// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*n<=0) return 0;
if(*incx==1 && *incy==1) vector(y,*n) += alpha * vector(x,*n);
else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx);
else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse();
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse();
return 0;
}
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
// be carefull, *incx==0 is allowed !!
if(*incx==1 && *incy==1)
vector(y,*n) = vector(x,*n);
else
{
if(*incx<0) x = x - (*n-1)*(*incx);
if(*incy<0) y = y - (*n-1)*(*incy);
for(int i=0;i<*n;++i)
{
*y = *x;
x += *incx;
y += *incy;
}
}
return 0;
}
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
DenseIndex ret;
if(*incx==1) vector(x,*n).cwiseAbs().maxCoeff(&ret);
else vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
return ret+1;
}
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amin_)(int *n, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
DenseIndex ret;
if(*incx==1) vector(x,*n).cwiseAbs().minCoeff(&ret);
else vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret);
return ret+1;
}
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
{
using std::sqrt;
using std::abs;
Scalar& a = *reinterpret_cast<Scalar*>(pa);
Scalar& b = *reinterpret_cast<Scalar*>(pb);
RealScalar* c = pc;
Scalar* s = reinterpret_cast<Scalar*>(ps);
#if !ISCOMPLEX
Scalar r,z;
Scalar aa = abs(a);
Scalar ab = abs(b);
if((aa+ab)==Scalar(0))
{
*c = 1;
*s = 0;
r = 0;
z = 0;
}
else
{
r = sqrt(a*a + b*b);
Scalar amax = aa>ab ? a : b;
r = amax>0 ? r : -r;
*c = a/r;
*s = b/r;
z = 1;
if (aa > ab) z = *s;
if (ab > aa && *c!=RealScalar(0))
z = Scalar(1)/ *c;
}
*pa = r;
*pb = z;
#else
Scalar alpha;
RealScalar norm,scale;
if(abs(a)==RealScalar(0))
{
*c = RealScalar(0);
*s = Scalar(1);
a = b;
}
else
{
scale = abs(a) + abs(b);
norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale)));
alpha = a/abs(a);
*c = abs(a)/norm;
*s = alpha*numext::conj(b)/norm;
a = alpha*norm;
}
#endif
// JacobiRotation<Scalar> r;
// r.makeGivens(a,b);
// *c = r.c();
// *s = r.s();
return 0;
}
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1) vector(y,*n).swap(vector(x,*n));
else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx));
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx));
else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse());
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse());
return 1;
}