/*
* Copyright (c) 2009-2010 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet;
import com.bulletphysics.BulletGlobals;
import com.bulletphysics.ContactAddedCallback;
import com.bulletphysics.ContactDestroyedCallback;
import com.bulletphysics.ContactProcessedCallback;
import com.bulletphysics.collision.broadphase.*;
import com.bulletphysics.collision.dispatch.CollisionWorld.LocalConvexResult;
import com.bulletphysics.collision.dispatch.CollisionWorld.LocalRayResult;
import com.bulletphysics.collision.dispatch.*;
import com.bulletphysics.collision.narrowphase.ManifoldPoint;
import com.bulletphysics.collision.shapes.ConvexShape;
import com.bulletphysics.dynamics.DiscreteDynamicsWorld;
import com.bulletphysics.dynamics.DynamicsWorld;
import com.bulletphysics.dynamics.InternalTickCallback;
import com.bulletphysics.dynamics.RigidBody;
import com.bulletphysics.dynamics.constraintsolver.ConstraintSolver;
import com.bulletphysics.dynamics.constraintsolver.SequentialImpulseConstraintSolver;
import com.bulletphysics.extras.gimpact.GImpactCollisionAlgorithm;
import com.jme3.app.AppTask;
import com.jme3.asset.AssetManager;
import com.jme3.bullet.collision.*;
import com.jme3.bullet.collision.shapes.CollisionShape;
import com.jme3.bullet.control.PhysicsControl;
import com.jme3.bullet.control.RigidBodyControl;
import com.jme3.bullet.joints.PhysicsJoint;
import com.jme3.bullet.objects.PhysicsCharacter;
import com.jme3.bullet.objects.PhysicsGhostObject;
import com.jme3.bullet.objects.PhysicsRigidBody;
import com.jme3.bullet.objects.PhysicsVehicle;
import com.jme3.bullet.util.Converter;
import com.jme3.math.Transform;
import com.jme3.math.Vector3f;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* <p>PhysicsSpace - The central jbullet-jme physics space</p>
* @author normenhansen
*/
public class PhysicsSpace {
public static final int AXIS_X = 0;
public static final int AXIS_Y = 1;
public static final int AXIS_Z = 2;
private static ThreadLocal<ConcurrentLinkedQueue<AppTask<?>>> pQueueTL =
new ThreadLocal<ConcurrentLinkedQueue<AppTask<?>>>() {
@Override
protected ConcurrentLinkedQueue<AppTask<?>> initialValue() {
return new ConcurrentLinkedQueue<AppTask<?>>();
}
};
private ConcurrentLinkedQueue<AppTask<?>> pQueue = new ConcurrentLinkedQueue<AppTask<?>>();
private static ThreadLocal<PhysicsSpace> physicsSpaceTL = new ThreadLocal<PhysicsSpace>();
private DiscreteDynamicsWorld dynamicsWorld = null;
private BroadphaseInterface broadphase;
private BroadphaseType broadphaseType = BroadphaseType.DBVT;
private CollisionDispatcher dispatcher;
private ConstraintSolver solver;
private DefaultCollisionConfiguration collisionConfiguration;
// private Map<GhostObject, PhysicsGhostObject> physicsGhostNodes = new ConcurrentHashMap<GhostObject, PhysicsGhostObject>();
private Map<RigidBody, PhysicsRigidBody> physicsNodes = new ConcurrentHashMap<RigidBody, PhysicsRigidBody>();
private List<PhysicsJoint> physicsJoints = new LinkedList<PhysicsJoint>();
private List<PhysicsCollisionListener> collisionListeners = new LinkedList<PhysicsCollisionListener>();
private List<PhysicsCollisionEvent> collisionEvents = new LinkedList<PhysicsCollisionEvent>();
private Map<Integer, PhysicsCollisionGroupListener> collisionGroupListeners = new ConcurrentHashMap<Integer, PhysicsCollisionGroupListener>();
private ConcurrentLinkedQueue<PhysicsTickListener> tickListeners = new ConcurrentLinkedQueue<PhysicsTickListener>();
private PhysicsCollisionEventFactory eventFactory = new PhysicsCollisionEventFactory();
private Vector3f worldMin = new Vector3f(-10000f, -10000f, -10000f);
private Vector3f worldMax = new Vector3f(10000f, 10000f, 10000f);
private float accuracy = 1f / 60f;
private int maxSubSteps = 4;
private javax.vecmath.Vector3f rayVec1 = new javax.vecmath.Vector3f();
private javax.vecmath.Vector3f rayVec2 = new javax.vecmath.Vector3f();
private com.bulletphysics.linearmath.Transform sweepTrans1 = new com.bulletphysics.linearmath.Transform(new javax.vecmath.Matrix3f());
private com.bulletphysics.linearmath.Transform sweepTrans2 = new com.bulletphysics.linearmath.Transform(new javax.vecmath.Matrix3f());
private AssetManager debugManager;
/**
* Get the current PhysicsSpace <b>running on this thread</b><br/>
* For parallel physics, this can also be called from the OpenGL thread to receive the PhysicsSpace
* @return the PhysicsSpace running on this thread
*/
public static PhysicsSpace getPhysicsSpace() {
return physicsSpaceTL.get();
}
/**
* Used internally
* @param space
*/
public static void setLocalThreadPhysicsSpace(PhysicsSpace space) {
physicsSpaceTL.set(space);
}
public PhysicsSpace() {
this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), BroadphaseType.DBVT);
}
public PhysicsSpace(BroadphaseType broadphaseType) {
this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), broadphaseType);
}
public PhysicsSpace(Vector3f worldMin, Vector3f worldMax) {
this(worldMin, worldMax, BroadphaseType.AXIS_SWEEP_3);
}
public PhysicsSpace(Vector3f worldMin, Vector3f worldMax, BroadphaseType broadphaseType) {
this.worldMin.set(worldMin);
this.worldMax.set(worldMax);
this.broadphaseType = broadphaseType;
create();
}
/**
* Has to be called from the (designated) physics thread
*/
public void create() {
pQueueTL.set(pQueue);
collisionConfiguration = new DefaultCollisionConfiguration();
dispatcher = new CollisionDispatcher(collisionConfiguration);
switch (broadphaseType) {
case SIMPLE:
broadphase = new SimpleBroadphase();
break;
case AXIS_SWEEP_3:
broadphase = new AxisSweep3(Converter.convert(worldMin), Converter.convert(worldMax));
break;
case AXIS_SWEEP_3_32:
broadphase = new AxisSweep3_32(Converter.convert(worldMin), Converter.convert(worldMax));
break;
case DBVT:
broadphase = new DbvtBroadphase();
break;
}
solver = new SequentialImpulseConstraintSolver();
dynamicsWorld = new DiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
dynamicsWorld.setGravity(new javax.vecmath.Vector3f(0, -9.81f, 0));
broadphase.getOverlappingPairCache().setInternalGhostPairCallback(new GhostPairCallback());
GImpactCollisionAlgorithm.registerAlgorithm(dispatcher);
physicsSpaceTL.set(this);
//register filter callback for tick / collision
setTickCallback();
setContactCallbacks();
//register filter callback for collision groups
setOverlapFilterCallback();
}
private void setOverlapFilterCallback() {
OverlapFilterCallback callback = new OverlapFilterCallback() {
public boolean needBroadphaseCollision(BroadphaseProxy bp, BroadphaseProxy bp1) {
boolean collides = (bp.collisionFilterGroup & bp1.collisionFilterMask) != 0;
if (collides) {
collides = (bp1.collisionFilterGroup & bp.collisionFilterMask) != 0;
}
if (collides) {
assert (bp.clientObject instanceof com.bulletphysics.collision.dispatch.CollisionObject && bp.clientObject instanceof com.bulletphysics.collision.dispatch.CollisionObject);
com.bulletphysics.collision.dispatch.CollisionObject colOb = (com.bulletphysics.collision.dispatch.CollisionObject) bp.clientObject;
com.bulletphysics.collision.dispatch.CollisionObject colOb1 = (com.bulletphysics.collision.dispatch.CollisionObject) bp1.clientObject;
assert (colOb.getUserPointer() != null && colOb1.getUserPointer() != null);
PhysicsCollisionObject collisionObject = (PhysicsCollisionObject) colOb.getUserPointer();
PhysicsCollisionObject collisionObject1 = (PhysicsCollisionObject) colOb1.getUserPointer();
if ((collisionObject.getCollideWithGroups() & collisionObject1.getCollisionGroup()) > 0
|| (collisionObject1.getCollideWithGroups() & collisionObject.getCollisionGroup()) > 0) {
PhysicsCollisionGroupListener listener = collisionGroupListeners.get(collisionObject.getCollisionGroup());
PhysicsCollisionGroupListener listener1 = collisionGroupListeners.get(collisionObject1.getCollisionGroup());
if (listener != null) {
return listener.collide(collisionObject, collisionObject1);
} else if (listener1 != null) {
return listener1.collide(collisionObject, collisionObject1);
}
return true;
} else {
return false;
}
}
return collides;
}
};
dynamicsWorld.getPairCache().setOverlapFilterCallback(callback);
}
private void setTickCallback() {
final PhysicsSpace space = this;
InternalTickCallback callback2 = new InternalTickCallback() {
@Override
public void internalTick(DynamicsWorld dw, float f) {
//execute task list
AppTask task = pQueue.poll();
task = pQueue.poll();
while (task != null) {
while (task.isCancelled()) {
task = pQueue.poll();
}
try {
task.invoke();
} catch (Exception ex) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.SEVERE, null, ex);
}
task = pQueue.poll();
}
for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) {
PhysicsTickListener physicsTickCallback = it.next();
physicsTickCallback.prePhysicsTick(space, f);
}
}
};
dynamicsWorld.setPreTickCallback(callback2);
InternalTickCallback callback = new InternalTickCallback() {
@Override
public void internalTick(DynamicsWorld dw, float f) {
for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) {
PhysicsTickListener physicsTickCallback = it.next();
physicsTickCallback.physicsTick(space, f);
}
}
};
dynamicsWorld.setInternalTickCallback(callback, this);
}
private void setContactCallbacks() {
BulletGlobals.setContactAddedCallback(new ContactAddedCallback() {
public boolean contactAdded(ManifoldPoint cp, com.bulletphysics.collision.dispatch.CollisionObject colObj0,
int partId0, int index0, com.bulletphysics.collision.dispatch.CollisionObject colObj1, int partId1,
int index1) {
System.out.println("contact added");
return true;
}
});
BulletGlobals.setContactProcessedCallback(new ContactProcessedCallback() {
public boolean contactProcessed(ManifoldPoint cp, Object body0, Object body1) {
if (body0 instanceof CollisionObject && body1 instanceof CollisionObject) {
PhysicsCollisionObject node = null, node1 = null;
CollisionObject rBody0 = (CollisionObject) body0;
CollisionObject rBody1 = (CollisionObject) body1;
node = (PhysicsCollisionObject) rBody0.getUserPointer();
node1 = (PhysicsCollisionObject) rBody1.getUserPointer();
collisionEvents.add(eventFactory.getEvent(PhysicsCollisionEvent.TYPE_PROCESSED, node, node1, cp));
}
return true;
}
});
BulletGlobals.setContactDestroyedCallback(new ContactDestroyedCallback() {
public boolean contactDestroyed(Object userPersistentData) {
System.out.println("contact destroyed");
return true;
}
});
}
/**
* updates the physics space
* @param time the current time value
*/
public void update(float time) {
update(time, maxSubSteps);
}
/**
* updates the physics space, uses maxSteps<br>
* @param time the current time value
* @param maxSteps
*/
public void update(float time, int maxSteps) {
if (getDynamicsWorld() == null) {
return;
}
//step simulation
dynamicsWorld.stepSimulation(time, maxSteps, accuracy);
}
public void distributeEvents() {
//add collision callbacks
synchronized (collisionEvents) {
for (Iterator<PhysicsCollisionEvent> it = collisionEvents.iterator(); it.hasNext();) {
PhysicsCollisionEvent physicsCollisionEvent = it.next();
for (PhysicsCollisionListener listener : collisionListeners) {
listener.collision(physicsCollisionEvent);
}
//recycle events
eventFactory.recycle(physicsCollisionEvent);
it.remove();
}
}
}
public static <V> Future<V> enqueueOnThisThread(Callable<V> callable) {
AppTask<V> task = new AppTask<V>(callable);
System.out.println("created apptask");
pQueueTL.get().add(task);
return task;
}
/**
* calls the callable on the next physics tick (ensuring e.g. force applying)
* @param <V>
* @param callable
* @return
*/
public <V> Future<V> enqueue(Callable<V> callable) {
AppTask<V> task = new AppTask<V>(callable);
pQueue.add(task);
return task;
}
/**
* adds an object to the physics space
* @param obj the PhysicsControl or Spatial with PhysicsControl to add
*/
public void add(Object obj) {
if (obj instanceof PhysicsControl) {
((PhysicsControl) obj).setPhysicsSpace(this);
} else if (obj instanceof Spatial) {
Spatial node = (Spatial) obj;
PhysicsControl control = node.getControl(PhysicsControl.class);
control.setPhysicsSpace(this);
} else if (obj instanceof PhysicsCollisionObject) {
addCollisionObject((PhysicsCollisionObject) obj);
} else if (obj instanceof PhysicsJoint) {
addJoint((PhysicsJoint) obj);
} else {
throw (new UnsupportedOperationException("Cannot add this kind of object to the physics space."));
}
}
public void addCollisionObject(PhysicsCollisionObject obj) {
if (obj instanceof PhysicsGhostObject) {
addGhostObject((PhysicsGhostObject) obj);
} else if (obj instanceof PhysicsRigidBody) {
addRigidBody((PhysicsRigidBody) obj);
} else if (obj instanceof PhysicsVehicle) {
addRigidBody((PhysicsVehicle) obj);
} else if (obj instanceof PhysicsCharacter) {
addCharacter((PhysicsCharacter) obj);
}
}
/**
* removes an object from the physics space
* @param obj the PhysicsControl or Spatial with PhysicsControl to remove
*/
public void remove(Object obj) {
if (obj instanceof PhysicsControl) {
((PhysicsControl) obj).setPhysicsSpace(null);
} else if (obj instanceof Spatial) {
Spatial node = (Spatial) obj;
PhysicsControl control = node.getControl(PhysicsControl.class);
control.setPhysicsSpace(null);
} else if (obj instanceof PhysicsCollisionObject) {
removeCollisionObject((PhysicsCollisionObject) obj);
} else if (obj instanceof PhysicsJoint) {
removeJoint((PhysicsJoint) obj);
} else {
throw (new UnsupportedOperationException("Cannot remove this kind of object from the physics space."));
}
}
public void removeCollisionObject(PhysicsCollisionObject obj) {
if (obj instanceof PhysicsGhostObject) {
removeGhostObject((PhysicsGhostObject) obj);
} else if (obj instanceof PhysicsRigidBody) {
removeRigidBody((PhysicsRigidBody) obj);
} else if (obj instanceof PhysicsCharacter) {
removeCharacter((PhysicsCharacter) obj);
}
}
/**
* adds all physics controls and joints in the given spatial node to the physics space
* (e.g. after loading from disk) - recursive if node
* @param spatial the rootnode containing the physics objects
*/
public void addAll(Spatial spatial) {
if (spatial.getControl(RigidBodyControl.class) != null) {
RigidBodyControl physicsNode = spatial.getControl(RigidBodyControl.class);
if (!physicsNodes.containsValue(physicsNode)) {
physicsNode.setPhysicsSpace(this);
}
//add joints
List<PhysicsJoint> joints = physicsNode.getJoints();
for (Iterator<PhysicsJoint> it1 = joints.iterator(); it1.hasNext();) {
PhysicsJoint physicsJoint = it1.next();
//add connected physicsnodes if they are not already added
if (!physicsNodes.containsValue(physicsJoint.getBodyA())) {
if (physicsJoint.getBodyA() instanceof PhysicsControl) {
add(physicsJoint.getBodyA());
} else {
addRigidBody(physicsJoint.getBodyA());
}
}
if (!physicsNodes.containsValue(physicsJoint.getBodyB())) {
if (physicsJoint.getBodyA() instanceof PhysicsControl) {
add(physicsJoint.getBodyB());
} else {
addRigidBody(physicsJoint.getBodyB());
}
}
if (!physicsJoints.contains(physicsJoint)) {
addJoint(physicsJoint);
}
}
} else if (spatial.getControl(PhysicsControl.class) != null) {
spatial.getControl(PhysicsControl.class).setPhysicsSpace(this);
}
//recursion
if (spatial instanceof Node) {
List<Spatial> children = ((Node) spatial).getChildren();
for (Iterator<Spatial> it = children.iterator(); it.hasNext();) {
Spatial spat = it.next();
addAll(spat);
}
}
}
/**
* Removes all physics controls and joints in the given spatial from the physics space
* (e.g. before saving to disk) - recursive if node
* @param spatial the rootnode containing the physics objects
*/
public void removeAll(Spatial spatial) {
if (spatial.getControl(RigidBodyControl.class) != null) {
RigidBodyControl physicsNode = spatial.getControl(RigidBodyControl.class);
if (physicsNodes.containsValue(physicsNode)) {
physicsNode.setPhysicsSpace(null);
}
//remove joints
List<PhysicsJoint> joints = physicsNode.getJoints();
for (Iterator<PhysicsJoint> it1 = joints.iterator(); it1.hasNext();) {
PhysicsJoint physicsJoint = it1.next();
//add connected physicsnodes if they are not already added
if (physicsNodes.containsValue(physicsJoint.getBodyA())) {
if (physicsJoint.getBodyA() instanceof PhysicsControl) {
remove(physicsJoint.getBodyA());
} else {
removeRigidBody(physicsJoint.getBodyA());
}
}
if (physicsNodes.containsValue(physicsJoint.getBodyB())) {
if (physicsJoint.getBodyA() instanceof PhysicsControl) {
remove(physicsJoint.getBodyB());
} else {
removeRigidBody(physicsJoint.getBodyB());
}
}
if (physicsJoints.contains(physicsJoint)) {
removeJoint(physicsJoint);
}
}
} else if (spatial.getControl(PhysicsControl.class) != null) {
spatial.getControl(PhysicsControl.class).setPhysicsSpace(null);
}
//recursion
if (spatial instanceof Node) {
List<Spatial> children = ((Node) spatial).getChildren();
for (Iterator<Spatial> it = children.iterator(); it.hasNext();) {
Spatial spat = it.next();
removeAll(spat);
}
}
}
private void addGhostObject(PhysicsGhostObject node) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Adding ghost object {0} to physics space.", node.getObjectId());
dynamicsWorld.addCollisionObject(node.getObjectId());
}
private void removeGhostObject(PhysicsGhostObject node) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Removing ghost object {0} from physics space.", node.getObjectId());
dynamicsWorld.removeCollisionObject(node.getObjectId());
}
private void addCharacter(PhysicsCharacter node) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Adding character {0} to physics space.", node.getObjectId());
// dynamicsWorld.addCollisionObject(node.getObjectId());
dynamicsWorld.addCollisionObject(node.getObjectId(), CollisionFilterGroups.CHARACTER_FILTER, (short) (CollisionFilterGroups.STATIC_FILTER | CollisionFilterGroups.DEFAULT_FILTER));
dynamicsWorld.addAction(node.getControllerId());
}
private void removeCharacter(PhysicsCharacter node) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Removing character {0} from physics space.", node.getObjectId());
dynamicsWorld.removeAction(node.getControllerId());
dynamicsWorld.removeCollisionObject(node.getObjectId());
}
private void addRigidBody(PhysicsRigidBody node) {
physicsNodes.put(node.getObjectId(), node);
//Workaround
//It seems that adding a Kinematic RigidBody to the dynamicWorld prevent it from being non kinematic again afterward.
//so we add it non kinematic, then set it kinematic again.
boolean kinematic = false;
if (node.isKinematic()) {
kinematic = true;
node.setKinematic(false);
}
dynamicsWorld.addRigidBody(node.getObjectId());
if (kinematic) {
node.setKinematic(true);
}
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Adding RigidBody {0} to physics space.", node.getObjectId());
if (node instanceof PhysicsVehicle) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Adding vehicle constraint {0} to physics space.", ((PhysicsVehicle) node).getVehicleId());
((PhysicsVehicle) node).createVehicle(this);
dynamicsWorld.addVehicle(((PhysicsVehicle) node).getVehicleId());
}
}
private void removeRigidBody(PhysicsRigidBody node) {
if (node instanceof PhysicsVehicle) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Removing vehicle constraint {0} from physics space.", ((PhysicsVehicle) node).getVehicleId());
dynamicsWorld.removeVehicle(((PhysicsVehicle) node).getVehicleId());
}
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Removing RigidBody {0} from physics space.", node.getObjectId());
physicsNodes.remove(node.getObjectId());
dynamicsWorld.removeRigidBody(node.getObjectId());
}
private void addJoint(PhysicsJoint joint) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Adding Joint {0} to physics space.", joint.getObjectId());
physicsJoints.add(joint);
dynamicsWorld.addConstraint(joint.getObjectId(), !joint.isCollisionBetweenLinkedBodys());
}
private void removeJoint(PhysicsJoint joint) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.INFO, "Removing Joint {0} from physics space.", joint.getObjectId());
physicsJoints.remove(joint);
dynamicsWorld.removeConstraint(joint.getObjectId());
}
/**
* Sets the gravity of the PhysicsSpace, set before adding physics objects!
* @param gravity
*/
public void setGravity(Vector3f gravity) {
dynamicsWorld.setGravity(Converter.convert(gravity));
}
/**
* applies gravity value to all objects
*/
public void applyGravity() {
dynamicsWorld.applyGravity();
}
/**
* clears forces of all objects
*/
public void clearForces() {
dynamicsWorld.clearForces();
}
/**
* Adds the specified listener to the physics tick listeners.
* The listeners are called on each physics step, which is not necessarily
* each frame but is determined by the accuracy of the physics space.
* @param listener
*/
public void addTickListener(PhysicsTickListener listener) {
tickListeners.add(listener);
}
public void removeTickListener(PhysicsTickListener listener) {
tickListeners.remove(listener);
}
/**
* Adds a CollisionListener that will be informed about collision events
* @param listener the CollisionListener to add
*/
public void addCollisionListener(PhysicsCollisionListener listener) {
collisionListeners.add(listener);
}
/**
* Removes a CollisionListener from the list
* @param listener the CollisionListener to remove
*/
public void removeCollisionListener(PhysicsCollisionListener listener) {
collisionListeners.remove(listener);
}
/**
* Adds a listener for a specific collision group, such a listener can disable collisions when they happen.<br>
* There can be only one listener per collision group.
* @param listener
* @param collisionGroup
*/
public void addCollisionGroupListener(PhysicsCollisionGroupListener listener, int collisionGroup) {
collisionGroupListeners.put(collisionGroup, listener);
}
public void removeCollisionGroupListener(int collisionGroup) {
collisionGroupListeners.remove(collisionGroup);
}
/**
* Performs a ray collision test and returns the results as a list of PhysicsRayTestResults
*/
public List<PhysicsRayTestResult> rayTest(Vector3f from, Vector3f to) {
List<PhysicsRayTestResult> results = new LinkedList<PhysicsRayTestResult>();
dynamicsWorld.rayTest(Converter.convert(from, rayVec1), Converter.convert(to, rayVec2), new InternalRayListener(results));
return results;
}
/**
* Performs a ray collision test and returns the results as a list of PhysicsRayTestResults
*/
public List<PhysicsRayTestResult> rayTest(Vector3f from, Vector3f to, List<PhysicsRayTestResult> results) {
results.clear();
dynamicsWorld.rayTest(Converter.convert(from, rayVec1), Converter.convert(to, rayVec2), new InternalRayListener(results));
return results;
}
private class InternalRayListener extends CollisionWorld.RayResultCallback {
private List<PhysicsRayTestResult> results;
public InternalRayListener(List<PhysicsRayTestResult> results) {
this.results = results;
}
@Override
public float addSingleResult(LocalRayResult lrr, boolean bln) {
PhysicsCollisionObject obj = (PhysicsCollisionObject) lrr.collisionObject.getUserPointer();
results.add(new PhysicsRayTestResult(obj, Converter.convert(lrr.hitNormalLocal), lrr.hitFraction, bln));
return lrr.hitFraction;
}
}
/**
* Performs a sweep collision test and returns the results as a list of PhysicsSweepTestResults<br/>
* You have to use different Transforms for start and end (at least distance > 0.4f).
* SweepTest will not see a collision if it starts INSIDE an object and is moving AWAY from its center.
*/
public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end) {
List<PhysicsSweepTestResult> results = new LinkedList<PhysicsSweepTestResult>();
if (!(shape.getCShape() instanceof ConvexShape)) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.WARNING, "Trying to sweep test with incompatible mesh shape!");
return results;
}
dynamicsWorld.convexSweepTest((ConvexShape) shape.getCShape(), Converter.convert(start, sweepTrans1), Converter.convert(end, sweepTrans2), new InternalSweepListener(results));
return results;
}
/**
* Performs a sweep collision test and returns the results as a list of PhysicsSweepTestResults<br/>
* You have to use different Transforms for start and end (at least distance > 0.4f).
* SweepTest will not see a collision if it starts INSIDE an object and is moving AWAY from its center.
*/
public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end, List<PhysicsSweepTestResult> results) {
results.clear();
if (!(shape.getCShape() instanceof ConvexShape)) {
Logger.getLogger(PhysicsSpace.class.getName()).log(Level.WARNING, "Trying to sweep test with incompatible mesh shape!");
return results;
}
dynamicsWorld.convexSweepTest((ConvexShape) shape.getCShape(), Converter.convert(start, sweepTrans1), Converter.convert(end, sweepTrans2), new InternalSweepListener(results));
return results;
}
private class InternalSweepListener extends CollisionWorld.ConvexResultCallback {
private List<PhysicsSweepTestResult> results;
public InternalSweepListener(List<PhysicsSweepTestResult> results) {
this.results = results;
}
@Override
public float addSingleResult(LocalConvexResult lcr, boolean bln) {
PhysicsCollisionObject obj = (PhysicsCollisionObject) lcr.hitCollisionObject.getUserPointer();
results.add(new PhysicsSweepTestResult(obj, Converter.convert(lcr.hitNormalLocal), lcr.hitFraction, bln));
return lcr.hitFraction;
}
}
/**
* destroys the current PhysicsSpace so that a new one can be created
*/
public void destroy() {
physicsNodes.clear();
physicsJoints.clear();
dynamicsWorld.destroy();
dynamicsWorld = null;
}
/**
* used internally
* @return the dynamicsWorld
*/
public DynamicsWorld getDynamicsWorld() {
return dynamicsWorld;
}
public BroadphaseType getBroadphaseType() {
return broadphaseType;
}
public void setBroadphaseType(BroadphaseType broadphaseType) {
this.broadphaseType = broadphaseType;
}
/**
* Sets the maximum amount of extra steps that will be used to step the physics
* when the fps is below the physics fps. Doing this maintains determinism in physics.
* For example a maximum number of 2 can compensate for framerates as low as 30fps
* when the physics has the default accuracy of 60 fps. Note that setting this
* value too high can make the physics drive down its own fps in case its overloaded.
* @param steps The maximum number of extra steps, default is 4.
*/
public void setMaxSubSteps(int steps) {
maxSubSteps = steps;
}
/**
* get the current accuracy of the physics computation
* @return the current accuracy
*/
public float getAccuracy() {
return accuracy;
}
/**
* sets the accuracy of the physics computation, default=1/60s<br>
* @param accuracy
*/
public void setAccuracy(float accuracy) {
this.accuracy = accuracy;
}
public Vector3f getWorldMin() {
return worldMin;
}
/**
* only applies for AXIS_SWEEP broadphase
* @param worldMin
*/
public void setWorldMin(Vector3f worldMin) {
this.worldMin.set(worldMin);
}
public Vector3f getWorldMax() {
return worldMax;
}
/**
* only applies for AXIS_SWEEP broadphase
* @param worldMax
*/
public void setWorldMax(Vector3f worldMax) {
this.worldMax.set(worldMax);
}
/**
* Enable debug display for physics
* @param manager AssetManager to use to create debug materials
*/
public void enableDebug(AssetManager manager) {
debugManager = manager;
}
/**
* Disable debug display
*/
public void disableDebug() {
debugManager = null;
}
public AssetManager getDebugManager() {
return debugManager;
}
/**
* interface with Broadphase types
*/
public enum BroadphaseType {
/**
* basic Broadphase
*/
SIMPLE,
/**
* better Broadphase, needs worldBounds , max Object number = 16384
*/
AXIS_SWEEP_3,
/**
* better Broadphase, needs worldBounds , max Object number = 65536
*/
AXIS_SWEEP_3_32,
/**
* Broadphase allowing quicker adding/removing of physics objects
*/
DBVT;
}
}