/******************************************************************************
*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
*******************************************************************************
* @file
* ih264e_globals.c
*
* @brief
* Contains definitions of global variables used across the encoder
*
* @author
* ittiam
*
* @par List of functions
*
*
* @remarks
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
/* User include files */
#include "ih264_typedefs.h"
#include "ih264_defs.h"
#include "ih264e_defs.h"
#include "ih264e_globals.h"
/*****************************************************************************/
/* Extern global definitions */
/*****************************************************************************/
/**
******************************************************************************
* @brief lamda for varying quantizer scales that would be used to
* compute the RD cost while deciding on the MB modes.
* input : qp
* output : lambda
* @remarks lambda = 0.85 * pow(2, (qp - 12)/3), when SSD is used as metric
* for computing distortion (Bit rate estimation for cost function of H.264/
* AVC by Mohd Golam Sarwer et. al.) If the use of distortion metric is SAD
* rather than SSD in the stage of encoding, consider sqrt(lambda) simply to
* adjust lambda for the lack of squaring operation in the error computation
* (from rate distortion optimization for video compression by sullivan).
******************************************************************************
*/
const UWORD16 gu2_qp_lambda[52]=
{
0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 3, 3, 3,
4, 4, 5, 5, 6, 7, 7, 8,
9, 10, 12, 13, 15, 17, 19, 21,
23, 26, 30, 33, 37, 42, 47, 53,
59, 66, 74, 83,
};
/**
******************************************************************************
* @brief Lamda for varying quantizer scales that would be used to
* compute the RD cost while deciding on the MB modes.
* input : qp
* output : lambda
* @remarks lambda = pow(2, (qp - 12)/6)
******************************************************************************
*/
const UWORD8 gu1_qp0[52]=
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 4,
4, 4, 5, 6, 6, 7, 8, 9,
10, 11, 13, 14, 16, 18, 20, 23,
25, 29, 32, 36, 40, 45, 51, 57,
64, 72, 81, 91,
};
/**
******************************************************************************
* @brief unsigned exp. goulumb codelengths to assign cost to a coefficient of
* mb types.
* input : Integer
* output : codelength
* @remarks Refer sec. 9-1 in h264 specification
******************************************************************************
*/
const UWORD8 u1_uev_codelength[32] =
{
1, 3, 3, 5, 5, 5, 5, 7,
7, 7, 7, 7, 7, 7, 7, 9,
9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 11,
};
/**
******************************************************************************
* @brief Look up table to assign cost to a coefficient of a residual block
* basing on its surrounding coefficients
* input : Numbers of T1's
* output : coeff_cost
* @remarks Refer Section 2.3 Elimination of single coefficients in inter
* macroblocks in document JVT-O079
******************************************************************************
*/
const UWORD8 gu1_coeff_cost[6] =
{
3, 2, 2, 1, 1, 1
};
/**
******************************************************************************
* @brief Indices map to raster scan for luma 4x4 block
* input : scan index
* output : scan location
* @remarks None
******************************************************************************
*/
const UWORD8 gu1_luma_scan_order[16] =
{
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
/**
******************************************************************************
* @brief Indices map to raster scan for chroma AC block
* input : scan index
* output : scan location
* @remarks None
******************************************************************************
*/
const UWORD8 gu1_chroma_scan_order[15] =
{
1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
/**
******************************************************************************
* @brief Indices map to raster scan for luma 4x4 dc block
* input : scan index
* output : scan location
* @remarks : None
******************************************************************************
*/
const UWORD8 gu1_luma_scan_order_dc[16] =
{
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
/**
******************************************************************************
* @brief Indices map to raster scan for chroma 2x2 dc block
* input : scan index
* output : scan location
* @remarks None
******************************************************************************
*/
const UWORD8 gu1_chroma_scan_order_dc[4] =
{
0, 1, 2, 3
};
/**
******************************************************************************
* @brief choice of motion vectors to be used during mv prediction
* input : formatted reference idx comparison metric
* output : mv prediction has to be median or a simple straight forward selec
* tion from neighbors.
* @remarks If only one of the candidate blocks has a reference frame equal to
the current block then use the same block as the final predictor. A simple
look up table to assist this mv prediction condition
******************************************************************************
*/
const WORD8 gi1_mv_pred_condition[8] =
{
-1, 0, 1, -1, 2, -1, -1, -1
};
/*******************************************************************************
* Translation of MPEG QP to H264 QP
******************************************************************************/
/*
* Note : RC library models QP and bits assuming the QP to be MPEG2.
* Since MPEG qp varies linearly, when the relationship is computed,
* it learns that delta(qp) => delta(bits). Now what we are doing by the
* transation of qp is that
* QPrc = a + b*2^(QPen)
* By not considering the weight matrix in both MPEG and H264 we in effect
* only changing the relation to
* QPrc = c + d*2^(QPen)
* This will only entatil changin the RC model parameters, and this will
* not affect rc relation at all
*
*
* We have MPEG qp which varies from 0-228. The quantization factor has a linear
* relation ship with the size of quantized values
*
* We also have H264 Qp, which varies such that for a change in QP of 6 , we
* double the corresponding scaling factor. Hence the scaling is linear in terms
* of 2^(QPh/6)
*
* Now we want to have translation between QPm and QPh. Hence we can write
*
* QPm = a + b*2^(QPh/6)
*
* Appling boundary condition that
* 1) QPm = 0.625 if QPh = 0
* 2) QPm = 224 if QPh = 51,
*
* we will have
* a = 0.0063, b = 0.6187
*
* Hence the relatiohship is
* QPm = a + b*2^(Qph/6)
* QPh = 6*log((Qpm - a)/b)
*
*
* Unrounded values for gau1_h264_to_mpeg2_qmap[H264_QP_ELEM] =
*
* 0.625 0.70077 0.78581 0.88127 0.98843 1.10870
* 1.24370 1.39523 1.56533 1.75625 1.97055 2.21110
* 2.48110 2.78417 3.12435 3.50620 3.93480 4.41589
* 4.95590 5.56204 6.24241 7.00609 7.86330 8.82548
* 9.90550 11.11778 12.47851 14.00588 15.72030 17.64467
* 19.80470 22.22925 24.95072 28.00547 31.43430 35.28304
* 39.60310 44.45221 49.89514 56.00463 62.86230 70.55978
* 79.19990 88.89811 99.78398 112.00296 125.71830 141.11325
* 158.39350 177.78992 199.56167 223.99963
*
*
*
* Unrounded values for gau1_mpeg2_to_h264_qmap[MPEG2_QP_ELEM]
*
* 0 4.1014 10.1288 13.6477 16.1425 18.0768 19.6568
* 20.9925 22.1493 23.1696 24.0822 24.9078 25.6614 26.3546
* 26.9964 27.5938 28.1527 28.6777 29.1726 29.6408 30.0850
* 30.5074 30.9102 31.2951 31.6636 32.0171 32.3567 32.6834
* 32.9983 33.3021 33.5957 33.8795 34.1544 34.4208 34.6793
* 34.9303 35.1742 35.4114 35.6423 35.8671 36.0863 36.3001
* 36.5087 36.7124 36.9115 37.1060 37.2963 37.4825 37.6648
* 37.8433 38.0182 38.1896 38.3577 38.5226 38.6844 38.8433
* 38.9993 39.1525 39.3031 39.4511 39.5966 39.7397 39.8804
* 40.0189 40.1553 40.2895 40.4217 40.5518 40.6801 40.8065
* 40.9310 41.0538 41.1749 41.2943 41.4121 41.5283 41.6430
* 41.7561 41.8678 41.9781 42.0870 42.1946 42.3008 42.4057
* 42.5094 42.6118 42.7131 42.8132 42.9121 43.0099 43.1066
* 43.2023 43.2969 43.3905 43.4831 43.5747 43.6653 43.7550
* 43.8438 43.9317 44.0187 44.1049 44.1901 44.2746 44.3582
* 44.4411 44.5231 44.6044 44.6849 44.7647 44.8438 44.9221
* 44.9998 45.0767 45.1530 45.2286 45.3035 45.3779 45.4515
* 45.5246 45.5970 45.6689 45.7401 45.8108 45.8809 45.9504
* 46.0194 46.0878 46.1557 46.2231 46.2899 46.3563 46.4221
* 46.4874 46.5523 46.6166 46.6805 46.7439 46.8069 46.8694
* 46.9314 46.9930 47.0542 47.1150 47.1753 47.2352 47.2947
* 47.3538 47.4125 47.4708 47.5287 47.5862 47.6433 47.7001
* 47.7565 47.8125 47.8682 47.9235 47.9785 48.0331 48.0874
* 48.1413 48.1949 48.2482 48.3011 48.3537 48.4060 48.4580
* 48.5097 48.5611 48.6122 48.6629 48.7134 48.7636 48.8135
* 48.8631 48.9124 48.9615 49.0102 49.0587 49.1069 49.1549
* 49.2026 49.2500 49.2972 49.3441 49.3908 49.4372 49.4834
* 49.5293 49.5750 49.6204 49.6656 49.7106 49.7553 49.7998
* 49.8441 49.8882 49.9320 49.9756 50.0190 50.0622 50.1051
* 50.1479 50.1904 50.2327 50.2749 50.3168 50.3585 50.4000
* 50.4413 50.4825 50.5234 50.5641 50.6047 50.6450 50.6852
* 50.7252 50.7650 50.8046 50.8440 50.8833 50.9224 50.9613
* 51.0000
*/
const UWORD8 gau1_h264_to_mpeg2_qmap[H264_QP_ELEM] =
{
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 3, 3, 4,
4, 4, 5, 6, 6, 7, 8, 9,
10, 11, 12, 14, 16, 18, 20, 22,
25, 28, 31, 35, 40, 44, 50, 56,
63, 71, 79, 89, 100, 112, 126, 141,
158, 178, 200, 224
};
const UWORD8 gau1_mpeg2_to_h264_qmap[MPEG2_QP_ELEM] =
{
0, 4, 10, 14, 16, 18, 20, 21,
22, 23, 24, 25, 26, 26, 27, 28,
28, 29, 29, 30, 30, 31, 31, 31,
32, 32, 32, 33, 33, 33, 34, 34,
34, 34, 35, 35, 35, 35, 36, 36,
36, 36, 37, 37, 37, 37, 37, 37,
38, 38, 38, 38, 38, 39, 39, 39,
39, 39, 39, 39, 40, 40, 40, 40,
40, 40, 40, 41, 41, 41, 41, 41,
41, 41, 41, 42, 42, 42, 42, 42,
42, 42, 42, 42, 43, 43, 43, 43,
43, 43, 43, 43, 43, 43, 43, 44,
44, 44, 44, 44, 44, 44, 44, 44,
44, 44, 45, 45, 45, 45, 45, 45,
45, 45, 45, 45, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 46,
46, 46, 46, 46, 46, 46, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
49, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 51, 51, 51, 51,
51, 51, 51, 51, 51, 51, 51, 51,
51
};