// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_FUNCTION_ATOMIC
#define EIGEN_MATRIX_FUNCTION_ATOMIC
namespace Eigen {
/** \ingroup MatrixFunctions_Module
* \class MatrixFunctionAtomic
* \brief Helper class for computing matrix functions of atomic matrices.
*
* \internal
* Here, an atomic matrix is a triangular matrix whose diagonal
* entries are close to each other.
*/
template <typename MatrixType>
class MatrixFunctionAtomic
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::stem_function<Scalar>::type StemFunction;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
/** \brief Constructor
* \param[in] f matrix function to compute.
*/
MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
/** \brief Compute matrix function of atomic matrix
* \param[in] A argument of matrix function, should be upper triangular and atomic
* \returns f(A), the matrix function evaluated at the given matrix
*/
MatrixType compute(const MatrixType& A);
private:
// Prevent copying
MatrixFunctionAtomic(const MatrixFunctionAtomic&);
MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&);
void computeMu();
bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P);
/** \brief Pointer to scalar function */
StemFunction* m_f;
/** \brief Size of matrix function */
Index m_Arows;
/** \brief Mean of eigenvalues */
Scalar m_avgEival;
/** \brief Argument shifted by mean of eigenvalues */
MatrixType m_Ashifted;
/** \brief Constant used to determine whether Taylor series has converged */
RealScalar m_mu;
};
template <typename MatrixType>
MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
{
// TODO: Use that A is upper triangular
m_Arows = A.rows();
m_avgEival = A.trace() / Scalar(RealScalar(m_Arows));
m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows);
computeMu();
MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows);
MatrixType P = m_Ashifted;
MatrixType Fincr;
for (Index s = 1; s < 1.1 * m_Arows + 10; s++) { // upper limit is fairly arbitrary
Fincr = m_f(m_avgEival, static_cast<int>(s)) * P;
F += Fincr;
P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted;
if (taylorConverged(s, F, Fincr, P)) {
return F;
}
}
eigen_assert("Taylor series does not converge" && 0);
return F;
}
/** \brief Compute \c m_mu. */
template <typename MatrixType>
void MatrixFunctionAtomic<MatrixType>::computeMu()
{
const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted;
VectorType e = VectorType::Ones(m_Arows);
N.template triangularView<Upper>().solveInPlace(e);
m_mu = e.cwiseAbs().maxCoeff();
}
/** \brief Determine whether Taylor series has converged */
template <typename MatrixType>
bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F,
const MatrixType& Fincr, const MatrixType& P)
{
const Index n = F.rows();
const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
RealScalar delta = 0;
RealScalar rfactorial = 1;
for (Index r = 0; r < n; r++) {
RealScalar mx = 0;
for (Index i = 0; i < n; i++)
mx = (std::max)(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r))));
if (r != 0)
rfactorial *= RealScalar(r);
delta = (std::max)(delta, mx / rfactorial);
}
const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm)
return true;
}
return false;
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_FUNCTION_ATOMIC