/******************************************************************************
*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
*******************************************************************************
* @file
* ih264_iquant_itrans_recon_dc_ssse3.c
*
* @brief
* Contains function definitions for inverse quantization, inverse
* transform and reconstruction
*
* @author
* Mohit [100664]
*
* @par List of Functions:
* - ih264_iquant_itrans_recon_4x4_dc_ssse3()
* - ih264_iquant_itrans_recon_8x8_dc_ssse3()
*
* @remarks
* None
*
*******************************************************************************
*/
/* User include files */
#include "ih264_typedefs.h"
#include "ih264_defs.h"
#include "ih264_trans_macros.h"
#include "ih264_macros.h"
#include "ih264_platform_macros.h"
#include "ih264_trans_data.h"
#include "ih264_size_defs.h"
#include "ih264_structs.h"
#include "ih264_trans_quant_itrans_iquant.h"
#include <immintrin.h>
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized resiude and
* prediction buffer for dc input pattern only, i.e. only the (0,0) element of the input
* 4x4 block is non-zero. For complete function, refer ih264_iquant_itrans_recon_ssse3.c
*
* @par Description:
* The quantized residue is first inverse quantized, then inverse transformed.
* This inverse transformed content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized 4x4 block
*
* @param[in] pu1_pred
* prediction 4x4 block
*
* @param[out] pu1_out
* reconstructed 4x4 block
*
* @param[in] src_strd
* quantization buffer stride
*
* @param[in] pred_strd,
* Prediction buffer stride
*
* @param[in] out_strd
* recon buffer Stride
*
* @param[in] pu2_scaling_list
* pointer to scaling list
*
* @param[in] pu2_norm_adjust
* pointer to inverse scale matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_4x4_dc_ssse3(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr)
{
UWORD32 *pu4_out = (UWORD32 *)pu1_out;
WORD32 q0 = pi2_src[0];
WORD16 i_macro, rnd_fact = (u4_qp_div_6 < 4) ? 1 << (3 - u4_qp_div_6) : 0;
__m128i predload_r,pred_r0, pred_r1, pred_r2, pred_r3;
__m128i sign_reg;
__m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero
__m128i temp4, temp5, temp6, temp7;
__m128i value_add;
UNUSED (pi2_tmp);
INV_QUANT(q0, pu2_iscal_mat[0], pu2_weigh_mat[0], u4_qp_div_6, rnd_fact, 4);
if (iq_start_idx != 0 )
q0 = pi2_dc_ld_addr[0]; // Restoring dc value for intra case
i_macro = ((q0 + 32) >> 6);
value_add = _mm_set1_epi16(i_macro);
zero_8x16b = _mm_setzero_si128(); // all bits reset to zero
//Load pred buffer
predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r0 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p00 p01 p02 p03 0 0 0 0 -- all 16 bits
predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r1 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p10 p11 p12 p13 0 0 0 0 -- all 16 bits
predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[2*pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r2 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p20 p21 p22 p23 0 0 0 0 -- all 16 bits
predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[3*pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r3 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p30 p31 p32 p33 0 0 0 0 -- all 16 bits
pred_r0 = _mm_unpacklo_epi64(pred_r0, pred_r1); //p00 p01 p02 p03 p10 p11 p12 p13
pred_r2 = _mm_unpacklo_epi64(pred_r2, pred_r3); //p20 p21 p22p p23 p30 p31 p32 p33
temp4 = _mm_add_epi16(value_add, pred_r0);
temp5 = _mm_add_epi16(value_add, pred_r2);
/*------------------------------------------------------------------*/
//Clipping the results to 8 bits
sign_reg = _mm_cmpgt_epi16(temp4, zero_8x16b); // sign check
temp4 = _mm_and_si128(temp4, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp5, zero_8x16b); // sign check
temp5 = _mm_and_si128(temp5, sign_reg);
temp4 = _mm_packus_epi16(temp4,temp5);
temp5 = _mm_srli_si128(temp4,4);
temp6 = _mm_srli_si128(temp5,4);
temp7 = _mm_srli_si128(temp6,4);
*pu4_out = _mm_cvtsi128_si32(temp4);
pu1_out += out_strd;
pu4_out = (UWORD32 *)(pu1_out);
*(pu4_out) = _mm_cvtsi128_si32(temp5);
pu1_out += out_strd;
pu4_out = (UWORD32 *)(pu1_out);
*(pu4_out) = _mm_cvtsi128_si32(temp6);
pu1_out += out_strd;
pu4_out = (UWORD32 *)(pu1_out);
*(pu4_out) = _mm_cvtsi128_si32(temp7);
}
/**
*******************************************************************************
*
* @brief
* This function performs inverse quant and Inverse transform type Ci4 for 8x8 block
* for dc input pattern only, i.e. only the (0,0) element of the input 8x8 block is
* non-zero. For complete function, refer ih264_iquant_itrans_recon_ssse3.c
*
* @par Description:
* Performs inverse transform Ci8 and adds the residue to get the
* reconstructed block
*
* @param[in] pi2_src
* Input 8x8coefficients
*
* @param[in] pu1_pred
* Prediction 8x8 block
*
* @param[out] pu1_recon
* Output 8x8 block
*
* @param[in] q_div
* QP/6
*
* @param[in] q_rem
* QP%6
*
* @param[in] q_lev
* Quantizer level
*
* @param[in] u4_src_stride
* Input stride
*
* @param[in] u4_pred_stride,
* Prediction stride
*
* @param[in] u4_out_stride
* Output Stride
*
* @param[in] pi4_tmp
* temporary buffer of size 1*64
* the tmp for each block
*
* @param[in] pu4_iquant_mat
* Pointer to the inverse quantization matrix
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_8x8_dc_ssse3 (WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscale_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 qp_div,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr)
{
WORD32 q0 = pi2_src[0];
WORD16 i_macro, rnd_fact = (qp_div < 6) ? 1 << (5 - qp_div) : 0;
__m128i predload_r,pred_r0, pred_r1, pred_r2, pred_r3,pred_r4,pred_r5,pred_r6,pred_r7;
__m128i sign_reg;
__m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero
__m128i temp1,temp2,temp3,temp4, temp5, temp6, temp7,temp8;
__m128i value_add;
UNUSED (pi2_tmp);
UNUSED (iq_start_idx);
UNUSED (pi2_dc_ld_addr);
INV_QUANT(q0, pu2_iscale_mat[0], pu2_weigh_mat[0], qp_div, rnd_fact, 6);
i_macro = ((q0 + 32) >> 6);
value_add = _mm_set1_epi16(i_macro);
//Load pred buffer row 0
predload_r = _mm_loadl_epi64((__m128i *)(&pu1_pred[0])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r0 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 1
predload_r = _mm_loadl_epi64((__m128i *)(&pu1_pred[pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r1 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 2
predload_r = _mm_loadl_epi64(
(__m128i *)(&pu1_pred[2 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r2 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 3
predload_r = _mm_loadl_epi64(
(__m128i *)(&pu1_pred[3 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r3 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 4
predload_r = _mm_loadl_epi64(
(__m128i *)(&pu1_pred[4 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r4 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 5
predload_r = _mm_loadl_epi64(
(__m128i *)(&pu1_pred[5 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bit
pred_r5 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 6
predload_r = _mm_loadl_epi64(
(__m128i *)(&pu1_pred[6 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r6 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
//Load pred buffer row 7
predload_r = _mm_loadl_epi64(
(__m128i *)(&pu1_pred[7 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r7 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits
temp1 = _mm_add_epi16(value_add, pred_r0);
temp2 = _mm_add_epi16(value_add, pred_r1);
temp3 = _mm_add_epi16(value_add, pred_r2);
temp4 = _mm_add_epi16(value_add, pred_r3);
temp5 = _mm_add_epi16(value_add, pred_r4);
temp6 = _mm_add_epi16(value_add, pred_r5);
temp7 = _mm_add_epi16(value_add, pred_r6);
temp8 = _mm_add_epi16(value_add, pred_r7);
/*------------------------------------------------------------------*/
//Clipping the results to 8 bits
sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b); // sign check
temp1 = _mm_and_si128(temp1, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp2, zero_8x16b); // sign check
temp2 = _mm_and_si128(temp2, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp3, zero_8x16b); // sign check
temp3 = _mm_and_si128(temp3, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp4, zero_8x16b); // sign check
temp4 = _mm_and_si128(temp4, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp5, zero_8x16b); // sign check
temp5 = _mm_and_si128(temp5, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp6, zero_8x16b); // sign check
temp6 = _mm_and_si128(temp6, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp7, zero_8x16b); // sign check
temp7 = _mm_and_si128(temp7, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp8, zero_8x16b); // sign check
temp8 = _mm_and_si128(temp8, sign_reg);
temp1 = _mm_packus_epi16(temp1, zero_8x16b);
temp2 = _mm_packus_epi16(temp2, zero_8x16b);
temp3 = _mm_packus_epi16(temp3, zero_8x16b);
temp4 = _mm_packus_epi16(temp4, zero_8x16b);
temp5 = _mm_packus_epi16(temp5, zero_8x16b);
temp6 = _mm_packus_epi16(temp6, zero_8x16b);
temp7 = _mm_packus_epi16(temp7, zero_8x16b);
temp8 = _mm_packus_epi16(temp8, zero_8x16b);
_mm_storel_epi64((__m128i *)(&pu1_out[0]), temp1);
_mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), temp2);
_mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), temp3);
_mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), temp4);
_mm_storel_epi64((__m128i *)(&pu1_out[4 * out_strd]), temp5);
_mm_storel_epi64((__m128i *)(&pu1_out[5 * out_strd]), temp6);
_mm_storel_epi64((__m128i *)(&pu1_out[6 * out_strd]), temp7);
_mm_storel_epi64((__m128i *)(&pu1_out[7 * out_strd]), temp8);
}
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized chroma resiude and
* prediction buffer
*
* @par Description:
* The quantized residue is first inverse quantized, then inverse transformed.
* This inverse transformed content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized 4x4 block
*
* @param[in] pu1_pred
* prediction 4x4 block
*
* @param[out] pu1_out
* reconstructed 4x4 block
*
* @param[in] src_strd
* quantization buffer stride
*
* @param[in] pred_strd,
* Prediction buffer stride
*
* @param[in] out_strd
* recon buffer Stride
*
* @param[in] pu2_scaling_list
* pointer to scaling list
*
* @param[in] pu2_norm_adjust
* pointer to inverse scale matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_chroma_4x4_dc_ssse3(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD16 *pi2_dc_src)
{
WORD16 q0 = pi2_dc_src[0]; // DC value won't be dequantized for chroma inverse transform
WORD16 i_macro = ((q0 + 32) >> 6);
__m128i pred_r0, pred_r1, pred_r2, pred_r3, sign_reg;
__m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero
__m128i chroma_mask = _mm_set1_epi16 (0xFF);
__m128i value_add = _mm_set1_epi16(i_macro);
__m128i out_r0, out_r1, out_r2, out_r3;
UNUSED (pi2_src);
UNUSED (pu2_iscal_mat);
UNUSED (pu2_weigh_mat);
UNUSED (u4_qp_div_6);
UNUSED (pi2_tmp);
//Load pred buffer
pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r0 = _mm_and_si128(pred_r0, chroma_mask);
pred_r1 = _mm_and_si128(pred_r1, chroma_mask);
pred_r2 = _mm_and_si128(pred_r2, chroma_mask);
pred_r3 = _mm_and_si128(pred_r3, chroma_mask);
pred_r0 = _mm_unpacklo_epi64(pred_r0, pred_r1); //p00 p01 p02 p03 p10 p11 p12 p13
pred_r2 = _mm_unpacklo_epi64(pred_r2, pred_r3); //p20 p21 p22p p23 p30 p31 p32 p33
pred_r0 = _mm_add_epi16(value_add, pred_r0);
pred_r2 = _mm_add_epi16(value_add, pred_r2);
/*------------------------------------------------------------------*/
//Clipping the results to 8 bits
sign_reg = _mm_cmpgt_epi16(pred_r0, zero_8x16b); // sign check
pred_r0 = _mm_and_si128(pred_r0, sign_reg);
sign_reg = _mm_cmpgt_epi16(pred_r2, zero_8x16b);
pred_r2 = _mm_and_si128(pred_r2, sign_reg);
pred_r0 = _mm_packus_epi16(pred_r0, pred_r2);
pred_r1 = _mm_srli_si128(pred_r0, 4);
pred_r2 = _mm_srli_si128(pred_r1, 4);
pred_r3 = _mm_srli_si128(pred_r2, 4);
pred_r0 = _mm_unpacklo_epi8(pred_r0, zero_8x16b); //p00 p01 p02 p03 -- all 16 bits
pred_r1 = _mm_unpacklo_epi8(pred_r1, zero_8x16b); //p10 p11 p12 p13 -- all 16 bits
pred_r2 = _mm_unpacklo_epi8(pred_r2, zero_8x16b); //p20 p21 p22 p23 -- all 16 bits
pred_r3 = _mm_unpacklo_epi8(pred_r3, zero_8x16b); //p30 p31 p32 p33 -- all 16 bits
chroma_mask = _mm_set1_epi16 (0xFF00);
out_r0 = _mm_loadl_epi64((__m128i *) (&pu1_out[0]));
out_r1 = _mm_loadl_epi64((__m128i *) (&pu1_out[out_strd]));
out_r2 = _mm_loadl_epi64((__m128i *) (&pu1_out[2 * out_strd]));
out_r3 = _mm_loadl_epi64((__m128i *) (&pu1_out[3 * out_strd]));
out_r0 = _mm_and_si128(out_r0, chroma_mask);
out_r1 = _mm_and_si128(out_r1, chroma_mask);
out_r2 = _mm_and_si128(out_r2, chroma_mask);
out_r3 = _mm_and_si128(out_r3, chroma_mask);
out_r0 = _mm_add_epi8(out_r0, pred_r0);
out_r1 = _mm_add_epi8(out_r1, pred_r1);
out_r2 = _mm_add_epi8(out_r2, pred_r2);
out_r3 = _mm_add_epi8(out_r3, pred_r3);
_mm_storel_epi64((__m128i *)(&pu1_out[0]), out_r0);
_mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), out_r1);
_mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), out_r2);
_mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), out_r3);
}