//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class weibull_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <random>
#include <cassert>
#include <vector>
#include <numeric>
template <class T>
inline
T
sqr(T x)
{
return x * x;
}
int main()
{
{
typedef std::weibull_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d(0.5, 2);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.b() * std::tgamma(1 + 1/d.a());
double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
3*x_mean*x_var - sqr(x_mean)*x_mean) /
(std::sqrt(x_var)*x_var);
double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
4*x_skew*x_var*sqrt(x_var)*x_mean -
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
{
typedef std::weibull_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d(1, .5);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.b() * std::tgamma(1 + 1/d.a());
double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
3*x_mean*x_var - sqr(x_mean)*x_mean) /
(std::sqrt(x_var)*x_var);
double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
4*x_skew*x_var*sqrt(x_var)*x_mean -
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
{
typedef std::weibull_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d(2, 3);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.b() * std::tgamma(1 + 1/d.a());
double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
3*x_mean*x_var - sqr(x_mean)*x_mean) /
(std::sqrt(x_var)*x_var);
double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
4*x_skew*x_var*sqrt(x_var)*x_mean -
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
}