C++程序  |  1039行  |  29.35 KB

/*-------------------------------------------------------------------------
 * drawElements Quality Program OpenGL (ES) Module
 * -----------------------------------------------
 *
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 *//*!
 * \file
 * \brief Shader execute test.
 *
 * \todo [petri] Multiple grid with differing constants/uniforms.
 * \todo [petri]
 *//*--------------------------------------------------------------------*/

#include "glsShaderRenderCase.hpp"

#include "tcuSurface.hpp"
#include "tcuVector.hpp"
#include "tcuImageCompare.hpp"
#include "tcuTestLog.hpp"
#include "tcuRenderTarget.hpp"

#include "gluPixelTransfer.hpp"
#include "gluTexture.hpp"
#include "gluTextureUtil.hpp"
#include "gluDrawUtil.hpp"

#include "glwFunctions.hpp"
#include "glwEnums.hpp"

#include "deRandom.hpp"
#include "deMemory.h"
#include "deString.h"
#include "deMath.h"
#include "deStringUtil.hpp"

#include <stdio.h>
#include <vector>
#include <string>

namespace deqp
{
namespace gls
{

using namespace std;
using namespace tcu;
using namespace glu;

static const int			GRID_SIZE				= 64;
static const int			MAX_RENDER_WIDTH		= 128;
static const int			MAX_RENDER_HEIGHT		= 112;
static const tcu::Vec4		DEFAULT_CLEAR_COLOR		= tcu::Vec4(0.125f, 0.25f, 0.5f, 1.0f);

inline RGBA toRGBA (const Vec4& a)
{
	return RGBA(deClamp32(deRoundFloatToInt32(a.x() * 255.0f), 0, 255),
				deClamp32(deRoundFloatToInt32(a.y() * 255.0f), 0, 255),
				deClamp32(deRoundFloatToInt32(a.z() * 255.0f), 0, 255),
				deClamp32(deRoundFloatToInt32(a.w() * 255.0f), 0, 255));
}

inline tcu::Vec4 toVec (const RGBA& c)
{
	return tcu::Vec4(c.getRed()		/ 255.0f,
					 c.getGreen()	/ 255.0f,
					 c.getBlue()	/ 255.0f,
					 c.getAlpha()	/ 255.0f);
}

// TextureBinding

TextureBinding::TextureBinding (const glu::Texture2D* tex2D, const tcu::Sampler& sampler)
	: m_type	(TYPE_2D)
	, m_sampler	(sampler)
{
	m_binding.tex2D = tex2D;
}

TextureBinding::TextureBinding (const glu::TextureCube* texCube, const tcu::Sampler& sampler)
	: m_type	(TYPE_CUBE_MAP)
	, m_sampler	(sampler)
{
	m_binding.texCube = texCube;
}

TextureBinding::TextureBinding (const glu::Texture2DArray* tex2DArray, const tcu::Sampler& sampler)
	: m_type	(TYPE_2D_ARRAY)
	, m_sampler	(sampler)
{
	m_binding.tex2DArray = tex2DArray;
}

TextureBinding::TextureBinding (const glu::Texture3D* tex3D, const tcu::Sampler& sampler)
	: m_type	(TYPE_3D)
	, m_sampler	(sampler)
{
	m_binding.tex3D = tex3D;
}

TextureBinding::TextureBinding (void)
	: m_type	(TYPE_NONE)
{
	m_binding.tex2D = DE_NULL;
}

void TextureBinding::setSampler (const tcu::Sampler& sampler)
{
	m_sampler = sampler;
}

void TextureBinding::setTexture (const glu::Texture2D* tex2D)
{
	m_type			= TYPE_2D;
	m_binding.tex2D	= tex2D;
}

void TextureBinding::setTexture (const glu::TextureCube* texCube)
{
	m_type				= TYPE_CUBE_MAP;
	m_binding.texCube	= texCube;
}

void TextureBinding::setTexture (const glu::Texture2DArray* tex2DArray)
{
	m_type					= TYPE_2D_ARRAY;
	m_binding.tex2DArray	= tex2DArray;
}

void TextureBinding::setTexture (const glu::Texture3D* tex3D)
{
	m_type			= TYPE_3D;
	m_binding.tex3D	= tex3D;
}

// QuadGrid.

class QuadGrid
{
public:
							QuadGrid				(int gridSize, int screenWidth, int screenHeight, const Vec4& constCoords, const vector<Mat4>& userAttribTransforms, const vector<TextureBinding>& textures);
							~QuadGrid				(void);

	int						getGridSize				(void) const { return m_gridSize; }
	int						getNumVertices			(void) const { return m_numVertices; }
	int						getNumTriangles			(void) const { return m_numTriangles; }
	const Vec4&				getConstCoords			(void) const { return m_constCoords; }
	const vector<Mat4>		getUserAttribTransforms	(void) const { return m_userAttribTransforms; }
	const vector<TextureBinding>&	getTextures		(void) const { return m_textures; }

	const Vec4*				getPositions			(void) const { return &m_positions[0]; }
	const float*			getAttribOne			(void) const { return &m_attribOne[0]; }
	const Vec4*				getCoords				(void) const { return &m_coords[0]; }
	const Vec4*				getUnitCoords			(void) const { return &m_unitCoords[0]; }
	const Vec4*				getUserAttrib			(int attribNdx) const { return &m_userAttribs[attribNdx][0]; }
	const deUint16*			getIndices				(void) const { return &m_indices[0]; }

	Vec4					getCoords				(float sx, float sy) const;
	Vec4					getUnitCoords			(float sx, float sy) const;

	int						getNumUserAttribs		(void) const { return (int)m_userAttribTransforms.size(); }
	Vec4					getUserAttrib			(int attribNdx, float sx, float sy) const;

private:
	int						m_gridSize;
	int						m_numVertices;
	int						m_numTriangles;
	Vec4					m_constCoords;
	vector<Mat4>			m_userAttribTransforms;
	vector<TextureBinding>	m_textures;

	vector<Vec4>			m_screenPos;
	vector<Vec4>			m_positions;
	vector<Vec4>			m_coords;			//!< Near-unit coordinates, roughly [-2.0 .. 2.0].
	vector<Vec4>			m_unitCoords;		//!< Positive-only coordinates [0.0 .. 1.5].
	vector<float>			m_attribOne;
	vector<Vec4>			m_userAttribs[ShaderEvalContext::MAX_TEXTURES];
	vector<deUint16>		m_indices;
};

QuadGrid::QuadGrid (int gridSize, int width, int height, const Vec4& constCoords, const vector<Mat4>& userAttribTransforms, const vector<TextureBinding>& textures)
	: m_gridSize				(gridSize)
	, m_numVertices				((gridSize + 1) * (gridSize + 1))
	, m_numTriangles			(gridSize * gridSize * 2)
	, m_constCoords				(constCoords)
	, m_userAttribTransforms	(userAttribTransforms)
	, m_textures				(textures)
{
	Vec4 viewportScale = Vec4((float)width, (float)height, 0.0f, 0.0f);

	// Compute vertices.
	m_positions.resize(m_numVertices);
	m_coords.resize(m_numVertices);
	m_unitCoords.resize(m_numVertices);
	m_attribOne.resize(m_numVertices);
	m_screenPos.resize(m_numVertices);

	// User attributes.
	for (int i = 0; i < DE_LENGTH_OF_ARRAY(m_userAttribs); i++)
		m_userAttribs[i].resize(m_numVertices);

	for (int y = 0; y < gridSize+1; y++)
	for (int x = 0; x < gridSize+1; x++)
	{
		float				sx			= x / (float)gridSize;
		float				sy			= y / (float)gridSize;
		float				fx			= 2.0f * sx - 1.0f;
		float				fy			= 2.0f * sy - 1.0f;
		int					vtxNdx		= ((y * (gridSize+1)) + x);

		m_positions[vtxNdx]		= Vec4(fx, fy, 0.0f, 1.0f);
		m_attribOne[vtxNdx]		= 1.0f;
		m_screenPos[vtxNdx]		= Vec4(sx, sy, 0.0f, 1.0f) * viewportScale;
		m_coords[vtxNdx]		= getCoords(sx, sy);
		m_unitCoords[vtxNdx]	= getUnitCoords(sx, sy);

		for (int attribNdx = 0; attribNdx < getNumUserAttribs(); attribNdx++)
			m_userAttribs[attribNdx][vtxNdx] = getUserAttrib(attribNdx, sx, sy);
	}

	// Compute indices.
	m_indices.resize(3 * m_numTriangles);
	for (int y = 0; y < gridSize; y++)
	for (int x = 0; x < gridSize; x++)
	{
		int stride = gridSize + 1;
		int v00 = (y * stride) + x;
		int v01 = (y * stride) + x + 1;
		int v10 = ((y+1) * stride) + x;
		int v11 = ((y+1) * stride) + x + 1;

		int baseNdx = ((y * gridSize) + x) * 6;
		m_indices[baseNdx + 0] = v10;
		m_indices[baseNdx + 1] = v00;
		m_indices[baseNdx + 2] = v01;

		m_indices[baseNdx + 3] = v10;
		m_indices[baseNdx + 4] = v01;
		m_indices[baseNdx + 5] = v11;
	}
}

QuadGrid::~QuadGrid (void)
{
}

inline Vec4 QuadGrid::getCoords (float sx, float sy) const
{
	float fx = 2.0f * sx - 1.0f;
	float fy = 2.0f * sy - 1.0f;
	return Vec4(fx, fy, -fx + 0.33f*fy, -0.275f*fx - fy);
}

inline Vec4 QuadGrid::getUnitCoords (float sx, float sy) const
{
	return Vec4(sx, sy, 0.33f*sx + 0.5f*sy, 0.5f*sx + 0.25f*sy);
}

inline Vec4 QuadGrid::getUserAttrib (int attribNdx, float sx, float sy) const
{
	// homogeneous normalized screen-space coordinates
	return m_userAttribTransforms[attribNdx] * Vec4(sx, sy, 0.0f, 1.0f);
}

// ShaderEvalContext.

ShaderEvalContext::ShaderEvalContext (const QuadGrid& quadGrid_)
	: constCoords	(quadGrid_.getConstCoords())
	, isDiscarded	(false)
	, quadGrid		(quadGrid_)
{
	const vector<TextureBinding>& bindings = quadGrid.getTextures();
	DE_ASSERT((int)bindings.size() <= MAX_TEXTURES);

	// Fill in texture array.
	for (int ndx = 0; ndx < (int)bindings.size(); ndx++)
	{
		const TextureBinding& binding = bindings[ndx];

		if (binding.getType() == TextureBinding::TYPE_NONE)
			continue;

		textures[ndx].sampler = binding.getSampler();

		switch (binding.getType())
		{
			case TextureBinding::TYPE_2D:		textures[ndx].tex2D			= &binding.get2D()->getRefTexture();		break;
			case TextureBinding::TYPE_CUBE_MAP:	textures[ndx].texCube		= &binding.getCube()->getRefTexture();		break;
			case TextureBinding::TYPE_2D_ARRAY:	textures[ndx].tex2DArray	= &binding.get2DArray()->getRefTexture();	break;
			case TextureBinding::TYPE_3D:		textures[ndx].tex3D			= &binding.get3D()->getRefTexture();		break;
			default:
				DE_ASSERT(DE_FALSE);
		}
	}
}

ShaderEvalContext::~ShaderEvalContext (void)
{
}

void ShaderEvalContext::reset (float sx, float sy)
{
	// Clear old values
	color		= Vec4(0.0f, 0.0f, 0.0f, 1.0f);
	isDiscarded	= false;

	// Compute coords
	coords		= quadGrid.getCoords(sx, sy);
	unitCoords	= quadGrid.getUnitCoords(sx, sy);

	// Compute user attributes.
	int numAttribs = quadGrid.getNumUserAttribs();
	DE_ASSERT(numAttribs <= MAX_USER_ATTRIBS);
	for (int attribNdx = 0; attribNdx < numAttribs; attribNdx++)
		in[attribNdx] = quadGrid.getUserAttrib(attribNdx, sx, sy);
}

tcu::Vec4 ShaderEvalContext::texture2D (int unitNdx, const tcu::Vec2& texCoords)
{
	if (textures[unitNdx].tex2D)
		return textures[unitNdx].tex2D->sample(textures[unitNdx].sampler, texCoords.x(), texCoords.y(), 0.0f);
	else
		return tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
}

// ShaderEvaluator

ShaderEvaluator::ShaderEvaluator (void)
	: m_evalFunc(DE_NULL)
{
}

ShaderEvaluator::ShaderEvaluator (ShaderEvalFunc evalFunc)
	: m_evalFunc(evalFunc)
{
}

ShaderEvaluator::~ShaderEvaluator (void)
{
}

void ShaderEvaluator::evaluate (ShaderEvalContext& ctx)
{
	DE_ASSERT(m_evalFunc);
	m_evalFunc(ctx);
}

// ShaderRenderCase.

ShaderRenderCase::ShaderRenderCase (TestContext& testCtx, RenderContext& renderCtx, const ContextInfo& ctxInfo, const char* name, const char* description, bool isVertexCase, ShaderEvalFunc evalFunc)
	: TestCase				(testCtx, name, description)
	, m_renderCtx			(renderCtx)
	, m_ctxInfo				(ctxInfo)
	, m_isVertexCase		(isVertexCase)
	, m_defaultEvaluator	(evalFunc)
	, m_evaluator			(m_defaultEvaluator)
	, m_clearColor			(DEFAULT_CLEAR_COLOR)
	, m_program				(DE_NULL)
{
}

ShaderRenderCase::ShaderRenderCase (TestContext& testCtx, RenderContext& renderCtx, const ContextInfo& ctxInfo, const char* name, const char* description, bool isVertexCase, ShaderEvaluator& evaluator)
	: TestCase				(testCtx, name, description)
	, m_renderCtx			(renderCtx)
	, m_ctxInfo				(ctxInfo)
	, m_isVertexCase		(isVertexCase)
	, m_defaultEvaluator	(DE_NULL)
	, m_evaluator			(evaluator)
	, m_clearColor			(DEFAULT_CLEAR_COLOR)
	, m_program				(DE_NULL)
{
}

ShaderRenderCase::~ShaderRenderCase (void)
{
	ShaderRenderCase::deinit();
}

void ShaderRenderCase::init (void)
{
	TestLog&				log		= m_testCtx.getLog();
	const glw::Functions&	gl		= m_renderCtx.getFunctions();

	GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderRenderCase::init() begin");

	if (m_vertShaderSource.empty() || m_fragShaderSource.empty())
	{
		DE_ASSERT(m_vertShaderSource.empty() && m_fragShaderSource.empty());
		setupShaderData();
	}

	DE_ASSERT(!m_program);
	m_program = new ShaderProgram(m_renderCtx, makeVtxFragSources(m_vertShaderSource, m_fragShaderSource));

	try
	{
		log << *m_program; // Always log shader program.

		if (!m_program->isOk())
			throw CompileFailed(__FILE__, __LINE__);

		GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderRenderCase::init() end");
	}
	catch (const std::exception&)
	{
		// Clean up.
		ShaderRenderCase::deinit();
		throw;
	}
}

void ShaderRenderCase::deinit (void)
{
	delete m_program;
	m_program = DE_NULL;
}

tcu::IVec2 ShaderRenderCase::getViewportSize (void) const
{
	return tcu::IVec2(de::min(m_renderCtx.getRenderTarget().getWidth(), MAX_RENDER_WIDTH),
					  de::min(m_renderCtx.getRenderTarget().getHeight(), MAX_RENDER_HEIGHT));
}

TestNode::IterateResult ShaderRenderCase::iterate (void)
{
	const glw::Functions& gl = m_renderCtx.getFunctions();

	GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderRenderCase::iterate() begin");

	DE_ASSERT(m_program);
	deUint32 programID = m_program->getProgram();
	gl.useProgram(programID);

	// Create quad grid.
	IVec2	viewportSize	= getViewportSize();
	int		width			= viewportSize.x();
	int		height			= viewportSize.y();

	// \todo [petri] Better handling of constCoords (render in multiple chunks, vary coords).
	QuadGrid quadGrid(m_isVertexCase ? GRID_SIZE : 4, width, height, Vec4(0.125f, 0.25f, 0.5f, 1.0f), m_userAttribTransforms, m_textures);

	// Render result.
	Surface resImage(width, height);
	render(resImage, programID, quadGrid);

	// Compute reference.
	Surface refImage (width, height);
	if (m_isVertexCase)
		computeVertexReference(refImage, quadGrid);
	else
		computeFragmentReference(refImage, quadGrid);

	// Compare.
	bool testOk = compareImages(resImage, refImage, 0.05f);

	// De-initialize.
	gl.useProgram(0);

	m_testCtx.setTestResult(testOk ? QP_TEST_RESULT_PASS	: QP_TEST_RESULT_FAIL,
							testOk ? "Pass"					: "Fail");
	return TestNode::STOP;
}

void ShaderRenderCase::setupShaderData (void)
{
}

void ShaderRenderCase::setup (int programID)
{
	DE_UNREF(programID);
}

void ShaderRenderCase::setupUniforms (int programID, const Vec4& constCoords)
{
	DE_UNREF(programID);
	DE_UNREF(constCoords);
}

void ShaderRenderCase::setupDefaultInputs (int programID)
{
	const glw::Functions& gl = m_renderCtx.getFunctions();

	// SETUP UNIFORMS.

	setupDefaultUniforms(m_renderCtx, programID);

	GLU_EXPECT_NO_ERROR(gl.getError(), "post uniform setup");

	// SETUP TEXTURES.

	for (int ndx = 0; ndx < (int)m_textures.size(); ndx++)
	{
		const TextureBinding&	tex			= m_textures[ndx];
		const tcu::Sampler&		sampler		= tex.getSampler();
		deUint32				texTarget	= GL_NONE;
		deUint32				texObj		= 0;

		if (tex.getType() == TextureBinding::TYPE_NONE)
			continue;

		// Feature check.
		if (m_renderCtx.getType().getAPI() == glu::ApiType::es(2,0))
		{
			if (tex.getType() == TextureBinding::TYPE_2D_ARRAY)
				throw tcu::NotSupportedError("2D array texture binding is not supported");

			if (tex.getType() == TextureBinding::TYPE_3D)
				throw tcu::NotSupportedError("3D texture binding is not supported");

			if (sampler.compare != tcu::Sampler::COMPAREMODE_NONE)
				throw tcu::NotSupportedError("Shadow lookups are not supported");
		}

		switch (tex.getType())
		{
			case TextureBinding::TYPE_2D:		texTarget = GL_TEXTURE_2D;			texObj = tex.get2D()->getGLTexture();		break;
			case TextureBinding::TYPE_CUBE_MAP:	texTarget = GL_TEXTURE_CUBE_MAP;	texObj = tex.getCube()->getGLTexture();		break;
			case TextureBinding::TYPE_2D_ARRAY:	texTarget = GL_TEXTURE_2D_ARRAY;	texObj = tex.get2DArray()->getGLTexture();	break;
			case TextureBinding::TYPE_3D:		texTarget = GL_TEXTURE_3D;			texObj = tex.get3D()->getGLTexture();		break;
			default:
				DE_ASSERT(DE_FALSE);
		}

		gl.activeTexture(GL_TEXTURE0+ndx);
		gl.bindTexture(texTarget, texObj);
		gl.texParameteri(texTarget, GL_TEXTURE_WRAP_S,		glu::getGLWrapMode(sampler.wrapS));
		gl.texParameteri(texTarget, GL_TEXTURE_WRAP_T,		glu::getGLWrapMode(sampler.wrapT));
		gl.texParameteri(texTarget, GL_TEXTURE_MIN_FILTER,	glu::getGLFilterMode(sampler.minFilter));
		gl.texParameteri(texTarget, GL_TEXTURE_MAG_FILTER,	glu::getGLFilterMode(sampler.magFilter));

		if (texTarget == GL_TEXTURE_3D)
			gl.texParameteri(texTarget, GL_TEXTURE_WRAP_R, glu::getGLWrapMode(sampler.wrapR));

		if (sampler.compare != tcu::Sampler::COMPAREMODE_NONE)
		{
			gl.texParameteri(texTarget, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
			gl.texParameteri(texTarget, GL_TEXTURE_COMPARE_FUNC, glu::getGLCompareFunc(sampler.compare));
		}
	}

	GLU_EXPECT_NO_ERROR(gl.getError(), "texture sampler setup");
}

static void getDefaultVertexArrays (const glw::Functions& gl, const QuadGrid& quadGrid, deUint32 program, vector<VertexArrayBinding>& vertexArrays)
{
	const int numElements = quadGrid.getNumVertices();

	vertexArrays.push_back(va::Float("a_position",		4, numElements, 0, (const float*)quadGrid.getPositions()));
	vertexArrays.push_back(va::Float("a_coords",		4, numElements, 0, (const float*)quadGrid.getCoords()));
	vertexArrays.push_back(va::Float("a_unitCoords",	4, numElements, 0, (const float*)quadGrid.getUnitCoords()));
	vertexArrays.push_back(va::Float("a_one",			1, numElements, 0, quadGrid.getAttribOne()));

	// a_inN.
	for (int userNdx = 0; userNdx < quadGrid.getNumUserAttribs(); userNdx++)
	{
		string name = string("a_in") + de::toString(userNdx);
		vertexArrays.push_back(va::Float(name, 4, numElements, 0, (const float*)quadGrid.getUserAttrib(userNdx)));
	}

	// Matrix attributes - these are set by location
	static const struct
	{
		const char*	name;
		int			numCols;
		int			numRows;
	} matrices[] =
	{
		{ "a_mat2",		2, 2 },
		{ "a_mat2x3",	2, 3 },
		{ "a_mat2x4",	2, 4 },
		{ "a_mat3x2",	3, 2 },
		{ "a_mat3",		3, 3 },
		{ "a_mat3x4",	3, 4 },
		{ "a_mat4x2",	4, 2 },
		{ "a_mat4x3",	4, 3 },
		{ "a_mat4",		4, 4 }
	};

	for (int matNdx = 0; matNdx < DE_LENGTH_OF_ARRAY(matrices); matNdx++)
	{
		int loc = gl.getAttribLocation(program, matrices[matNdx].name);

		if (loc < 0)
			continue; // Not used in shader.

		int numRows	= matrices[matNdx].numRows;
		int numCols	= matrices[matNdx].numCols;

		for (int colNdx = 0; colNdx < numCols; colNdx++)
			vertexArrays.push_back(va::Float(loc+colNdx, numRows, numElements, 4*(int)sizeof(float), (const float*)quadGrid.getUserAttrib(colNdx)));
	}
}

void ShaderRenderCase::render (Surface& result, int programID, const QuadGrid& quadGrid)
{
	const glw::Functions& gl = m_renderCtx.getFunctions();

	GLU_EXPECT_NO_ERROR(gl.getError(), "pre render");

	// Buffer info.
	int				width		= result.getWidth();
	int				height		= result.getHeight();

	int				xOffsetMax	= m_renderCtx.getRenderTarget().getWidth() - width;
	int				yOffsetMax	= m_renderCtx.getRenderTarget().getHeight() - height;

	deUint32		hash		= deStringHash(m_vertShaderSource.c_str()) + deStringHash(m_fragShaderSource.c_str());
	de::Random		rnd			(hash);

	int				xOffset		= rnd.getInt(0, xOffsetMax);
	int				yOffset		= rnd.getInt(0, yOffsetMax);

	gl.viewport(xOffset, yOffset, width, height);

	// Setup program.
	setupUniforms(programID, quadGrid.getConstCoords());
	setupDefaultInputs(programID);

	// Clear.
	gl.clearColor(m_clearColor.x(), m_clearColor.y(), m_clearColor.z(), m_clearColor.w());
	gl.clear(GL_COLOR_BUFFER_BIT);

	// Draw.
	{
		std::vector<VertexArrayBinding>	vertexArrays;
		const int						numElements		= quadGrid.getNumTriangles()*3;

		getDefaultVertexArrays(gl, quadGrid, programID, vertexArrays);
		draw(m_renderCtx, programID, (int)vertexArrays.size(), &vertexArrays[0], pr::Triangles(numElements, quadGrid.getIndices()));
	}
	GLU_EXPECT_NO_ERROR(gl.getError(), "draw");

	// Read back results.
	glu::readPixels(m_renderCtx, xOffset, yOffset, result.getAccess());

	GLU_EXPECT_NO_ERROR(gl.getError(), "post render");
}

void ShaderRenderCase::computeVertexReference (Surface& result, const QuadGrid& quadGrid)
{
	// Buffer info.
	int					width		= result.getWidth();
	int					height		= result.getHeight();
	int					gridSize	= quadGrid.getGridSize();
	int					stride		= gridSize + 1;
	bool				hasAlpha	= m_renderCtx.getRenderTarget().getPixelFormat().alphaBits > 0;
	ShaderEvalContext	evalCtx		(quadGrid);

	// Evaluate color for each vertex.
	vector<Vec4> colors((gridSize+1)*(gridSize+1));
	for (int y = 0; y < gridSize+1; y++)
	for (int x = 0; x < gridSize+1; x++)
	{
		float				sx			= x / (float)gridSize;
		float				sy			= y / (float)gridSize;
		int					vtxNdx		= ((y * (gridSize+1)) + x);

		evalCtx.reset(sx, sy);
		m_evaluator.evaluate(evalCtx);
		DE_ASSERT(!evalCtx.isDiscarded); // Discard is not available in vertex shader.
		Vec4 color = evalCtx.color;

		if (!hasAlpha)
			color.w() = 1.0f;

		colors[vtxNdx] = color;
	}

	// Render quads.
	for (int y = 0; y < gridSize; y++)
	for (int x = 0; x < gridSize; x++)
	{
		float x0 = x / (float)gridSize;
		float x1 = (x + 1) / (float)gridSize;
		float y0 = y / (float)gridSize;
		float y1 = (y + 1) / (float)gridSize;

		float sx0 = x0 * (float)width;
		float sx1 = x1 * (float)width;
		float sy0 = y0 * (float)height;
		float sy1 = y1 * (float)height;
		float oosx = 1.0f / (sx1 - sx0);
		float oosy = 1.0f / (sy1 - sy0);

		int ix0 = deCeilFloatToInt32(sx0 - 0.5f);
		int ix1 = deCeilFloatToInt32(sx1 - 0.5f);
		int iy0 = deCeilFloatToInt32(sy0 - 0.5f);
		int iy1 = deCeilFloatToInt32(sy1 - 0.5f);

		int		v00 = (y * stride) + x;
		int		v01 = (y * stride) + x + 1;
		int		v10 = ((y + 1) * stride) + x;
		int		v11 = ((y + 1) * stride) + x + 1;
		Vec4	c00 = colors[v00];
		Vec4	c01 = colors[v01];
		Vec4	c10 = colors[v10];
		Vec4	c11 = colors[v11];

		//printf("(%d,%d) -> (%f..%f, %f..%f) (%d..%d, %d..%d)\n", x, y, sx0, sx1, sy0, sy1, ix0, ix1, iy0, iy1);

		for (int iy = iy0; iy < iy1; iy++)
		for (int ix = ix0; ix < ix1; ix++)
		{
			DE_ASSERT(deInBounds32(ix, 0, width));
			DE_ASSERT(deInBounds32(iy, 0, height));

			float		sfx		= (float)ix + 0.5f;
			float		sfy		= (float)iy + 0.5f;
			float		fx1		= deFloatClamp((sfx - sx0) * oosx, 0.0f, 1.0f);
			float		fy1		= deFloatClamp((sfy - sy0) * oosy, 0.0f, 1.0f);

			// Triangle quad interpolation.
			bool		tri		= fx1 + fy1 <= 1.0f;
			float		tx		= tri ? fx1 : (1.0f-fx1);
			float		ty		= tri ? fy1 : (1.0f-fy1);
			const Vec4&	t0		= tri ? c00 : c11;
			const Vec4&	t1		= tri ? c01 : c10;
			const Vec4&	t2		= tri ? c10 : c01;
			Vec4		color	= t0 + (t1-t0)*tx + (t2-t0)*ty;

			result.setPixel(ix, iy, toRGBA(color));
		}
	}
}

void ShaderRenderCase::computeFragmentReference (Surface& result, const QuadGrid& quadGrid)
{
	// Buffer info.
	int					width		= result.getWidth();
	int					height		= result.getHeight();
	bool				hasAlpha	= m_renderCtx.getRenderTarget().getPixelFormat().alphaBits > 0;
	ShaderEvalContext	evalCtx		(quadGrid);

	// Render.
	for (int y = 0; y < height; y++)
	for (int x = 0; x < width; x++)
	{
		float sx = ((float)x + 0.5f) / (float)width;
		float sy = ((float)y + 0.5f) / (float)height;

		evalCtx.reset(sx, sy);
		m_evaluator.evaluate(evalCtx);
		// Select either clear color or computed color based on discarded bit.
		Vec4 color = evalCtx.isDiscarded ? m_clearColor : evalCtx.color;

		if (!hasAlpha)
			color.w() = 1.0f;

		result.setPixel(x, y, toRGBA(color));
	}
}

bool ShaderRenderCase::compareImages (const Surface& resImage, const Surface& refImage, float errorThreshold)
{
	return tcu::fuzzyCompare(m_testCtx.getLog(), "ComparisonResult", "Image comparison result", refImage, resImage, errorThreshold, tcu::COMPARE_LOG_RESULT);
}

// Uniform name helpers.

const char* getIntUniformName (int number)
{
	switch (number)
	{
		case 0:		return "ui_zero";
		case 1:		return "ui_one";
		case 2:		return "ui_two";
		case 3:		return "ui_three";
		case 4:		return "ui_four";
		case 5:		return "ui_five";
		case 6:		return "ui_six";
		case 7:		return "ui_seven";
		case 8:		return "ui_eight";
		case 101:	return "ui_oneHundredOne";
		default:
			DE_ASSERT(false);
			return "";
	}
}

const char* getFloatUniformName (int number)
{
	switch (number)
	{
		case 0:	return "uf_zero";
		case 1: return "uf_one";
		case 2: return "uf_two";
		case 3: return "uf_three";
		case 4: return "uf_four";
		case 5: return "uf_five";
		case 6: return "uf_six";
		case 7: return "uf_seven";
		case 8: return "uf_eight";
		default:
			DE_ASSERT(false);
			return "";
	}
}

const char* getFloatFractionUniformName (int number)
{
	switch (number)
	{
		case 1: return "uf_one";
		case 2: return "uf_half";
		case 3: return "uf_third";
		case 4: return "uf_fourth";
		case 5: return "uf_fifth";
		case 6: return "uf_sixth";
		case 7: return "uf_seventh";
		case 8: return "uf_eighth";
		default:
			DE_ASSERT(false);
			return "";
	}
}

void setupDefaultUniforms (const glu::RenderContext& context, deUint32 programID)
{
	const glw::Functions& gl = context.getFunctions();

	// Bool.
	struct BoolUniform { const char* name; bool value; };
	static const BoolUniform s_boolUniforms[] =
	{
		{ "ub_true",	true },
		{ "ub_false",	false },
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_boolUniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_boolUniforms[i].name);
		if (uniLoc != -1)
			gl.uniform1i(uniLoc, s_boolUniforms[i].value);
	}

	// BVec4.
	struct BVec4Uniform { const char* name; BVec4 value; };
	static const BVec4Uniform s_bvec4Uniforms[] =
	{
		{ "ub4_true",	BVec4(true) },
		{ "ub4_false",	BVec4(false) },
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_bvec4Uniforms); i++)
	{
		const BVec4Uniform& uni = s_bvec4Uniforms[i];
		int arr[4];
		arr[0] = (int)uni.value.x();
		arr[1] = (int)uni.value.y();
		arr[2] = (int)uni.value.z();
		arr[3] = (int)uni.value.w();
		int uniLoc = gl.getUniformLocation(programID, uni.name);
		if (uniLoc != -1)
			gl.uniform4iv(uniLoc, 1, &arr[0]);
	}

	// Int.
	struct IntUniform { const char* name; int value; };
	static const IntUniform s_intUniforms[] =
	{
		{ "ui_minusOne",		-1 },
		{ "ui_zero",			0 },
		{ "ui_one",				1 },
		{ "ui_two",				2 },
		{ "ui_three",			3 },
		{ "ui_four",			4 },
		{ "ui_five",			5 },
		{ "ui_six",				6 },
		{ "ui_seven",			7 },
		{ "ui_eight",			8 },
		{ "ui_oneHundredOne",	101 }
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_intUniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_intUniforms[i].name);
		if (uniLoc != -1)
			gl.uniform1i(uniLoc, s_intUniforms[i].value);
	}

	// IVec2.
	struct IVec2Uniform { const char* name; IVec2 value; };
	static const IVec2Uniform s_ivec2Uniforms[] =
	{
		{ "ui2_minusOne",	IVec2(-1) },
		{ "ui2_zero",		IVec2(0) },
		{ "ui2_one",		IVec2(1) },
		{ "ui2_two",		IVec2(2) },
		{ "ui2_four",		IVec2(4) },
		{ "ui2_five",		IVec2(5) }
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_ivec2Uniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_ivec2Uniforms[i].name);
		if (uniLoc != -1)
			gl.uniform2iv(uniLoc, 1, s_ivec2Uniforms[i].value.getPtr());
	}

	// IVec3.
	struct IVec3Uniform { const char* name; IVec3 value; };
	static const IVec3Uniform s_ivec3Uniforms[] =
	{
		{ "ui3_minusOne",	IVec3(-1) },
		{ "ui3_zero",		IVec3(0) },
		{ "ui3_one",		IVec3(1) },
		{ "ui3_two",		IVec3(2) },
		{ "ui3_four",		IVec3(4) },
		{ "ui3_five",		IVec3(5) }
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_ivec3Uniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_ivec3Uniforms[i].name);
		if (uniLoc != -1)
			gl.uniform3iv(uniLoc, 1, s_ivec3Uniforms[i].value.getPtr());
	}

	// IVec4.
	struct IVec4Uniform { const char* name; IVec4 value; };
	static const IVec4Uniform s_ivec4Uniforms[] =
	{
		{ "ui4_minusOne",	IVec4(-1) },
		{ "ui4_zero",		IVec4(0) },
		{ "ui4_one",		IVec4(1) },
		{ "ui4_two",		IVec4(2) },
		{ "ui4_four",		IVec4(4) },
		{ "ui4_five",		IVec4(5) }
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_ivec4Uniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_ivec4Uniforms[i].name);
		if (uniLoc != -1)
			gl.uniform4iv(uniLoc, 1, s_ivec4Uniforms[i].value.getPtr());
	}

	// Float.
	struct FloatUniform { const char* name; float value; };
	static const FloatUniform s_floatUniforms[] =
	{
		{ "uf_zero",	0.0f },
		{ "uf_one",		1.0f },
		{ "uf_two",		2.0f },
		{ "uf_three",	3.0f },
		{ "uf_four",	4.0f },
		{ "uf_five",	5.0f },
		{ "uf_six",		6.0f },
		{ "uf_seven",	7.0f },
		{ "uf_eight",	8.0f },
		{ "uf_half",	1.0f / 2.0f },
		{ "uf_third",	1.0f / 3.0f },
		{ "uf_fourth",	1.0f / 4.0f },
		{ "uf_fifth",	1.0f / 5.0f },
		{ "uf_sixth",	1.0f / 6.0f },
		{ "uf_seventh",	1.0f / 7.0f },
		{ "uf_eighth",	1.0f / 8.0f }
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_floatUniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_floatUniforms[i].name);
		if (uniLoc != -1)
			gl.uniform1f(uniLoc, s_floatUniforms[i].value);
	}

	// Vec2.
	struct Vec2Uniform { const char* name; Vec2 value; };
	static const Vec2Uniform s_vec2Uniforms[] =
	{
		{ "uv2_minusOne",	Vec2(-1.0f) },
		{ "uv2_zero",		Vec2(0.0f) },
		{ "uv2_half",		Vec2(0.5f) },
		{ "uv2_one",		Vec2(1.0f) },
		{ "uv2_two",		Vec2(2.0f) },
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_vec2Uniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_vec2Uniforms[i].name);
		if (uniLoc != -1)
			gl.uniform2fv(uniLoc, 1, s_vec2Uniforms[i].value.getPtr());
	}

	// Vec3.
	struct Vec3Uniform { const char* name; Vec3 value; };
	static const Vec3Uniform s_vec3Uniforms[] =
	{
		{ "uv3_minusOne",	Vec3(-1.0f) },
		{ "uv3_zero",		Vec3(0.0f) },
		{ "uv3_half",		Vec3(0.5f) },
		{ "uv3_one",		Vec3(1.0f) },
		{ "uv3_two",		Vec3(2.0f) },
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_vec3Uniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_vec3Uniforms[i].name);
		if (uniLoc != -1)
			gl.uniform3fv(uniLoc, 1, s_vec3Uniforms[i].value.getPtr());
	}

	// Vec4.
	struct Vec4Uniform { const char* name; Vec4 value; };
	static const Vec4Uniform s_vec4Uniforms[] =
	{
		{ "uv4_minusOne",	Vec4(-1.0f) },
		{ "uv4_zero",		Vec4(0.0f) },
		{ "uv4_half",		Vec4(0.5f) },
		{ "uv4_one",		Vec4(1.0f) },
		{ "uv4_two",		Vec4(2.0f) },
		{ "uv4_black",		Vec4(0.0f, 0.0f, 0.0f, 1.0f) },
		{ "uv4_gray",		Vec4(0.5f, 0.5f, 0.5f, 1.0f) },
		{ "uv4_white",		Vec4(1.0f, 1.0f, 1.0f, 1.0f) },
	};

	for (int i = 0; i < DE_LENGTH_OF_ARRAY(s_vec4Uniforms); i++)
	{
		int uniLoc = gl.getUniformLocation(programID, s_vec4Uniforms[i].name);
		if (uniLoc != -1)
			gl.uniform4fv(uniLoc, 1, s_vec4Uniforms[i].value.getPtr());
	}
}

} // gls
} // deqp