != 0 ? "en" : "dis",
			  (data[6] & (1 << 29)) != 0 ? "en" : "dis",
			  (data[6] & (1 << 15)) != 0 ? "en" : "dis");
		return len;

	case 0x7812:
		instr_out(ctx, 0, "3DSTATE_CLIP\n");
		instr_out(ctx, 1,
			  "UserClip distance cull test mask 0x%x\n",
			  data[1] & 0xff);
		instr_out(ctx, 2,
			  "Clip %sable, API mode %s, Viewport XY test %sable, "
			  "Viewport Z test %sable, Guardband test %sable, Clip mode %d, "
			  "Perspective Divide %sable, Non-Perspective Barycentric %sable, "
			  "Tri Provoking %d, Line Provoking %d, Trifan Provoking %d\n",
			  (data[2] & (1 << 31)) != 0 ? "en" : "dis",
			  (data[2] & (1 << 30)) != 0 ? "D3D" : "OGL",
			  (data[2] & (1 << 28)) != 0 ? "en" : "dis",
			  (data[2] & (1 << 27)) != 0 ? "en" : "dis",
			  (data[2] & (1 << 26)) != 0 ? "en" : "dis",
			  (data[2] >> 13) & 7,
			  (data[2] & (1 << 9)) != 0 ? "dis" : "en",
			  (data[2] & (1 << 8)) != 0 ? "en" : "dis",
			  (data[2] >> 4) & 3, (data[2] >> 2) & 3,
			  (data[2] & 3));
		instr_out(ctx, 3,
			  "Min PointWidth %d, Max PointWidth %d, "
			  "Force Zero RTAIndex %sable, Max VPIndex %d\n",
			  (data[3] >> 17) & 0x7ff, (data[3] >> 6) & 0x7ff,
			  (data[3] & (1 << 5)) != 0 ? "en" : "dis",
			  (data[3] & 0xf));
		return len;

	case 0x7813:
		if (ctx->gen == 7)
			break;

		instr_out(ctx, 0, "3DSTATE_SF\n");
		instr_out(ctx, 1,
			  "Attrib Out %d, Attrib Swizzle %sable, VUE read length %d, "
			  "VUE read offset %d\n", (data[1] >> 22) & 0x3f,
			  (data[1] & (1 << 21)) != 0 ? "en" : "dis",
			  (data[1] >> 11) & 0x1f, (data[1] >> 4) & 0x3f);
		instr_out(ctx, 2,
			  "Legacy Global DepthBias %sable, FrontFace fill %d, BF fill %d, "
			  "VP transform %sable, FrontWinding_%s\n",
			  (data[2] & (1 << 11)) != 0 ? "en" : "dis",
			  (data[2] >> 5) & 3, (data[2] >> 3) & 3,
			  (data[2] & (1 << 1)) != 0 ? "en" : "dis",
			  (data[2] & 1) != 0 ? "CCW" : "CW");
		instr_out(ctx, 3,
			  "AA %sable, CullMode %d, Scissor %sable, Multisample m ode %d\n",
			  (data[3] & (1 << 31)) != 0 ? "en" : "dis",
			  (data[3] >> 29) & 3,
			  (data[3] & (1 << 11)) != 0 ? "en" : "dis",
			  (data[3] >> 8) & 3);
		instr_out(ctx, 4,
			  "Last Pixel %sable, SubPixel Precision %d, Use PixelWidth %d\n",
			  (data[4] & (1 << 31)) != 0 ? "en" : "dis",
			  (data[4] & (1 << 12)) != 0 ? 4 : 8,
			  (data[4] & (1 << 11)) != 0);
		instr_out(ctx, 5,
			  "Global Depth Offset Constant %f\n",
			  *(float *)(&data[5]));
		instr_out(ctx, 6, "Global Depth Offset Scale %f\n",
			  *(float *)(&data[6]));
		instr_out(ctx, 7, "Global Depth Offset Clamp %f\n",
			  *(float *)(&data[7]));

		for (i = 0, j = 0; i < 8; i++, j += 2)
			instr_out(ctx, i + 8,
				  "Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, "
				  "Source %d); Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, Source %d)\n",
				  j + 1,
				  (data[8 + i] & (1 << 31)) != 0 ? "W" : "",
				  (data[8 + i] & (1 << 30)) != 0 ? "Z" : "",
				  (data[8 + i] & (1 << 29)) != 0 ? "Y" : "",
				  (data[8 + i] & (1 << 28)) != 0 ? "X" : "",
				  (data[8 + i] >> 25) & 3,
				  (data[8 + i] >> 22) & 3,
				  (data[8 + i] >> 16) & 0x1f, j,
				  (data[8 + i] & (1 << 15)) != 0 ? "W" : "",
				  (data[8 + i] & (1 << 14)) != 0 ? "Z" : "",
				  (data[8 + i] & (1 << 13)) != 0 ? "Y" : "",
				  (data[8 + i] & (1 << 12)) != 0 ? "X" : "",
				  (data[8 + i] >> 9) & 3,
				  (data[8 + i] >> 6) & 3, (data[8 + i] & 0x1f));
		instr_out(ctx, 16,
			  "Point Sprite TexCoord Enable\n");
		instr_out(ctx, 17, "Const Interp Enable\n");
		instr_out(ctx, 18,
			  "Attrib 7-0 WrapShortest Enable\n");
		instr_out(ctx, 19,
			  "Attrib 15-8 WrapShortest Enable\n");

		return len;

	case 0x7900:
		instr_out(ctx, 0, "3DSTATE_DRAWING_RECTANGLE\n");
		instr_out(ctx, 1, "top left: %d,%d\n",
			  data[1] & 0xffff, (data[1] >> 16) & 0xffff);
		instr_out(ctx, 2, "bottom right: %d,%d\n",
			  data[2] & 0xffff, (data[2] >> 16) & 0xffff);
		instr_out(ctx, 3, "origin: %d,%d\n",
			  (int)data[3] & 0xffff, ((int)data[3] >> 16) & 0xffff);

		return len;

	case 0x7905:
		instr_out(ctx, 0, "3DSTATE_DEPTH_BUFFER\n");
		if (IS_GEN5(devid) || IS_GEN6(devid))
			instr_out(ctx, 1,
				  "%s, %s, pitch = %d bytes, %stiled, HiZ %d, Seperate Stencil %d\n",
				  get_965_surfacetype(data[1] >> 29),
				  get_965_depthformat((data[1] >> 18) & 0x7),
				  (data[1] & 0x0001ffff) + 1,
				  data[1] & (1 << 27) ? "" : "not ",
				  (data[1] & (1 << 22)) != 0,
				  (data[1] & (1 << 21)) != 0);
		else
			instr_out(ctx, 1,
				  "%s, %s, pitch = %d bytes, %stiled\n",
				  get_965_surfacetype(data[1] >> 29),
				  get_965_depthformat((data[1] >> 18) & 0x7),
				  (data[1] & 0x0001ffff) + 1,
				  data[1] & (1 << 27) ? "" : "not ");
		instr_out(ctx, 2, "depth offset\n");
		instr_out(ctx, 3, "%dx%d\n",
			  ((data[3] & 0x0007ffc0) >> 6) + 1,
			  ((data[3] & 0xfff80000) >> 19) + 1);
		instr_out(ctx, 4, "volume depth\n");
		if (len >= 6)
			instr_out(ctx, 5, "\n");
		if (len >= 7) {
			if (IS_GEN6(devid))
				instr_out(ctx, 6, "\n");
			else
				instr_out(ctx, 6,
					  "render target view extent\n");
		}

		return len;

	case 0x7a00:
		if (IS_GEN6(devid) || IS_GEN7(devid)) {
			unsigned int i;
			if (len != 4 && len != 5)
				fprintf(out, "Bad count in PIPE_CONTROL\n");

			switch ((data[1] >> 14) & 0x3) {
			case 0:
				desc1 = "no write";
				break;
			case 1:
				desc1 = "qword write";
				break;
			case 2:
				desc1 = "PS_DEPTH_COUNT write";
				break;
			case 3:
				desc1 = "TIMESTAMP write";
				break;
			}
			instr_out(ctx, 0, "PIPE_CONTROL\n");
			instr_out(ctx, 1,
				  "%s, %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
				  desc1,
				  data[1] & (1 << 20) ? "cs stall, " : "",
				  data[1] & (1 << 19) ?
				  "global snapshot count reset, " : "",
				  data[1] & (1 << 18) ? "tlb invalidate, " : "",
				  data[1] & (1 << 17) ? "gfdt flush, " : "",
				  data[1] & (1 << 17) ? "media state clear, " :
				  "",
				  data[1] & (1 << 13) ? "depth stall, " : "",
				  data[1] & (1 << 12) ?
				  "render target cache flush, " : "",
				  data[1] & (1 << 11) ?
				  "instruction cache invalidate, " : "",
				  data[1] & (1 << 10) ?
				  "texture cache invalidate, " : "",
				  data[1] & (1 << 9) ?
				  "indirect state invalidate, " : "",
				  data[1] & (1 << 8) ? "notify irq, " : "",
				  data[1] & (1 << 7) ? "PIPE_CONTROL flush, " :
				  "",
				  data[1] & (1 << 6) ? "protect mem app_id, " :
				  "", data[1] & (1 << 5) ? "DC flush, " : "",
				  data[1] & (1 << 4) ? "vf fetch invalidate, " :
				  "",
				  data[1] & (1 << 3) ?
				  "constant cache invalidate, " : "",
				  data[1] & (1 << 2) ?
				  "state cache invalidate, " : "",
				  data[1] & (1 << 1) ? "stall at scoreboard, " :
				  "",
				  data[1] & (1 << 0) ? "depth cache flush, " :
				  "");
			if (len == 5) {
				instr_out(ctx, 2,
					  "destination address\n");
				instr_out(ctx, 3,
					  "immediate dword low\n");
				instr_out(ctx, 4,
					  "immediate dword high\n");
			} else {
				for (i = 2; i < len; i++) {
					instr_out(ctx, i, "\n");
				}
			}
			return len;
		} else {
			if (len != 4)
				fprintf(out, "Bad count in PIPE_CONTROL\n");

			switch ((data[0] >> 14) & 0x3) {
			case 0:
				desc1 = "no write";
				break;
			case 1:
				desc1 = "qword write";
				break;
			case 2:
				desc1 = "PS_DEPTH_COUNT write";
				break;
			case 3:
				desc1 = "TIMESTAMP write";
				break;
			}
			instr_out(ctx, 0,
				  "PIPE_CONTROL: %s, %sdepth stall, %sRC write flush, "
				  "%sinst flush\n",
				  desc1,
				  data[0] & (1 << 13) ? "" : "no ",
				  data[0] & (1 << 12) ? "" : "no ",
				  data[0] & (1 << 11) ? "" : "no ");
			instr_out(ctx, 1, "destination address\n");
			instr_out(ctx, 2, "immediate dword low\n");
			instr_out(ctx, 3, "immediate dword high\n");
			return len;
		}
	}

	if (opcode_3d) {
		if (opcode_3d->func) {
			return opcode_3d->func(ctx);
		} else {
			unsigned int i;

			instr_out(ctx, 0, "%s\n", opcode_3d->name);

			for (i = 1; i < len; i++) {
				instr_out(ctx, i, "dword %d\n", i);
			}
			return len;
		}
	}

	instr_out(ctx, 0, "3D UNKNOWN: 3d_965 opcode = 0x%x\n",
		  opcode);
	return 1;
}

static int
decode_3d_i830(struct drm_intel_decode *ctx)
{
	unsigned int idx;
	uint32_t opcode;
	uint32_t *data = ctx->data;

	struct {
		uint32_t opcode;
		unsigned int min_len;
		unsigned int max_len;
		const char *name;
	} opcodes_3d[] = {
		{ 0x02, 1, 1, "3DSTATE_MODES_3" },
		{ 0x03, 1, 1, "3DSTATE_ENABLES_1" },
		{ 0x04, 1, 1, "3DSTATE_ENABLES_2" },
		{ 0x05, 1, 1, "3DSTATE_VFT0" },
		{ 0x06, 1, 1, "3DSTATE_AA" },
		{ 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" },
		{ 0x08, 1, 1, "3DSTATE_MODES_1" },
		{ 0x09, 1, 1, "3DSTATE_STENCIL_TEST" },
		{ 0x0a, 1, 1, "3DSTATE_VFT1" },
		{ 0x0b, 1, 1, "3DSTATE_INDPT_ALPHA_BLEND" },
		{ 0x0c, 1, 1, "3DSTATE_MODES_5" },
		{ 0x0d, 1, 1, "3DSTATE_MAP_BLEND_OP" },
		{ 0x0e, 1, 1, "3DSTATE_MAP_BLEND_ARG" },
		{ 0x0f, 1, 1, "3DSTATE_MODES_2" },
		{ 0x15, 1, 1, "3DSTATE_FOG_COLOR" },
		{ 0x16, 1, 1, "3DSTATE_MODES_4"},
	}, *opcode_3d;

	opcode = (data[0] & 0x1f000000) >> 24;

	switch (opcode) {
	case 0x1f:
		return decode_3d_primitive(ctx);
	case 0x1d:
		return decode_3d_1d(ctx);
	case 0x1c:
		return decode_3d_1c(ctx);
	}

	for (idx = 0; idx < ARRAY_SIZE(opcodes_3d); idx++) {
		opcode_3d = &opcodes_3d[idx];
		if ((data[0] & 0x1f000000) >> 24 == opcode_3d->opcode) {
			unsigned int len = 1, i;

			instr_out(ctx, 0, "%s\n", opcode_3d->name);
			if (opcode_3d->max_len > 1) {
				len = (data[0] & 0xff) + 2;
				if (len < opcode_3d->min_len ||
				    len > opcode_3d->max_len) {
					fprintf(out, "Bad count in %s\n",
						opcode_3d->name);
				}
			}

			for (i = 1; i < len; i++) {
				instr_out(ctx, i, "dword %d\n", i);
			}
			return len;
		}
	}

	instr_out(ctx, 0, "3D UNKNOWN: 3d_i830 opcode = 0x%x\n",
		  opcode);
	return 1;
}

drm_public struct drm_intel_decode *
drm_intel_decode_context_alloc(uint32_t devid)
{
	struct drm_intel_decode *ctx;

	ctx = calloc(1, sizeof(struct drm_intel_decode));
	if (!ctx)
		return NULL;

	ctx->devid = devid;
	ctx->out = stdout;

	if (IS_GEN9(devid))
		ctx->gen = 9;
	else if (IS_GEN8(devid))
		ctx->gen = 8;
	else if (IS_GEN7(devid))
		ctx->gen = 7;
	else if (IS_GEN6(devid))
		ctx->gen = 6;
	else if (IS_GEN5(devid))
		ctx->gen = 5;
	else if (IS_GEN4(devid))
		ctx->gen = 4;
	else if (IS_9XX(devid))
		ctx->gen = 3;
	else {
		assert(IS_GEN2(devid));
		ctx->gen = 2;
	}

	return ctx;
}

drm_public void
drm_intel_decode_context_free(struct drm_intel_decode *ctx)
{
	free(ctx);
}

drm_public void
drm_intel_decode_set_dump_past_end(struct drm_intel_decode *ctx,
				   int dump_past_end)
{
	ctx->dump_past_end = !!dump_past_end;
}

drm_public void
drm_intel_decode_set_batch_pointer(struct drm_intel_decode *ctx,
				   void *data, uint32_t hw_offset, int count)
{
	ctx->base_data = data;
	ctx->base_hw_offset = hw_offset;
	ctx->base_count = count;
}

drm_public void
drm_intel_decode_set_head_tail(struct drm_intel_decode *ctx,
			       uint32_t head, uint32_t tail)
{
	ctx->head = head;
	ctx->tail = tail;
}

drm_public void
drm_intel_decode_set_output_file(struct drm_intel_decode *ctx,
				 FILE *out)
{
	ctx->out = out;
}

/**
 * Decodes an i830-i915 batch buffer, writing the output to stdout.
 *
 * \param data batch buffer contents
 * \param count number of DWORDs to decode in the batch buffer
 * \param hw_offset hardware address for the buffer
 */
drm_public void
drm_intel_decode(struct drm_intel_decode *ctx)
{
	int ret;
	unsigned int index = 0;
	uint32_t devid;
	int size = ctx->base_count * 4;
	void *temp;

	if (!ctx)
		return;

	/* Put a scratch page full of obviously undefined data after
	 * the batchbuffer.  This lets us avoid a bunch of length
	 * checking in statically sized packets.
	 */
	temp = malloc(size + 4096);
	memcpy(temp, ctx->base_data, size);
	memset((char *)temp + size, 0xd0, 4096);
	ctx->data = temp;

	ctx->hw_offset = ctx->base_hw_offset;
	ctx->count = ctx->base_count;

	devid = ctx->devid;
	head_offset = ctx->head;
	tail_offset = ctx->tail;
	out = ctx->out;

	saved_s2_set = 0;
	saved_s4_set = 1;

	while (ctx->count > 0) {
		index = 0;

		switch ((ctx->data[index] & 0xe0000000) >> 29) {
		case 0x0:
			ret = decode_mi(ctx);

			/* If MI_BATCHBUFFER_END happened, then dump
			 * the rest of the output in case we some day
			 * want it in debugging, but don't decode it
			 * since it'll just confuse in the common
			 * case.
			 */
			if (ret == -1) {
				if (ctx->dump_past_end) {
					index++;
				} else {
					for (index = index + 1; index < ctx->count;
					     index++) {
						instr_out(ctx, index, "\n");
					}
				}
			} else
				index += ret;
			break;
		case 0x2:
			index += decode_2d(ctx);
			break;
		case 0x3:
			if (IS_9XX(devid) && !IS_GEN3(devid)) {
				index +=
				    decode_3d_965(ctx);
			} else if (IS_GEN3(devid)) {
				index += decode_3d(ctx);
			} else {
				index +=
				    decode_3d_i830(ctx);
			}
			break;
		default:
			instr_out(ctx, index, "UNKNOWN\n");
			index++;
			break;
		}
		fflush(out);

		if (ctx->count < index)
			break;

		ctx->count -= index;
		ctx->data += index;
		ctx->hw_offset += 4 * index;
	}

	free(temp);
}