// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H
namespace Eigen {
namespace internal {
// forward declaration (needed by ICC)
// the empty body is required by MSVC
template<typename MatrixType, int QRPreconditioner,
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct svd_precondition_2x2_block_to_be_real {};
/*** QR preconditioners (R-SVD)
***
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
*** JacobiSVD which by itself is only able to work on square matrices.
***/
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
template<typename MatrixType, int QRPreconditioner, int Case>
struct qr_preconditioner_should_do_anything
{
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
b = MatrixType::RowsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime != Dynamic &&
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
};
};
template<typename MatrixType, int QRPreconditioner, int Case,
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
> struct qr_preconditioner_impl {};
template<typename MatrixType, int QRPreconditioner, int Case>
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
{
public:
typedef typename MatrixType::Index Index;
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
{
return false;
}
};
/*** preconditioner using FullPivHouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
};
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
}
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
return true;
}
return false;
}
private:
typedef FullPivHouseholderQR<MatrixType> QRType;
QRType m_qr;
WorkspaceType m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
}
m_adjoint.resize(svd.cols(), svd.rows());
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
m_qr.compute(m_adjoint);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
return true;
}
else return false;
}
private:
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
};
/*** preconditioner using ColPivHouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
typedef typename MatrixType::Index Index;
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
else if(svd.m_computeThinU)
{
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
}
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
return true;
}
return false;
}
private:
typedef ColPivHouseholderQR<MatrixType> QRType;
QRType m_qr;
typename internal::plain_col_type<MatrixType>::type m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
}
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
m_adjoint.resize(svd.cols(), svd.rows());
}
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
m_qr.compute(m_adjoint);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
else if(svd.m_computeThinV)
{
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
}
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
return true;
}
else return false;
}
private:
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
};
/*** preconditioner using HouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
typedef typename MatrixType::Index Index;
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
else if(svd.m_computeThinU)
{
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
}
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
return true;
}
return false;
}
private:
typedef HouseholderQR<MatrixType> QRType;
QRType m_qr;
typename internal::plain_col_type<MatrixType>::type m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
}
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
m_adjoint.resize(svd.cols(), svd.rows());
}
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
m_qr.compute(m_adjoint);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
else if(svd.m_computeThinV)
{
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
}
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
return true;
}
else return false;
}
private:
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
};
/*** 2x2 SVD implementation
***
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
***/
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
};
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
{
using std::sqrt;
Scalar z;
JacobiRotation<Scalar> rot;
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
if(n==0)
{
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
}
else
{
rot.c() = conj(work_matrix.coeff(p,p)) / n;
rot.s() = work_matrix.coeff(q,p) / n;
work_matrix.applyOnTheLeft(p,q,rot);
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(work_matrix.coeff(p,q) != Scalar(0))
{
Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z;
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
}
if(work_matrix.coeff(q,q) != Scalar(0))
{
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
}
}
}
};
template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_left,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(t == RealScalar(0))
{
rot1.c() = RealScalar(0);
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
}
else
{
RealScalar u = d / t;
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = rot1.c() * u;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
} // end namespace internal
/** \ingroup SVD_Module
*
*
* \class JacobiSVD
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for the R-SVD step for non-square matrices. See discussion of possible values below.
*
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
* and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* Here's an example demonstrating basic usage:
* \include JacobiSVD_basic.cpp
* Output: \verbinclude JacobiSVD_basic.out
*
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
*
* The possible values for QRPreconditioner are:
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
* Contrary to other QRs, it doesn't allow computing thin unitaries.
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
* process is more reliable than the optimized bidiagonal SVD iterations.
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
* if QR preconditioning is needed before applying it anyway.
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename _MatrixType, int QRPreconditioner>
class JacobiSVD : public SVDBase<_MatrixType>
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD()
: SVDBase<_MatrixType>::SVDBase()
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size.
* \sa JacobiSVD()
*/
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
: SVDBase<_MatrixType>::SVDBase()
{
allocate(rows, cols, computationOptions);
}
/** \brief Constructor performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
: SVDBase<_MatrixType>::SVDBase()
{
compute(matrix, computationOptions);
}
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
SVDBase<MatrixType>& compute(const MatrixType& matrix)
{
return compute(matrix, this->m_computationOptions);
}
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
*
* \param b the right-hand-side of the equation to solve.
*
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
*
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
*/
template<typename Rhs>
inline const internal::solve_retval<JacobiSVD, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
}
private:
void allocate(Index rows, Index cols, unsigned int computationOptions);
protected:
WorkMatrixType m_workMatrix;
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
friend struct internal::svd_precondition_2x2_block_to_be_real;
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
friend struct internal::qr_preconditioner_impl;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
};
template<typename MatrixType, int QRPreconditioner>
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
{
eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.");
}
m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
}
template<typename MatrixType, int QRPreconditioner>
SVDBase<MatrixType>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
using std::abs;
allocate(matrix.rows(), matrix.cols(), computationOptions);
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
// only worsening the precision of U and V as we accumulate more rotations
const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
// limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
{
m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
}
/*** step 2. The main Jacobi SVD iteration. ***/
bool finished = false;
while(!finished)
{
finished = true;
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
for(Index p = 1; p < this->m_diagSize; ++p)
{
for(Index q = 0; q < p; ++q)
{
// if this 2x2 sub-matrix is not diagonal already...
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
using std::max;
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
abs(m_workMatrix.coeff(q,q))));
if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
{
finished = false;
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
JacobiRotation<RealScalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
// accumulate resulting Jacobi rotations
m_workMatrix.applyOnTheLeft(p,q,j_left);
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
m_workMatrix.applyOnTheRight(p,q,j_right);
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
}
}
}
}
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
for(Index i = 0; i < this->m_diagSize; ++i)
{
RealScalar a = abs(m_workMatrix.coeff(i,i));
this->m_singularValues.coeffRef(i) = a;
if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
}
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
this->m_nonzeroSingularValues = this->m_diagSize;
for(Index i = 0; i < this->m_diagSize; i++)
{
Index pos;
RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
if(maxRemainingSingularValue == RealScalar(0))
{
this->m_nonzeroSingularValues = i;
break;
}
if(pos)
{
pos += i;
std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
}
}
this->m_isInitialized = true;
return *this;
}
namespace internal {
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
{
typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(rhs().rows() == dec().rows());
// A = U S V^*
// So A^{-1} = V S^{-1} U^*
Index diagSize = (std::min)(dec().rows(), dec().cols());
typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
Index nonzeroSingVals = dec().nonzeroSingularValues();
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
dst = dec().matrixV().leftCols(diagSize)
* invertedSingVals.asDiagonal()
* dec().matrixU().leftCols(diagSize).adjoint()
* rhs();
}
};
} // end namespace internal
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by two-sided
* Jacobi transformations.
*
* \sa class JacobiSVD
*/
template<typename Derived>
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
{
return JacobiSVD<PlainObject>(*this, computationOptions);
}
} // end namespace Eigen
#endif // EIGEN_JACOBISVD_H