/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Invariance tests.
*//*--------------------------------------------------------------------*/
#include "es3fShaderInvarianceTests.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "gluContextInfo.hpp"
#include "gluRenderContext.hpp"
#include "gluShaderProgram.hpp"
#include "gluPixelTransfer.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuTestLog.hpp"
#include "tcuSurface.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuStringTemplate.hpp"
namespace deqp
{
namespace gles3
{
namespace Functional
{
namespace
{
class FormatArgumentList;
static tcu::Vec4 genRandomVector (de::Random& rnd)
{
tcu::Vec4 retVal;
retVal.x() = rnd.getFloat(-1.0f, 1.0f);
retVal.y() = rnd.getFloat(-1.0f, 1.0f);
retVal.z() = rnd.getFloat(-1.0f, 1.0f);
retVal.w() = rnd.getFloat( 0.2f, 1.0f);
return retVal;
}
class FormatArgument
{
public:
FormatArgument (const char* name, const std::string& value);
private:
friend class FormatArgumentList;
const char* const m_name;
const std::string m_value;
};
FormatArgument::FormatArgument (const char* name, const std::string& value)
: m_name (name)
, m_value (value)
{
}
class FormatArgumentList
{
public:
FormatArgumentList (void);
FormatArgumentList& operator<< (const FormatArgument&);
const std::map<std::string, std::string>& getArguments (void) const;
private:
std::map<std::string, std::string> m_formatArguments;
};
FormatArgumentList::FormatArgumentList (void)
{
}
FormatArgumentList& FormatArgumentList::operator<< (const FormatArgument& arg)
{
m_formatArguments[arg.m_name] = arg.m_value;
return *this;
}
const std::map<std::string, std::string>& FormatArgumentList::getArguments (void) const
{
return m_formatArguments;
}
static std::string formatGLSL (const char* templateString, const FormatArgumentList& args)
{
const std::map<std::string, std::string>& params = args.getArguments();
return tcu::StringTemplate(std::string(templateString)).specialize(params);
}
/*--------------------------------------------------------------------*//*!
* \brief Vertex shader invariance test
*
* Test vertex shader invariance by drawing a test pattern two times, each
* time with a different shader. Shaders have set identical values to
* invariant gl_Position using identical expressions. No fragments from the
* first pass using should remain visible.
*//*--------------------------------------------------------------------*/
class InvarianceTest : public TestCase
{
public:
struct ShaderPair
{
std::string vertexShaderSource0;
std::string fragmentShaderSource0;
std::string vertexShaderSource1;
std::string fragmentShaderSource1;
};
InvarianceTest (Context& ctx, const char* name, const char* desc);
~InvarianceTest (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
virtual ShaderPair genShaders (void) const = DE_NULL;
bool checkImage (const tcu::Surface&) const;
glu::ShaderProgram* m_shader0;
glu::ShaderProgram* m_shader1;
glw::GLuint m_arrayBuf;
int m_verticesInPattern;
const int m_renderSize;
};
InvarianceTest::InvarianceTest (Context& ctx, const char* name, const char* desc)
: TestCase (ctx, name, desc)
, m_shader0 (DE_NULL)
, m_shader1 (DE_NULL)
, m_arrayBuf (0)
, m_verticesInPattern (0)
, m_renderSize (256)
{
}
InvarianceTest::~InvarianceTest (void)
{
deinit();
}
void InvarianceTest::init (void)
{
// Invariance tests require drawing to the screen and reading back results.
// Tests results are not reliable if the resolution is too small
{
if (m_context.getRenderTarget().getWidth() < m_renderSize ||
m_context.getRenderTarget().getHeight() < m_renderSize)
throw tcu::NotSupportedError(std::string("Render target size must be at least ") + de::toString(m_renderSize) + "x" + de::toString(m_renderSize));
}
// Gen shaders
{
ShaderPair vertexShaders = genShaders();
m_shader0 = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(vertexShaders.vertexShaderSource0) << glu::FragmentSource(vertexShaders.fragmentShaderSource0));
if (!m_shader0->isOk())
{
m_testCtx.getLog() << *m_shader0;
throw tcu::TestError("Test shader compile failed.");
}
m_shader1 = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(vertexShaders.vertexShaderSource1) << glu::FragmentSource(vertexShaders.fragmentShaderSource1));
if (!m_shader1->isOk())
{
m_testCtx.getLog() << *m_shader1;
throw tcu::TestError("Test shader compile failed.");
}
// log
m_testCtx.getLog()
<< tcu::TestLog::Message << "Shader 1:" << tcu::TestLog::EndMessage
<< *m_shader0
<< tcu::TestLog::Message << "Shader 2:" << tcu::TestLog::EndMessage
<< *m_shader1;
}
// Gen test pattern
{
const int numTriangles = 72;
de::Random rnd (123);
std::vector<tcu::Vec4> triangles (numTriangles * 3 * 2);
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
// Narrow triangle pattern
for (int triNdx = 0; triNdx < numTriangles; ++triNdx)
{
const tcu::Vec4 vertex1 = genRandomVector(rnd);
const tcu::Vec4 vertex2 = genRandomVector(rnd);
const tcu::Vec4 vertex3 = vertex2 + genRandomVector(rnd) * 0.01f; // generate narrow triangles
triangles[triNdx*3 + 0] = vertex1;
triangles[triNdx*3 + 1] = vertex2;
triangles[triNdx*3 + 2] = vertex3;
}
// Normal triangle pattern
for (int triNdx = 0; triNdx < numTriangles; ++triNdx)
{
triangles[(numTriangles + triNdx)*3 + 0] = genRandomVector(rnd);
triangles[(numTriangles + triNdx)*3 + 1] = genRandomVector(rnd);
triangles[(numTriangles + triNdx)*3 + 2] = genRandomVector(rnd);
}
// upload
gl.genBuffers(1, &m_arrayBuf);
gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf);
gl.bufferData(GL_ARRAY_BUFFER, (int)(triangles.size() * sizeof(tcu::Vec4)), &triangles[0], GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "buffer gen");
m_verticesInPattern = numTriangles * 3;
}
}
void InvarianceTest::deinit (void)
{
delete m_shader0;
delete m_shader1;
m_shader0 = DE_NULL;
m_shader1 = DE_NULL;
if (m_arrayBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_arrayBuf);
m_arrayBuf = 0;
}
}
InvarianceTest::IterateResult InvarianceTest::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const bool depthBufferExists = m_context.getRenderTarget().getDepthBits() != 0;
tcu::Surface resultSurface (m_renderSize, m_renderSize);
bool error = false;
// Prepare draw
gl.clearColor (0.0f, 0.0f, 0.0f, 1.0f);
gl.clear (GL_COLOR_BUFFER_BIT);
gl.viewport (0, 0, m_renderSize, m_renderSize);
gl.bindBuffer (GL_ARRAY_BUFFER, m_arrayBuf);
GLU_EXPECT_NO_ERROR (gl.getError(), "setup draw");
m_testCtx.getLog() << tcu::TestLog::Message << "Testing position invariance." << tcu::TestLog::EndMessage;
// Draw position check passes
for (int passNdx = 0; passNdx < 2; ++passNdx)
{
const glu::ShaderProgram& shader = (passNdx == 0) ? (*m_shader0) : (*m_shader1);
const glw::GLint positionLoc = gl.getAttribLocation(shader.getProgram(), "a_input");
const glw::GLint colorLoc = gl.getUniformLocation(shader.getProgram(), "u_color");
const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 color = (passNdx == 0) ? (red) : (green);
const char* const colorStr = (passNdx == 0) ? ("red - purple") : ("green");
m_testCtx.getLog() << tcu::TestLog::Message << "Drawing position test pattern using shader " << (passNdx+1) << ". Primitive color: " << colorStr << "." << tcu::TestLog::EndMessage;
gl.useProgram (shader.getProgram());
gl.uniform4fv (colorLoc, 1, color.getPtr());
gl.enableVertexAttribArray (positionLoc);
gl.vertexAttribPointer (positionLoc, 4, GL_FLOAT, GL_FALSE, sizeof(tcu::Vec4), DE_NULL);
gl.drawArrays (GL_TRIANGLES, 0, m_verticesInPattern);
gl.disableVertexAttribArray (positionLoc);
GLU_EXPECT_NO_ERROR (gl.getError(), "draw pass");
}
// Read result
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
// Check there are no red pixels
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying output. Expecting only green or background colored pixels." << tcu::TestLog::EndMessage;
error |= !checkImage(resultSurface);
if (!depthBufferExists)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Depth buffer not available, skipping z-test." << tcu::TestLog::EndMessage;
}
else
{
// Test with Z-test
gl.clearDepthf (1.0f);
gl.clear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
gl.enable (GL_DEPTH_TEST);
m_testCtx.getLog() << tcu::TestLog::Message << "Testing position invariance with z-test. Enabling GL_DEPTH_TEST." << tcu::TestLog::EndMessage;
// Draw position check passes
for (int passNdx = 0; passNdx < 2; ++passNdx)
{
const glu::ShaderProgram& shader = (passNdx == 0) ? (*m_shader0) : (*m_shader1);
const glw::GLint positionLoc = gl.getAttribLocation(shader.getProgram(), "a_input");
const glw::GLint colorLoc = gl.getUniformLocation(shader.getProgram(), "u_color");
const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 color = (passNdx == 0) ? (red) : (green);
const glw::GLenum depthFunc = (passNdx == 0) ? (GL_ALWAYS) : (GL_EQUAL);
const char* const depthFuncStr = (passNdx == 0) ? ("GL_ALWAYS") : ("GL_EQUAL");
const char* const colorStr = (passNdx == 0) ? ("red - purple") : ("green");
m_testCtx.getLog() << tcu::TestLog::Message << "Drawing Z-test pattern using shader " << (passNdx+1) << ". Primitive color: " << colorStr << ". DepthFunc: " << depthFuncStr << tcu::TestLog::EndMessage;
gl.useProgram (shader.getProgram());
gl.uniform4fv (colorLoc, 1, color.getPtr());
gl.depthFunc (depthFunc);
gl.enableVertexAttribArray (positionLoc);
gl.vertexAttribPointer (positionLoc, 4, GL_FLOAT, GL_FALSE, sizeof(tcu::Vec4), DE_NULL);
gl.drawArrays (GL_TRIANGLES, m_verticesInPattern, m_verticesInPattern); // !< buffer contains 2 m_verticesInPattern-sized patterns
gl.disableVertexAttribArray (positionLoc);
GLU_EXPECT_NO_ERROR (gl.getError(), "draw pass");
}
// Read result
glu::readPixels(m_context.getRenderContext(), 0, 0, resultSurface.getAccess());
// Check there are no red pixels
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying output. Expecting only green or background colored pixels." << tcu::TestLog::EndMessage;
error |= !checkImage(resultSurface);
}
// Report result
if (error)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Detected variance between two invariant values");
else
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
bool InvarianceTest::checkImage (const tcu::Surface& surface) const
{
const tcu::IVec4 okColor = tcu::IVec4(0, 255, 0, 255);
const tcu::RGBA errColor = tcu::RGBA(255, 0, 0, 255);
bool error = false;
tcu::Surface errorMask (m_renderSize, m_renderSize);
tcu::clear(errorMask.getAccess(), okColor);
for (int y = 0; y < m_renderSize; ++y)
for (int x = 0; x < m_renderSize; ++x)
{
const tcu::RGBA col = surface.getPixel(x, y);
if (col.getRed() != 0)
{
errorMask.setPixel(x, y, errColor);
error = true;
}
}
// report error
if (error)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Invalid pixels found (fragments from first render pass found). Variance detected." << tcu::TestLog::EndMessage;
m_testCtx.getLog()
<< tcu::TestLog::ImageSet("Results", "Result verification")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::Image("Error mask", "Error mask", errorMask)
<< tcu::TestLog::EndImageSet;
return false;
}
else
{
m_testCtx.getLog() << tcu::TestLog::Message << "No variance found." << tcu::TestLog::EndMessage;
m_testCtx.getLog()
<< tcu::TestLog::ImageSet("Results", "Result verification")
<< tcu::TestLog::Image("Result", "Result", surface)
<< tcu::TestLog::EndImageSet;
return true;
}
}
class BasicInvarianceTest : public InvarianceTest
{
public:
BasicInvarianceTest (Context& ctx, const char* name, const char* desc, const std::string& vertexShader1, const std::string& vertexShader2);
BasicInvarianceTest (Context& ctx, const char* name, const char* desc, const std::string& vertexShader1, const std::string& vertexShader2, const std::string& fragmentShader);
ShaderPair genShaders (void) const;
private:
const std::string m_vertexShader1;
const std::string m_vertexShader2;
const std::string m_fragmentShader;
static const char* const s_basicFragmentShader;
};
const char* const BasicInvarianceTest::s_basicFragmentShader = "#version 300 es\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"uniform mediump vec4 u_color;\n"
"in mediump vec4 v_unrelated;\n"
"void main ()\n"
"{\n"
" mediump float blue = dot(v_unrelated, vec4(1.0, 1.0, 1.0, 1.0));\n"
" fragColor = vec4(u_color.r, u_color.g, blue, u_color.a);\n"
"}\n";
BasicInvarianceTest::BasicInvarianceTest (Context& ctx, const char* name, const char* desc, const std::string& vertexShader1, const std::string& vertexShader2)
: InvarianceTest (ctx, name, desc)
, m_vertexShader1 (vertexShader1)
, m_vertexShader2 (vertexShader2)
, m_fragmentShader (s_basicFragmentShader)
{
}
BasicInvarianceTest::BasicInvarianceTest (Context& ctx, const char* name, const char* desc, const std::string& vertexShader1, const std::string& vertexShader2, const std::string& fragmentShader)
: InvarianceTest (ctx, name, desc)
, m_vertexShader1 (vertexShader1)
, m_vertexShader2 (vertexShader2)
, m_fragmentShader (fragmentShader)
{
}
BasicInvarianceTest::ShaderPair BasicInvarianceTest::genShaders (void) const
{
ShaderPair retVal;
retVal.vertexShaderSource0 = m_vertexShader1;
retVal.vertexShaderSource1 = m_vertexShader2;
retVal.fragmentShaderSource0 = m_fragmentShader;
retVal.fragmentShaderSource1 = m_fragmentShader;
return retVal;
}
} // anonymous
ShaderInvarianceTests::ShaderInvarianceTests (Context& context)
: TestCaseGroup(context, "invariance", "Invariance tests")
{
}
ShaderInvarianceTests::~ShaderInvarianceTests (void)
{
}
void ShaderInvarianceTests::init (void)
{
static const struct PrecisionCase
{
glu::Precision prec;
const char* name;
// set literals in the glsl to be in the representable range
const char* highValue; // !< highValue < maxValue
const char* invHighValue;
const char* mediumValue; // !< mediumValue^2 < maxValue
const char* lowValue; // !< lowValue^4 < maxValue
const char* invlowValue;
int loopIterations;
int loopPartialIterations;
int loopNormalizationExponent;
const char* loopNormalizationConstantLiteral;
const char* loopMultiplier;
const char* sumLoopNormalizationConstantLiteral;
} precisions[] =
{
{ glu::PRECISION_HIGHP, "highp", "1.0e20", "1.0e-20", "1.0e14", "1.0e9", "1.0e-9", 14, 11, 2, "1.0e4", "1.9", "1.0e3" },
{ glu::PRECISION_MEDIUMP, "mediump", "1.0e4", "1.0e-4", "1.0e2", "1.0e1", "1.0e-1", 13, 11, 2, "1.0e4", "1.9", "1.0e3" },
{ glu::PRECISION_LOWP, "lowp", "0.9", "1.1", "1.1", "1.15", "0.87", 6, 2, 0, "2.0", "1.1", "1.0" },
};
for (int precNdx = 0; precNdx < DE_LENGTH_OF_ARRAY(precisions); ++precNdx)
{
const char* const precisionName = precisions[precNdx].name;
const glu::Precision precision = precisions[precNdx].prec;
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, precisionName, "Invariance tests using the given precision.");
const FormatArgumentList args = FormatArgumentList()
<< FormatArgument("VERSION", "#version 300 es\n")
<< FormatArgument("IN", "in")
<< FormatArgument("OUT", "out")
<< FormatArgument("IN_PREC", precisionName)
<< FormatArgument("HIGH_VALUE", de::toString(precisions[precNdx].highValue))
<< FormatArgument("HIGH_VALUE_INV", de::toString(precisions[precNdx].invHighValue))
<< FormatArgument("MEDIUM_VALUE", de::toString(precisions[precNdx].mediumValue))
<< FormatArgument("LOW_VALUE", de::toString(precisions[precNdx].lowValue))
<< FormatArgument("LOW_VALUE_INV", de::toString(precisions[precNdx].invlowValue))
<< FormatArgument("LOOP_ITERS", de::toString(precisions[precNdx].loopIterations))
<< FormatArgument("LOOP_ITERS_PARTIAL", de::toString(precisions[precNdx].loopPartialIterations))
<< FormatArgument("LOOP_NORM_FRACT_EXP", de::toString(precisions[precNdx].loopNormalizationExponent))
<< FormatArgument("LOOP_NORM_LITERAL", precisions[precNdx].loopNormalizationConstantLiteral)
<< FormatArgument("LOOP_MULTIPLIER", precisions[precNdx].loopMultiplier)
<< FormatArgument("SUM_LOOP_NORM_LITERAL", precisions[precNdx].sumLoopNormalizationConstantLiteral);
addChild(group);
// subexpression cases
{
// First shader shares "${HIGH_VALUE}*a_input.x*a_input.xxxx + ${HIGH_VALUE}*a_input.y*a_input.yyyy" with unrelated output variable. Reordering might result in accuracy loss
// due to the high exponent. In the second shader, the high exponent may be removed during compilation.
group->addChild(new BasicInvarianceTest(m_context, "common_subexpression_0", "Shader shares a subexpression with an unrelated variable.",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" v_unrelated = a_input.xzxz + (${HIGH_VALUE}*a_input.x*a_input.xxxx + ${HIGH_VALUE}*a_input.y*a_input.yyyy) * (1.08 * a_input.zyzy * a_input.xzxz) * ${HIGH_VALUE_INV} * (a_input.z * a_input.zzxz - a_input.z * a_input.zzxz) + (${HIGH_VALUE}*a_input.x*a_input.xxxx + ${HIGH_VALUE}*a_input.y*a_input.yyyy) / ${HIGH_VALUE};\n"
" gl_Position = a_input + (${HIGH_VALUE}*a_input.x*a_input.xxxx + ${HIGH_VALUE}*a_input.y*a_input.yyyy) * ${HIGH_VALUE_INV};\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" gl_Position = a_input + (${HIGH_VALUE}*a_input.x*a_input.xxxx + ${HIGH_VALUE}*a_input.y*a_input.yyyy) * ${HIGH_VALUE_INV};\n"
"}\n", args)));
// In the first shader, the unrelated variable "d" has mathematically the same expression as "e", but the different
// order of calculation might cause different results.
group->addChild(new BasicInvarianceTest(m_context, "common_subexpression_1", "Shader shares a subexpression with an unrelated variable.",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 a = ${HIGH_VALUE} * a_input.zzxx + a_input.xzxy - ${HIGH_VALUE} * a_input.zzxx;\n"
" ${IN_PREC} vec4 b = ${HIGH_VALUE} * a_input.zzxx;\n"
" ${IN_PREC} vec4 c = b - ${HIGH_VALUE} * a_input.zzxx + a_input.xzxy;\n"
" ${IN_PREC} vec4 d = (${LOW_VALUE} * a_input.yzxx) * (${LOW_VALUE} * a_input.yzzw) * (1.1*${LOW_VALUE_INV} * a_input.yzxx) * (${LOW_VALUE_INV} * a_input.xzzy);\n"
" ${IN_PREC} vec4 e = ((${LOW_VALUE} * a_input.yzxx) * (1.1*${LOW_VALUE_INV} * a_input.yzxx)) * ((${LOW_VALUE_INV} * a_input.xzzy) * (${LOW_VALUE} * a_input.yzzw));\n"
" v_unrelated = a + b + c + d + e;\n"
" gl_Position = a_input + fract(c) + e;\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 b = ${HIGH_VALUE} * a_input.zzxx;\n"
" ${IN_PREC} vec4 c = b - ${HIGH_VALUE} * a_input.zzxx + a_input.xzxy;\n"
" ${IN_PREC} vec4 e = ((${LOW_VALUE} * a_input.yzxx) * (1.1*${LOW_VALUE_INV} * a_input.yzxx)) * ((${LOW_VALUE_INV} * a_input.xzzy) * (${LOW_VALUE} * a_input.yzzw));\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" gl_Position = a_input + fract(c) + e;\n"
"}\n", args)));
// Intermediate values used by an unrelated output variable
group->addChild(new BasicInvarianceTest(m_context, "common_subexpression_2", "Shader shares a subexpression with an unrelated variable.",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 a = ${MEDIUM_VALUE} * (a_input.xxxx + a_input.yyyy);\n"
" ${IN_PREC} vec4 b = (${MEDIUM_VALUE} * (a_input.xxxx + a_input.yyyy)) * (${MEDIUM_VALUE} * (a_input.xxxx + a_input.yyyy)) / ${MEDIUM_VALUE} / ${MEDIUM_VALUE};\n"
" ${IN_PREC} vec4 c = a * a;\n"
" ${IN_PREC} vec4 d = c / ${MEDIUM_VALUE} / ${MEDIUM_VALUE};\n"
" v_unrelated = a + b + c + d;\n"
" gl_Position = a_input + d;\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 a = ${MEDIUM_VALUE} * (a_input.xxxx + a_input.yyyy);\n"
" ${IN_PREC} vec4 c = a * a;\n"
" ${IN_PREC} vec4 d = c / ${MEDIUM_VALUE} / ${MEDIUM_VALUE};\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" gl_Position = a_input + d;\n"
"}\n", args)));
// Invariant value can be calculated using unrelated value
group->addChild(new BasicInvarianceTest(m_context, "common_subexpression_3", "Shader shares a subexpression with an unrelated variable.",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} float x = a_input.x * 0.2;\n"
" ${IN_PREC} vec4 a = a_input.xxyx * 0.7;\n"
" ${IN_PREC} vec4 b = a_input.yxyz * 0.7;\n"
" ${IN_PREC} vec4 c = a_input.zxyx * 0.5;\n"
" ${IN_PREC} vec4 f = x*a + x*b + x*c;\n"
" v_unrelated = f;\n"
" ${IN_PREC} vec4 g = x * (a + b + c);\n"
" gl_Position = a_input + g;\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} float x = a_input.x * 0.2;\n"
" ${IN_PREC} vec4 a = a_input.xxyx * 0.7;\n"
" ${IN_PREC} vec4 b = a_input.yxyz * 0.7;\n"
" ${IN_PREC} vec4 c = a_input.zxyx * 0.5;\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" ${IN_PREC} vec4 g = x * (a + b + c);\n"
" gl_Position = a_input + g;\n"
"}\n", args)));
}
// shared subexpression of different precision
{
for (int precisionOther = glu::PRECISION_LOWP; precisionOther != glu::PRECISION_LAST; ++precisionOther)
{
const char* const unrelatedPrec = glu::getPrecisionName((glu::Precision)precisionOther);
const glu::Precision minPrecision = (precisionOther < (int)precision) ? ((glu::Precision)precisionOther) : (precision);
const char* const multiplierStr = (minPrecision == glu::PRECISION_LOWP) ? ("0.8, 0.4, -0.2, 0.3") : ("1.0e1, 5.0e2, 2.0e2, 1.0");
const char* const normalizationStrUsed = (minPrecision == glu::PRECISION_LOWP) ? ("vec4(fract(used2).xyz, 0.0)") : ("vec4(fract(used2 / 1.0e2).xyz - fract(used2 / 1.0e3).xyz, 0.0)");
const char* const normalizationStrUnrelated = (minPrecision == glu::PRECISION_LOWP) ? ("vec4(fract(unrelated2).xyz, 0.0)") : ("vec4(fract(unrelated2 / 1.0e2).xyz - fract(unrelated2 / 1.0e3).xyz, 0.0)");
group->addChild(new BasicInvarianceTest(m_context, ("subexpression_precision_" + std::string(unrelatedPrec)).c_str(), "Shader shares subexpression of different precision with an unrelated variable.",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} ${UNRELATED_PREC} vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${UNRELATED_PREC} vec4 unrelated0 = a_input + vec4(0.1, 0.2, 0.3, 0.4);\n"
" ${UNRELATED_PREC} vec4 unrelated1 = vec4(${MULTIPLIER}) * unrelated0.xywz + unrelated0;\n"
" ${UNRELATED_PREC} vec4 unrelated2 = refract(unrelated1, unrelated0, distance(unrelated0, unrelated1));\n"
" v_unrelated = a_input + 0.02 * ${NORMALIZE_UNRELATED};\n"
" ${IN_PREC} vec4 used0 = a_input + vec4(0.1, 0.2, 0.3, 0.4);\n"
" ${IN_PREC} vec4 used1 = vec4(${MULTIPLIER}) * used0.xywz + used0;\n"
" ${IN_PREC} vec4 used2 = refract(used1, used0, distance(used0, used1));\n"
" gl_Position = a_input + 0.02 * ${NORMALIZE_USED};\n"
"}\n", FormatArgumentList(args)
<< FormatArgument("UNRELATED_PREC", unrelatedPrec)
<< FormatArgument("MULTIPLIER", multiplierStr)
<< FormatArgument("NORMALIZE_USED", normalizationStrUsed)
<< FormatArgument("NORMALIZE_UNRELATED", normalizationStrUnrelated)),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} ${UNRELATED_PREC} vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" ${IN_PREC} vec4 used0 = a_input + vec4(0.1, 0.2, 0.3, 0.4);\n"
" ${IN_PREC} vec4 used1 = vec4(${MULTIPLIER}) * used0.xywz + used0;\n"
" ${IN_PREC} vec4 used2 = refract(used1, used0, distance(used0, used1));\n"
" gl_Position = a_input + 0.02 * ${NORMALIZE_USED};\n"
"}\n", FormatArgumentList(args)
<< FormatArgument("UNRELATED_PREC", unrelatedPrec)
<< FormatArgument("MULTIPLIER", multiplierStr)
<< FormatArgument("NORMALIZE_USED", normalizationStrUsed)
<< FormatArgument("NORMALIZE_UNRELATED", normalizationStrUnrelated))));
}
}
// loops
{
group->addChild(new BasicInvarianceTest(m_context, "loop_0", "Invariant value set using a loop",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} highp vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" v_unrelated += value;\n"
" }\n"
" gl_Position = vec4(value.xyz / ${LOOP_NORM_LITERAL} + a_input.xyz * 0.1, 1.0);\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} highp vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" }\n"
" gl_Position = vec4(value.xyz / ${LOOP_NORM_LITERAL} + a_input.xyz * 0.1, 1.0);\n"
"}\n", args)));
group->addChild(new BasicInvarianceTest(m_context, "loop_1", "Invariant value set using a loop",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" if (i == ${LOOP_ITERS_PARTIAL})\n"
" v_unrelated = value;\n"
" }\n"
" gl_Position = vec4(value.xyz / ${LOOP_NORM_LITERAL} + a_input.xyz * 0.1, 1.0);\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" }\n"
" gl_Position = vec4(value.xyz / ${LOOP_NORM_LITERAL} + a_input.xyz * 0.1, 1.0);\n"
"}\n", args)));
group->addChild(new BasicInvarianceTest(m_context, "loop_2", "Invariant value set using a loop",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, -1.0, 1.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" if (i == ${LOOP_ITERS_PARTIAL})\n"
" gl_Position = a_input + 0.05 * vec4(fract(value.xyz / 1.0e${LOOP_NORM_FRACT_EXP}), 1.0);\n"
" else\n"
" v_unrelated = value + a_input;\n"
" }\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, -1.0, 1.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" if (i == ${LOOP_ITERS_PARTIAL})\n"
" gl_Position = a_input + 0.05 * vec4(fract(value.xyz / 1.0e${LOOP_NORM_FRACT_EXP}), 1.0);\n"
" else\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" }\n"
"}\n", args)));
group->addChild(new BasicInvarianceTest(m_context, "loop_3", "Invariant value set using a loop",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" gl_Position += vec4(value.xyz / ${SUM_LOOP_NORM_LITERAL} + a_input.xyz * 0.1, 1.0);\n"
" v_unrelated = gl_Position.xyzx * a_input;\n"
" }\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 value = a_input;\n"
" gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value *= ${LOOP_MULTIPLIER};\n"
" gl_Position += vec4(value.xyz / ${SUM_LOOP_NORM_LITERAL} + a_input.xyz * 0.1, 1.0);\n"
" }\n"
"}\n", args)));
group->addChild(new BasicInvarianceTest(m_context, "loop_4", "Invariant value set using a loop",
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 position = vec4(0.0, 0.0, 0.0, 0.0);\n"
" ${IN_PREC} vec4 value1 = a_input;\n"
" ${IN_PREC} vec4 value2 = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value1 *= ${LOOP_MULTIPLIER};\n"
" v_unrelated = v_unrelated*1.3 + a_input.xyzx * value1.xyxw;\n"
" }\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value2 *= ${LOOP_MULTIPLIER};\n"
" position = position*1.3 + a_input.xyzx * value2.xyxw;\n"
" }\n"
" gl_Position = a_input + 0.05 * vec4(fract(position.xyz / 1.0e${LOOP_NORM_FRACT_EXP}), 1.0);\n"
"}\n", args),
formatGLSL( "${VERSION}"
"${IN} ${IN_PREC} vec4 a_input;\n"
"${OUT} mediump vec4 v_unrelated;\n"
"invariant gl_Position;\n"
"void main ()\n"
"{\n"
" ${IN_PREC} vec4 position = vec4(0.0, 0.0, 0.0, 0.0);\n"
" ${IN_PREC} vec4 value2 = a_input;\n"
" v_unrelated = vec4(0.0, 0.0, 0.0, 0.0);\n"
" for (mediump int i = 0; i < ${LOOP_ITERS}; ++i)\n"
" {\n"
" value2 *= ${LOOP_MULTIPLIER};\n"
" position = position*1.3 + a_input.xyzx * value2.xyxw;\n"
" }\n"
" gl_Position = a_input + 0.05 * vec4(fract(position.xyz / 1.0e${LOOP_NORM_FRACT_EXP}), 1.0);\n"
"}\n", args)));
}
}
}
} // Functional
} // gles3
} // deqp