//===-------------------------- cxa_vector.cpp ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// This file implements the "Array Construction and Destruction APIs"
// http://mentorembedded.github.io/cxx-abi/abi.html#array-ctor
//
//===----------------------------------------------------------------------===//
#include "cxxabi.h"
#include <exception> // for std::terminate
namespace __cxxabiv1 {
#pragma mark --Helper routines and classes --
namespace {
inline static size_t __get_element_count ( void *p ) {
return static_cast <size_t *> (p)[-1];
}
inline static void __set_element_count ( void *p, size_t element_count ) {
static_cast <size_t *> (p)[-1] = element_count;
}
// A pair of classes to simplify exception handling and control flow.
// They get passed a block of memory in the constructor, and unless the
// 'release' method is called, they deallocate the memory in the destructor.
// Preferred usage is to allocate some memory, attach it to one of these objects,
// and then, when all the operations to set up the memory block have succeeded,
// call 'release'. If any of the setup operations fail, or an exception is
// thrown, then the block is automatically deallocated.
//
// The only difference between these two classes is the signature for the
// deallocation function (to match new2/new3 and delete2/delete3.
class st_heap_block2 {
public:
typedef void (*dealloc_f)(void *);
st_heap_block2 ( dealloc_f dealloc, void *ptr )
: dealloc_ ( dealloc ), ptr_ ( ptr ), enabled_ ( true ) {}
~st_heap_block2 () { if ( enabled_ ) dealloc_ ( ptr_ ) ; }
void release () { enabled_ = false; }
private:
dealloc_f dealloc_;
void *ptr_;
bool enabled_;
};
class st_heap_block3 {
public:
typedef void (*dealloc_f)(void *, size_t);
st_heap_block3 ( dealloc_f dealloc, void *ptr, size_t size )
: dealloc_ ( dealloc ), ptr_ ( ptr ), size_ ( size ), enabled_ ( true ) {}
~st_heap_block3 () { if ( enabled_ ) dealloc_ ( ptr_, size_ ) ; }
void release () { enabled_ = false; }
private:
dealloc_f dealloc_;
void *ptr_;
size_t size_;
bool enabled_;
};
class st_cxa_cleanup {
public:
typedef void (*destruct_f)(void *);
st_cxa_cleanup ( void *ptr, size_t &idx, size_t element_size, destruct_f destructor )
: ptr_ ( ptr ), idx_ ( idx ), element_size_ ( element_size ),
destructor_ ( destructor ), enabled_ ( true ) {}
~st_cxa_cleanup () {
if ( enabled_ )
__cxa_vec_cleanup ( ptr_, idx_, element_size_, destructor_ );
}
void release () { enabled_ = false; }
private:
void *ptr_;
size_t &idx_;
size_t element_size_;
destruct_f destructor_;
bool enabled_;
};
class st_terminate {
public:
st_terminate ( bool enabled = true ) : enabled_ ( enabled ) {}
~st_terminate () { if ( enabled_ ) std::terminate (); }
void release () { enabled_ = false; }
private:
bool enabled_ ;
};
}
#pragma mark --Externally visible routines--
extern "C" {
// Equivalent to
//
// __cxa_vec_new2(element_count, element_size, padding_size, constructor,
// destructor, &::operator new[], &::operator delete[])
void* __cxa_vec_new(
size_t element_count, size_t element_size, size_t padding_size,
void (*constructor)(void*), void (*destructor)(void*) ) {
return __cxa_vec_new2 ( element_count, element_size, padding_size,
constructor, destructor, &::operator new [], &::operator delete [] );
}
// Given the number and size of elements for an array and the non-negative
// size of prefix padding for a cookie, allocate space (using alloc) for
// the array preceded by the specified padding, initialize the cookie if
// the padding is non-zero, and call the given constructor on each element.
// Return the address of the array proper, after the padding.
//
// If alloc throws an exception, rethrow the exception. If alloc returns
// NULL, return NULL. If the constructor throws an exception, call
// destructor for any already constructed elements, and rethrow the
// exception. If the destructor throws an exception, call std::terminate.
//
// The constructor may be NULL, in which case it must not be called. If the
// padding_size is zero, the destructor may be NULL; in that case it must
// not be called.
//
// Neither alloc nor dealloc may be NULL.
void* __cxa_vec_new2(
size_t element_count, size_t element_size, size_t padding_size,
void (*constructor)(void*), void (*destructor)(void*),
void* (*alloc)(size_t), void (*dealloc)(void*) ) {
const size_t heap_size = element_count * element_size + padding_size;
char * const heap_block = static_cast<char *> ( alloc ( heap_size ));
char *vec_base = heap_block;
if ( NULL != vec_base ) {
st_heap_block2 heap ( dealloc, heap_block );
// put the padding before the array elements
if ( 0 != padding_size ) {
vec_base += padding_size;
__set_element_count ( vec_base, element_count );
}
// Construct the elements
__cxa_vec_ctor ( vec_base, element_count, element_size, constructor, destructor );
heap.release (); // We're good!
}
return vec_base;
}
// Same as __cxa_vec_new2 except that the deallocation function takes both
// the object address and its size.
void* __cxa_vec_new3(
size_t element_count, size_t element_size, size_t padding_size,
void (*constructor)(void*), void (*destructor)(void*),
void* (*alloc)(size_t), void (*dealloc)(void*, size_t) ) {
const size_t heap_size = element_count * element_size + padding_size;
char * const heap_block = static_cast<char *> ( alloc ( heap_size ));
char *vec_base = heap_block;
if ( NULL != vec_base ) {
st_heap_block3 heap ( dealloc, heap_block, heap_size );
// put the padding before the array elements
if ( 0 != padding_size ) {
vec_base += padding_size;
__set_element_count ( vec_base, element_count );
}
// Construct the elements
__cxa_vec_ctor ( vec_base, element_count, element_size, constructor, destructor );
heap.release (); // We're good!
}
return vec_base;
}
// Given the (data) addresses of a destination and a source array, an
// element count and an element size, call the given copy constructor to
// copy each element from the source array to the destination array. The
// copy constructor's arguments are the destination address and source
// address, respectively. If an exception occurs, call the given destructor
// (if non-NULL) on each copied element and rethrow. If the destructor
// throws an exception, call terminate(). The constructor and or destructor
// pointers may be NULL. If either is NULL, no action is taken when it
// would have been called.
void __cxa_vec_cctor( void* dest_array, void* src_array,
size_t element_count, size_t element_size,
void (*constructor) (void*, void*), void (*destructor)(void*) ) {
if ( NULL != constructor ) {
size_t idx = 0;
char *src_ptr = static_cast<char *>(src_array);
char *dest_ptr = static_cast<char *>(dest_array);
st_cxa_cleanup cleanup ( dest_array, idx, element_size, destructor );
for ( idx = 0; idx < element_count;
++idx, src_ptr += element_size, dest_ptr += element_size )
constructor ( dest_ptr, src_ptr );
cleanup.release (); // We're good!
}
}
// Given the (data) address of an array, not including any cookie padding,
// and the number and size of its elements, call the given constructor on
// each element. If the constructor throws an exception, call the given
// destructor for any already-constructed elements, and rethrow the
// exception. If the destructor throws an exception, call terminate(). The
// constructor and/or destructor pointers may be NULL. If either is NULL,
// no action is taken when it would have been called.
void __cxa_vec_ctor(
void* array_address, size_t element_count, size_t element_size,
void (*constructor)(void*), void (*destructor)(void*) ) {
if ( NULL != constructor ) {
size_t idx;
char *ptr = static_cast <char *> ( array_address );
st_cxa_cleanup cleanup ( array_address, idx, element_size, destructor );
// Construct the elements
for ( idx = 0; idx < element_count; ++idx, ptr += element_size )
constructor ( ptr );
cleanup.release (); // We're good!
}
}
// Given the (data) address of an array, the number of elements, and the
// size of its elements, call the given destructor on each element. If the
// destructor throws an exception, rethrow after destroying the remaining
// elements if possible. If the destructor throws a second exception, call
// terminate(). The destructor pointer may be NULL, in which case this
// routine does nothing.
void __cxa_vec_dtor(
void* array_address, size_t element_count, size_t element_size,
void (*destructor)(void*) ) {
if ( NULL != destructor ) {
char *ptr = static_cast <char *> (array_address);
size_t idx = element_count;
st_cxa_cleanup cleanup ( array_address, idx, element_size, destructor );
{
st_terminate exception_guard (__cxa_uncaught_exception ());
ptr += element_count * element_size; // one past the last element
while ( idx-- > 0 ) {
ptr -= element_size;
destructor ( ptr );
}
exception_guard.release (); // We're good !
}
cleanup.release (); // We're still good!
}
}
// Given the (data) address of an array, the number of elements, and the
// size of its elements, call the given destructor on each element. If the
// destructor throws an exception, call terminate(). The destructor pointer
// may be NULL, in which case this routine does nothing.
void __cxa_vec_cleanup( void* array_address, size_t element_count,
size_t element_size, void (*destructor)(void*) ) {
if ( NULL != destructor ) {
char *ptr = static_cast <char *> (array_address);
size_t idx = element_count;
st_terminate exception_guard;
ptr += element_count * element_size; // one past the last element
while ( idx-- > 0 ) {
ptr -= element_size;
destructor ( ptr );
}
exception_guard.release (); // We're done!
}
}
// If the array_address is NULL, return immediately. Otherwise, given the
// (data) address of an array, the non-negative size of prefix padding for
// the cookie, and the size of its elements, call the given destructor on
// each element, using the cookie to determine the number of elements, and
// then delete the space by calling ::operator delete[](void *). If the
// destructor throws an exception, rethrow after (a) destroying the
// remaining elements, and (b) deallocating the storage. If the destructor
// throws a second exception, call terminate(). If padding_size is 0, the
// destructor pointer must be NULL. If the destructor pointer is NULL, no
// destructor call is to be made.
//
// The intent of this function is to permit an implementation to call this
// function when confronted with an expression of the form delete[] p in
// the source code, provided that the default deallocation function can be
// used. Therefore, the semantics of this function are consistent with
// those required by the standard. The requirement that the deallocation
// function be called even if the destructor throws an exception derives
// from the resolution to DR 353 to the C++ standard, which was adopted in
// April, 2003.
void __cxa_vec_delete( void* array_address,
size_t element_size, size_t padding_size, void (*destructor)(void*) ) {
__cxa_vec_delete2 ( array_address, element_size, padding_size,
destructor, &::operator delete [] );
}
// Same as __cxa_vec_delete, except that the given function is used for
// deallocation instead of the default delete function. If dealloc throws
// an exception, the result is undefined. The dealloc pointer may not be
// NULL.
void __cxa_vec_delete2( void* array_address,
size_t element_size, size_t padding_size,
void (*destructor)(void*), void (*dealloc)(void*) ) {
if ( NULL != array_address ) {
char *vec_base = static_cast <char *> (array_address);
char *heap_block = vec_base - padding_size;
st_heap_block2 heap ( dealloc, heap_block );
if ( 0 != padding_size && NULL != destructor ) // call the destructors
__cxa_vec_dtor ( array_address, __get_element_count ( vec_base ),
element_size, destructor );
}
}
// Same as __cxa_vec_delete, except that the given function is used for
// deallocation instead of the default delete function. The deallocation
// function takes both the object address and its size. If dealloc throws
// an exception, the result is undefined. The dealloc pointer may not be
// NULL.
void __cxa_vec_delete3( void* array_address,
size_t element_size, size_t padding_size,
void (*destructor)(void*), void (*dealloc) (void*, size_t)) {
if ( NULL != array_address ) {
char *vec_base = static_cast <char *> (array_address);
char *heap_block = vec_base - padding_size;
const size_t element_count = padding_size ? __get_element_count ( vec_base ) : 0;
const size_t heap_block_size = element_size * element_count + padding_size;
st_heap_block3 heap ( dealloc, heap_block, heap_block_size );
if ( 0 != padding_size && NULL != destructor ) // call the destructors
__cxa_vec_dtor ( array_address, element_count, element_size, destructor );
}
}
} // extern "C"
} // abi