/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Shader built-in variable tests.
*//*--------------------------------------------------------------------*/
#include "es3fShaderBuiltinVarTests.hpp"
#include "glsShaderRenderCase.hpp"
#include "glsShaderExecUtil.hpp"
#include "deRandom.hpp"
#include "deString.h"
#include "deMath.h"
#include "deUniquePtr.hpp"
#include "deStringUtil.hpp"
#include "tcuTestLog.hpp"
#include "tcuTestCase.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuImageCompare.hpp"
#include "gluPixelTransfer.hpp"
#include "gluDrawUtil.hpp"
#include "gluStrUtil.hpp"
#include "rrRenderer.hpp"
#include "rrFragmentOperations.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
using std::string;
using std::vector;
using tcu::TestLog;
namespace deqp
{
namespace gles3
{
namespace Functional
{
static int getInteger (const glw::Functions& gl, deUint32 pname)
{
int value = -1;
gl.getIntegerv(pname, &value);
GLU_EXPECT_NO_ERROR(gl.getError(), ("glGetIntegerv(" + glu::getGettableStateStr((int)pname).toString() + ")").c_str());
return value;
}
template<deUint32 Pname>
static int getInteger (const glw::Functions& gl)
{
return getInteger(gl, Pname);
}
static int getVectorsFromComps (const glw::Functions& gl, deUint32 pname)
{
int value = -1;
gl.getIntegerv(pname, &value);
GLU_EXPECT_NO_ERROR(gl.getError(), ("glGetIntegerv(" + glu::getGettableStateStr((int)pname).toString() + ")").c_str());
// Accept truncated division. According to the spec, the number of vectors is number of components divided by four, plain and simple.
return value/4;
}
template<deUint32 Pname>
static int getVectorsFromComps (const glw::Functions& gl)
{
return getVectorsFromComps(gl, Pname);
}
class ShaderBuiltinConstantCase : public TestCase
{
public:
typedef int (*GetConstantValueFunc) (const glw::Functions& gl);
ShaderBuiltinConstantCase (Context& context, const char* name, const char* desc, const char* varName, GetConstantValueFunc getValue, glu::ShaderType shaderType);
~ShaderBuiltinConstantCase (void);
IterateResult iterate (void);
private:
const std::string m_varName;
const GetConstantValueFunc m_getValue;
const glu::ShaderType m_shaderType;
};
ShaderBuiltinConstantCase::ShaderBuiltinConstantCase (Context& context, const char* name, const char* desc, const char* varName, GetConstantValueFunc getValue, glu::ShaderType shaderType)
: TestCase (context, name, desc)
, m_varName (varName)
, m_getValue (getValue)
, m_shaderType (shaderType)
{
}
ShaderBuiltinConstantCase::~ShaderBuiltinConstantCase (void)
{
}
static gls::ShaderExecUtil::ShaderExecutor* createGetConstantExecutor (const glu::RenderContext& renderCtx, glu::ShaderType shaderType, const std::string& varName)
{
using namespace gls::ShaderExecUtil;
ShaderSpec shaderSpec;
shaderSpec.version = glu::GLSL_VERSION_300_ES;
shaderSpec.source = string("result = ") + varName + ";\n";
shaderSpec.outputs.push_back(Symbol("result", glu::VarType(glu::TYPE_INT, glu::PRECISION_HIGHP)));
return createExecutor(renderCtx, shaderType, shaderSpec);
}
ShaderBuiltinConstantCase::IterateResult ShaderBuiltinConstantCase::iterate (void)
{
using namespace gls::ShaderExecUtil;
const de::UniquePtr<ShaderExecutor> shaderExecutor (createGetConstantExecutor(m_context.getRenderContext(), m_shaderType, m_varName));
const int reference = m_getValue(m_context.getRenderContext().getFunctions());
int result = -1;
void* const outputs = &result;
if (!shaderExecutor->isOk())
{
shaderExecutor->log(m_testCtx.getLog());
TCU_FAIL("Compile failed");
}
shaderExecutor->useProgram();
shaderExecutor->execute(1, DE_NULL, &outputs);
m_testCtx.getLog() << TestLog::Integer(m_varName, m_varName, "", QP_KEY_TAG_NONE, result);
if (result != reference)
{
m_testCtx.getLog() << TestLog::Message << "ERROR: Expected " << m_varName << " = " << reference << TestLog::EndMessage
<< TestLog::Message << "Test shader:" << TestLog::EndMessage;
shaderExecutor->log(m_testCtx.getLog());
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Invalid builtin constant value");
}
else
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
namespace
{
struct DepthRangeParams
{
DepthRangeParams (void)
: zNear (0.0f)
, zFar (1.0f)
{
}
DepthRangeParams (float zNear_, float zFar_)
: zNear (zNear_)
, zFar (zFar_)
{
}
float zNear;
float zFar;
};
class DepthRangeEvaluator : public gls::ShaderEvaluator
{
public:
DepthRangeEvaluator (const DepthRangeParams& params)
: m_params(params)
{
}
void evaluate (gls::ShaderEvalContext& c)
{
float zNear = deFloatClamp(m_params.zNear, 0.0f, 1.0f);
float zFar = deFloatClamp(m_params.zFar, 0.0f, 1.0f);
float diff = zFar - zNear;
c.color.xyz() = tcu::Vec3(zNear, zFar, diff*0.5f + 0.5f);
}
private:
const DepthRangeParams& m_params;
};
} // anonymous
class ShaderDepthRangeTest : public gls::ShaderRenderCase
{
public:
ShaderDepthRangeTest (Context& context, const char* name, const char* desc, bool isVertexCase)
: ShaderRenderCase (context.getTestContext(), context.getRenderContext(), context.getContextInfo(), name, desc, isVertexCase, m_evaluator)
, m_evaluator (m_depthRange)
, m_iterNdx (0)
{
}
void init (void)
{
static const char* defaultVertSrc =
"#version 300 es\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n";
static const char* defaultFragSrc =
"#version 300 es\n"
"in mediump vec4 v_color;\n"
"layout(location = 0) out mediump vec4 o_color;\n\n"
"void main (void)\n"
"{\n"
" o_color = v_color;\n"
"}\n";
// Construct shader.
std::ostringstream src;
src << "#version 300 es\n";
if (m_isVertexCase)
src << "in highp vec4 a_position;\n"
<< "out mediump vec4 v_color;\n";
else
src << "layout(location = 0) out mediump vec4 o_color;\n";
src << "void main (void)\n{\n";
src << "\t" << (m_isVertexCase ? "v_color" : "o_color") << " = vec4(gl_DepthRange.near, gl_DepthRange.far, gl_DepthRange.diff*0.5 + 0.5, 1.0);\n";
if (m_isVertexCase)
src << "\tgl_Position = a_position;\n";
src << "}\n";
m_vertShaderSource = m_isVertexCase ? src.str() : defaultVertSrc;
m_fragShaderSource = m_isVertexCase ? defaultFragSrc : src.str();
gls::ShaderRenderCase::init();
}
IterateResult iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
const DepthRangeParams cases[] =
{
DepthRangeParams(0.0f, 1.0f),
DepthRangeParams(1.5f, -1.0f),
DepthRangeParams(0.7f, 0.3f)
};
m_depthRange = cases[m_iterNdx];
m_testCtx.getLog() << tcu::TestLog::Message << "glDepthRangef(" << m_depthRange.zNear << ", " << m_depthRange.zFar << ")" << tcu::TestLog::EndMessage;
gl.depthRangef(m_depthRange.zNear, m_depthRange.zFar);
GLU_EXPECT_NO_ERROR(gl.getError(), "glDepthRangef()");
gls::ShaderRenderCase::iterate();
m_iterNdx += 1;
if (m_iterNdx == DE_LENGTH_OF_ARRAY(cases) || m_testCtx.getTestResult() != QP_TEST_RESULT_PASS)
return STOP;
else
return CONTINUE;
}
private:
DepthRangeParams m_depthRange;
DepthRangeEvaluator m_evaluator;
int m_iterNdx;
};
class FragCoordXYZCase : public TestCase
{
public:
FragCoordXYZCase (Context& context)
: TestCase(context, "fragcoord_xyz", "gl_FragCoord.xyz Test")
{
}
IterateResult iterate (void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int width = m_context.getRenderTarget().getWidth();
const int height = m_context.getRenderTarget().getHeight();
const tcu::RGBA threshold = tcu::RGBA(1,1,1,1) + m_context.getRenderTarget().getPixelFormat().getColorThreshold();
const tcu::Vec3 scale (1.f / float(width), 1.f / float(height), 1.0f);
tcu::Surface testImg (width, height);
tcu::Surface refImg (width, height);
const glu::ShaderProgram program(m_context.getRenderContext(), glu::makeVtxFragSources(
"#version 300 es\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n",
"#version 300 es\n"
"uniform highp vec3 u_scale;\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"void main (void)\n"
"{\n"
" o_color = vec4(gl_FragCoord.xyz*u_scale, 1.0);\n"
"}\n"));
log << program;
if (!program.isOk())
throw tcu::TestError("Compile failed");
// Draw with GL.
{
const float positions[] =
{
-1.0f, 1.0f, -1.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 1.0f, 1.0f
};
const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale");
glu::VertexArrayBinding posBinding = glu::va::Float("a_position", 4, 4, 0, &positions[0]);
gl.useProgram(program.getProgram());
gl.uniform3fv(scaleLoc, 1, scale.getPtr());
glu::draw(m_context.getRenderContext(), program.getProgram(), 1, &posBinding,
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
glu::readPixels(m_context.getRenderContext(), 0, 0, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
}
// Draw reference
for (int y = 0; y < refImg.getHeight(); y++)
{
for (int x = 0; x < refImg.getWidth(); x++)
{
const float xf = (float(x)+.5f) / float(refImg.getWidth());
const float yf = (float(refImg.getHeight()-y-1)+.5f) / float(refImg.getHeight());
const float z = (xf + yf) / 2.0f;
const tcu::Vec3 fragCoord (float(x)+.5f, float(y)+.5f, z);
const tcu::Vec3 scaledFC = fragCoord*scale;
const tcu::Vec4 color (scaledFC.x(), scaledFC.y(), scaledFC.z(), 1.0f);
refImg.setPixel(x, y, tcu::RGBA(color));
}
}
// Compare
{
bool isOk = tcu::pixelThresholdCompare(log, "Result", "Image comparison result", refImg, testImg, threshold, tcu::COMPARE_LOG_RESULT);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
}
return STOP;
}
};
static inline float projectedTriInterpolate (const tcu::Vec3& s, const tcu::Vec3& w, float nx, float ny)
{
return (s[0]*(1.0f-nx-ny)/w[0] + s[1]*ny/w[1] + s[2]*nx/w[2]) / ((1.0f-nx-ny)/w[0] + ny/w[1] + nx/w[2]);
}
class FragCoordWCase : public TestCase
{
public:
FragCoordWCase (Context& context)
: TestCase(context, "fragcoord_w", "gl_FragCoord.w Test")
{
}
IterateResult iterate (void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int width = m_context.getRenderTarget().getWidth();
const int height = m_context.getRenderTarget().getHeight();
const tcu::RGBA threshold = tcu::RGBA(1,1,1,1) + m_context.getRenderTarget().getPixelFormat().getColorThreshold();
tcu::Surface testImg (width, height);
tcu::Surface refImg (width, height);
const float w[4] = { 1.7f, 2.0f, 1.2f, 1.0f };
const glu::ShaderProgram program(m_context.getRenderContext(), glu::makeVtxFragSources(
"#version 300 es\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n",
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"void main (void)\n"
"{\n"
" o_color = vec4(0.0, 1.0/gl_FragCoord.w - 1.0, 0.0, 1.0);\n"
"}\n"));
log << program;
if (!program.isOk())
throw tcu::TestError("Compile failed");
// Draw with GL.
{
const float positions[] =
{
-w[0], w[0], 0.0f, w[0],
-w[1], -w[1], 0.0f, w[1],
w[2], w[2], 0.0f, w[2],
w[3], -w[3], 0.0f, w[3]
};
const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
glu::VertexArrayBinding posBinding = glu::va::Float("a_position", 4, 4, 0, &positions[0]);
gl.useProgram(program.getProgram());
glu::draw(m_context.getRenderContext(), program.getProgram(), 1, &posBinding,
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
glu::readPixels(m_context.getRenderContext(), 0, 0, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
}
// Draw reference
for (int y = 0; y < refImg.getHeight(); y++)
{
for (int x = 0; x < refImg.getWidth(); x++)
{
const float xf = (float(x)+.5f) / float(refImg.getWidth());
const float yf = (float(refImg.getHeight()-y-1)+.5f) / float(refImg.getHeight());
const float oow = ((xf + yf) < 1.0f)
? projectedTriInterpolate(tcu::Vec3(w[0], w[1], w[2]), tcu::Vec3(w[0], w[1], w[2]), xf, yf)
: projectedTriInterpolate(tcu::Vec3(w[3], w[2], w[1]), tcu::Vec3(w[3], w[2], w[1]), 1.0f-xf, 1.0f-yf);
const tcu::Vec4 color (0.0f, oow - 1.0f, 0.0f, 1.0f);
refImg.setPixel(x, y, tcu::RGBA(color));
}
}
// Compare
{
bool isOk = tcu::pixelThresholdCompare(log, "Result", "Image comparison result", refImg, testImg, threshold, tcu::COMPARE_LOG_RESULT);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
}
return STOP;
}
};
class PointCoordCase : public TestCase
{
public:
PointCoordCase (Context& context)
: TestCase(context, "pointcoord", "gl_PointCoord Test")
{
}
IterateResult iterate (void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int width = de::min(256, m_context.getRenderTarget().getWidth());
const int height = de::min(256, m_context.getRenderTarget().getHeight());
const float threshold = 0.02f;
const int numPoints = 8;
vector<tcu::Vec3> coords (numPoints);
float pointSizeRange[2] = { 0.0f, 0.0f };
de::Random rnd (0x145fa);
tcu::Surface testImg (width, height);
tcu::Surface refImg (width, height);
gl.getFloatv(GL_ALIASED_POINT_SIZE_RANGE, &pointSizeRange[0]);
GLU_EXPECT_NO_ERROR(gl.getError(), "glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE)");
if (pointSizeRange[0] <= 0.0f || pointSizeRange[1] <= 0.0f || pointSizeRange[1] < pointSizeRange[0])
throw tcu::TestError("Invalid GL_ALIASED_POINT_SIZE_RANGE");
// Compute coordinates.
{
for (vector<tcu::Vec3>::iterator coord = coords.begin(); coord != coords.end(); ++coord)
{
coord->x() = rnd.getFloat(-0.9f, 0.9f);
coord->y() = rnd.getFloat(-0.9f, 0.9f);
coord->z() = rnd.getFloat(pointSizeRange[0], pointSizeRange[1]);
}
}
const glu::ShaderProgram program(m_context.getRenderContext(), glu::makeVtxFragSources(
"#version 300 es\n"
"in highp vec3 a_positionSize;\n"
"void main (void)\n"
"{\n"
" gl_Position = vec4(a_positionSize.xy, 0.0, 1.0);\n"
" gl_PointSize = a_positionSize.z;\n"
"}\n",
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"void main (void)\n"
"{\n"
" o_color = vec4(gl_PointCoord, 0.0, 1.0);\n"
"}\n"));
log << program;
if (!program.isOk())
throw tcu::TestError("Compile failed");
// Draw with GL.
{
glu::VertexArrayBinding posBinding = glu::va::Float("a_positionSize", 3, (int)coords.size(), 0, (const float*)&coords[0]);
const int viewportX = rnd.getInt(0, m_context.getRenderTarget().getWidth()-width);
const int viewportY = rnd.getInt(0, m_context.getRenderTarget().getHeight()-height);
gl.viewport(viewportX, viewportY, width, height);
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
gl.useProgram(program.getProgram());
glu::draw(m_context.getRenderContext(), program.getProgram(), 1, &posBinding,
glu::pr::Points((int)coords.size()));
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
}
// Draw reference
tcu::clear(refImg.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
for (vector<tcu::Vec3>::const_iterator pointIter = coords.begin(); pointIter != coords.end(); ++pointIter)
{
const int x0 = deRoundFloatToInt32(float(width) *(pointIter->x()*0.5f + 0.5f) - pointIter->z()*0.5f);
const int y0 = deRoundFloatToInt32(float(height)*(pointIter->y()*0.5f + 0.5f) - pointIter->z()*0.5f);
const int x1 = deRoundFloatToInt32(float(width) *(pointIter->x()*0.5f + 0.5f) + pointIter->z()*0.5f);
const int y1 = deRoundFloatToInt32(float(height)*(pointIter->y()*0.5f + 0.5f) + pointIter->z()*0.5f);
const int w = x1-x0;
const int h = y1-y0;
for (int yo = 0; yo < h; yo++)
{
for (int xo = 0; xo < w; xo++)
{
const float xf = float(xo+0.5f) / float(w);
const float yf = float((h-yo-1)+0.5f) / float(h);
const tcu::Vec4 color (xf, yf, 0.0f, 1.0f);
const int dx = x0+xo;
const int dy = y0+yo;
if (de::inBounds(dx, 0, refImg.getWidth()) && de::inBounds(dy, 0, refImg.getHeight()))
refImg.setPixel(dx, dy, tcu::RGBA(color));
}
}
}
// Compare
{
bool isOk = tcu::fuzzyCompare(log, "Result", "Image comparison result", refImg, testImg, threshold, tcu::COMPARE_LOG_RESULT);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
}
return STOP;
}
};
class FrontFacingCase : public TestCase
{
public:
FrontFacingCase (Context& context)
: TestCase(context, "frontfacing", "gl_FrontFacing Test")
{
}
IterateResult iterate (void)
{
// Test case renders two adjecent quads, where left is has front-facing
// triagles and right back-facing. Color is selected based on gl_FrontFacing
// value.
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
de::Random rnd (0x89f2c);
const int width = de::min(64, m_context.getRenderTarget().getWidth());
const int height = de::min(64, m_context.getRenderTarget().getHeight());
const int viewportX = rnd.getInt(0, m_context.getRenderTarget().getWidth()-width);
const int viewportY = rnd.getInt(0, m_context.getRenderTarget().getHeight()-height);
const tcu::RGBA threshold = tcu::RGBA(1,1,1,1) + m_context.getRenderTarget().getPixelFormat().getColorThreshold();
tcu::Surface testImg (width, height);
tcu::Surface refImg (width, height);
const glu::ShaderProgram program(m_context.getRenderContext(), glu::makeVtxFragSources(
"#version 300 es\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n",
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"void main (void)\n"
"{\n"
" if (gl_FrontFacing)\n"
" o_color = vec4(0.0, 1.0, 0.0, 1.0);\n"
" else\n"
" o_color = vec4(0.0, 0.0, 1.0, 1.0);\n"
"}\n"));
log << program;
if (!program.isOk())
throw tcu::TestError("Compile failed");
// Draw with GL.
{
const float positions[] =
{
-1.0f, 1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f
};
const deUint16 indicesCCW[] = { 0, 1, 2, 2, 1, 3 };
const deUint16 indicesCW[] = { 2, 1, 0, 3, 1, 2 };
glu::VertexArrayBinding posBinding = glu::va::Float("a_position", 4, 4, 0, &positions[0]);
gl.useProgram(program.getProgram());
gl.viewport(viewportX, viewportY, width/2, height);
glu::draw(m_context.getRenderContext(), program.getProgram(), 1, &posBinding,
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indicesCCW), &indicesCCW[0]));
gl.viewport(viewportX + width/2, viewportY, width-width/2, height);
glu::draw(m_context.getRenderContext(), program.getProgram(), 1, &posBinding,
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indicesCW), &indicesCW[0]));
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
}
// Draw reference
for (int y = 0; y < refImg.getHeight(); y++)
{
for (int x = 0; x < refImg.getWidth()/2; x++)
refImg.setPixel(x, y, tcu::RGBA::green);
for (int x = refImg.getWidth()/2; x < refImg.getWidth(); x++)
refImg.setPixel(x, y, tcu::RGBA::blue);
}
// Compare
{
bool isOk = tcu::pixelThresholdCompare(log, "Result", "Image comparison result", refImg, testImg, threshold, tcu::COMPARE_LOG_RESULT);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
}
return STOP;
}
};
// VertexIDCase
class VertexIDCase : public TestCase
{
public:
VertexIDCase (Context& context);
~VertexIDCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
enum
{
MAX_VERTICES = 8*3 //!< 8 triangles, totals 24 vertices
};
void renderReference (const tcu::PixelBufferAccess& dst, const int numVertices, const deUint16* const indices, const tcu::Vec4* const positions, const tcu::Vec4* const colors);
glu::ShaderProgram* m_program;
deUint32 m_positionBuffer;
deUint32 m_elementBuffer;
vector<tcu::Vec4> m_positions;
vector<tcu::Vec4> m_colors;
int m_viewportW;
int m_viewportH;
int m_iterNdx;
};
VertexIDCase::VertexIDCase (Context& context)
: TestCase (context, "vertex_id", "gl_VertexID Test")
, m_program (DE_NULL)
, m_positionBuffer (0)
, m_elementBuffer (0)
, m_viewportW (0)
, m_viewportH (0)
, m_iterNdx (0)
{
}
VertexIDCase::~VertexIDCase (void)
{
VertexIDCase::deinit();
}
void VertexIDCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int width = m_context.getRenderTarget().getWidth();
const int height = m_context.getRenderTarget().getHeight();
const int quadWidth = 32;
const int quadHeight = 32;
if (width < quadWidth)
throw tcu::NotSupportedError("Too small render target");
const int maxQuadsX = width/quadWidth;
const int numVertices = MAX_VERTICES;
const int numQuads = numVertices/6 + (numVertices%6 != 0 ? 1 : 0);
const int viewportW = de::min(numQuads, maxQuadsX)*quadWidth;
const int viewportH = (numQuads/maxQuadsX + (numQuads%maxQuadsX != 0 ? 1 : 0))*quadHeight;
if (viewportH > height)
throw tcu::NotSupportedError("Too small render target");
DE_ASSERT(viewportW <= width && viewportH <= height);
DE_ASSERT(!m_program);
m_program = new glu::ShaderProgram(m_context.getRenderContext(), glu::makeVtxFragSources(
"#version 300 es\n"
"in highp vec4 a_position;\n"
"out mediump vec4 v_color;\n"
"uniform highp vec4 u_colors[24];\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_color = u_colors[gl_VertexID];\n"
"}\n",
"#version 300 es\n"
"in mediump vec4 v_color;\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"void main (void)\n"
"{\n"
" o_color = v_color;\n"
"}\n"));
m_testCtx.getLog() << *m_program;
if (!m_program->isOk())
{
delete m_program;
m_program = DE_NULL;
throw tcu::TestError("Compile failed");
}
gl.genBuffers(1, &m_positionBuffer);
gl.genBuffers(1, &m_elementBuffer);
// Set colors (in dynamic memory to save static data space).
m_colors.resize(numVertices);
m_colors[ 0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
m_colors[ 1] = tcu::Vec4(0.5f, 1.0f, 0.5f, 1.0f);
m_colors[ 2] = tcu::Vec4(0.0f, 0.5f, 1.0f, 1.0f);
m_colors[ 3] = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
m_colors[ 4] = tcu::Vec4(0.0f, 1.0f, 1.0f, 1.0f);
m_colors[ 5] = tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f);
m_colors[ 6] = tcu::Vec4(0.5f, 0.0f, 1.0f, 1.0f);
m_colors[ 7] = tcu::Vec4(0.5f, 0.0f, 0.5f, 1.0f);
m_colors[ 8] = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
m_colors[ 9] = tcu::Vec4(0.5f, 1.0f, 0.0f, 1.0f);
m_colors[10] = tcu::Vec4(0.0f, 0.5f, 0.0f, 1.0f);
m_colors[11] = tcu::Vec4(0.5f, 1.0f, 1.0f, 1.0f);
m_colors[12] = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f);
m_colors[13] = tcu::Vec4(1.0f, 0.0f, 0.5f, 1.0f);
m_colors[14] = tcu::Vec4(0.0f, 0.5f, 0.5f, 1.0f);
m_colors[15] = tcu::Vec4(1.0f, 1.0f, 0.5f, 1.0f);
m_colors[16] = tcu::Vec4(1.0f, 0.0f, 1.0f, 1.0f);
m_colors[17] = tcu::Vec4(1.0f, 0.5f, 0.0f, 1.0f);
m_colors[18] = tcu::Vec4(0.0f, 1.0f, 0.5f, 1.0f);
m_colors[19] = tcu::Vec4(1.0f, 0.5f, 1.0f, 1.0f);
m_colors[20] = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f);
m_colors[21] = tcu::Vec4(1.0f, 0.5f, 0.5f, 1.0f);
m_colors[22] = tcu::Vec4(0.0f, 0.0f, 0.5f, 1.0f);
m_colors[23] = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f);
// Compute positions.
m_positions.resize(numVertices);
DE_ASSERT(numVertices%3 == 0);
for (int vtxNdx = 0; vtxNdx < numVertices; vtxNdx += 3)
{
const float h = 2.0f * float(quadHeight)/float(viewportH);
const float w = 2.0f * float(quadWidth)/float(viewportW);
const int triNdx = vtxNdx/3;
const int quadNdx = triNdx/2;
const int quadY = quadNdx/maxQuadsX;
const int quadX = quadNdx%maxQuadsX;
const float x0 = -1.0f + quadX*w;
const float y0 = -1.0f + quadY*h;
if (triNdx%2 == 0)
{
m_positions[vtxNdx+0] = tcu::Vec4(x0, y0, 0.0f, 1.0f);
m_positions[vtxNdx+1] = tcu::Vec4(x0+w, y0+h, 0.0f, 1.0f);
m_positions[vtxNdx+2] = tcu::Vec4(x0, y0+h, 0.0f, 1.0f);
}
else
{
m_positions[vtxNdx+0] = tcu::Vec4(x0+w, y0+h, 0.0f, 1.0f);
m_positions[vtxNdx+1] = tcu::Vec4(x0, y0, 0.0f, 1.0f);
m_positions[vtxNdx+2] = tcu::Vec4(x0+w, y0, 0.0f, 1.0f);
}
}
m_viewportW = viewportW;
m_viewportH = viewportH;
m_iterNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
void VertexIDCase::deinit (void)
{
delete m_program;
m_program = DE_NULL;
if (m_positionBuffer)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_positionBuffer);
m_positionBuffer = 0;
}
if (m_elementBuffer)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_elementBuffer);
m_elementBuffer = 0;
}
m_positions.clear();
m_colors.clear();
}
class VertexIDReferenceShader : public rr::VertexShader, public rr::FragmentShader
{
public:
enum
{
VARYINGLOC_COLOR = 0
};
VertexIDReferenceShader ()
: rr::VertexShader (2, 1) // color and pos in => color out
, rr::FragmentShader(1, 1) // color in => color out
{
this->rr::VertexShader::m_inputs[0].type = rr::GENERICVECTYPE_FLOAT;
this->rr::VertexShader::m_inputs[1].type = rr::GENERICVECTYPE_FLOAT;
this->rr::VertexShader::m_outputs[0].type = rr::GENERICVECTYPE_FLOAT;
this->rr::VertexShader::m_outputs[0].flatshade = false;
this->rr::FragmentShader::m_inputs[0].type = rr::GENERICVECTYPE_FLOAT;
this->rr::FragmentShader::m_inputs[0].flatshade = false;
this->rr::FragmentShader::m_outputs[0].type = rr::GENERICVECTYPE_FLOAT;
}
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
const int positionAttrLoc = 0;
const int colorAttrLoc = 1;
rr::VertexPacket& packet = *packets[packetNdx];
// Transform to position
packet.position = rr::readVertexAttribFloat(inputs[positionAttrLoc], packet.instanceNdx, packet.vertexNdx);
// Pass color to FS
packet.outputs[VARYINGLOC_COLOR] = rr::readVertexAttribFloat(inputs[colorAttrLoc], packet.instanceNdx, packet.vertexNdx);
}
}
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
rr::FragmentPacket& packet = packets[packetNdx];
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packet, context, VARYINGLOC_COLOR, fragNdx));
}
}
};
void VertexIDCase::renderReference (const tcu::PixelBufferAccess& dst, const int numVertices, const deUint16* const indices, const tcu::Vec4* const positions, const tcu::Vec4* const colors)
{
const rr::Renderer referenceRenderer;
const rr::RenderState referenceState ((rr::ViewportState)(rr::MultisamplePixelBufferAccess::fromSinglesampleAccess(dst)));
const rr::RenderTarget referenceTarget (rr::MultisamplePixelBufferAccess::fromSinglesampleAccess(dst));
const VertexIDReferenceShader referenceShader;
rr::VertexAttrib attribs[2];
attribs[0].type = rr::VERTEXATTRIBTYPE_FLOAT;
attribs[0].size = 4;
attribs[0].stride = 0;
attribs[0].instanceDivisor = 0;
attribs[0].pointer = positions;
attribs[1].type = rr::VERTEXATTRIBTYPE_FLOAT;
attribs[1].size = 4;
attribs[1].stride = 0;
attribs[1].instanceDivisor = 0;
attribs[1].pointer = colors;
referenceRenderer.draw(
rr::DrawCommand(
referenceState,
referenceTarget,
rr::Program(&referenceShader, &referenceShader),
2,
attribs,
rr::PrimitiveList(rr::PRIMITIVETYPE_TRIANGLES, numVertices, rr::DrawIndices(indices))));
}
VertexIDCase::IterateResult VertexIDCase::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int width = m_context.getRenderTarget().getWidth();
const int height = m_context.getRenderTarget().getHeight();
const int viewportW = m_viewportW;
const int viewportH = m_viewportH;
const float threshold = 0.02f;
de::Random rnd (0xcf23ab1 ^ deInt32Hash(m_iterNdx));
tcu::Surface refImg (viewportW, viewportH);
tcu::Surface testImg (viewportW, viewportH);
const int viewportX = rnd.getInt(0, width-viewportW);
const int viewportY = rnd.getInt(0, height-viewportH);
const int posLoc = gl.getAttribLocation(m_program->getProgram(), "a_position");
const int colorsLoc = gl.getUniformLocation(m_program->getProgram(), "u_colors[0]");
const tcu::Vec4 clearColor (0.0f, 0.0f, 0.0f, 1.0f);
// Setup common state.
gl.viewport (viewportX, viewportY, viewportW, viewportH);
gl.useProgram (m_program->getProgram());
gl.bindBuffer (GL_ARRAY_BUFFER, m_positionBuffer);
gl.enableVertexAttribArray (posLoc);
gl.vertexAttribPointer (posLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
gl.uniform4fv (colorsLoc, (int)m_colors.size(), (const float*)&m_colors[0]);
// Clear render target to black.
gl.clearColor (clearColor.x(), clearColor.y(), clearColor.z(), clearColor.w());
gl.clear (GL_COLOR_BUFFER_BIT);
tcu::clear(refImg.getAccess(), clearColor);
if (m_iterNdx == 0)
{
tcu::ScopedLogSection logSection (m_testCtx.getLog(), "Iter0", "glDrawArrays()");
vector<deUint16> indices (m_positions.size());
gl.bufferData(GL_ARRAY_BUFFER, (int)(m_positions.size()*sizeof(tcu::Vec4)), &m_positions[0], GL_DYNAMIC_DRAW);
gl.drawArrays(GL_TRIANGLES, 0, (int)m_positions.size());
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
// Reference indices
for (int ndx = 0; ndx < (int)indices.size(); ndx++)
indices[ndx] = (deUint16)ndx;
renderReference(refImg.getAccess(), (int)m_positions.size(), &indices[0], &m_positions[0], &m_colors[0]);
}
else if (m_iterNdx == 1)
{
tcu::ScopedLogSection logSection (m_testCtx.getLog(), "Iter1", "glDrawElements(), indices in client-side array");
vector<deUint16> indices (m_positions.size());
vector<tcu::Vec4> mappedPos (m_positions.size());
// Compute initial indices and suffle
for (int ndx = 0; ndx < (int)indices.size(); ndx++)
indices[ndx] = (deUint16)ndx;
rnd.shuffle(indices.begin(), indices.end());
// Use indices to re-map positions.
for (int ndx = 0; ndx < (int)indices.size(); ndx++)
mappedPos[indices[ndx]] = m_positions[ndx];
gl.bufferData(GL_ARRAY_BUFFER, (int)(m_positions.size()*sizeof(tcu::Vec4)), &mappedPos[0], GL_DYNAMIC_DRAW);
gl.drawElements(GL_TRIANGLES, (int)indices.size(), GL_UNSIGNED_SHORT, &indices[0]);
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
renderReference(refImg.getAccess(), (int)indices.size(), &indices[0], &mappedPos[0], &m_colors[0]);
}
else if (m_iterNdx == 2)
{
tcu::ScopedLogSection logSection (m_testCtx.getLog(), "Iter2", "glDrawElements(), indices in buffer");
vector<deUint16> indices (m_positions.size());
vector<tcu::Vec4> mappedPos (m_positions.size());
// Compute initial indices and suffle
for (int ndx = 0; ndx < (int)indices.size(); ndx++)
indices[ndx] = (deUint16)ndx;
rnd.shuffle(indices.begin(), indices.end());
// Use indices to re-map positions.
for (int ndx = 0; ndx < (int)indices.size(); ndx++)
mappedPos[indices[ndx]] = m_positions[ndx];
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuffer);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (int)(indices.size()*sizeof(deUint16)), &indices[0], GL_DYNAMIC_DRAW);
gl.bufferData(GL_ARRAY_BUFFER, (int)(m_positions.size()*sizeof(tcu::Vec4)), &mappedPos[0], GL_DYNAMIC_DRAW);
gl.drawElements(GL_TRIANGLES, (int)indices.size(), GL_UNSIGNED_SHORT, DE_NULL);
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, testImg.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
tcu::clear(refImg.getAccess(), clearColor);
renderReference(refImg.getAccess(), (int)indices.size(), &indices[0], &mappedPos[0], &m_colors[0]);
}
else
DE_ASSERT(false);
if (!tcu::fuzzyCompare(m_testCtx.getLog(), "Result", "Image comparison result", refImg, testImg, threshold, tcu::COMPARE_LOG_RESULT))
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
m_iterNdx += 1;
return (m_iterNdx < 3) ? CONTINUE : STOP;
}
ShaderBuiltinVarTests::ShaderBuiltinVarTests (Context& context)
: TestCaseGroup(context, "builtin_variable", "Built-in Variable Tests")
{
}
ShaderBuiltinVarTests::~ShaderBuiltinVarTests (void)
{
}
void ShaderBuiltinVarTests::init (void)
{
// Builtin constants.
static const struct
{
const char* caseName;
const char* varName;
ShaderBuiltinConstantCase::GetConstantValueFunc getValue;
} builtinConstants[] =
{
// GLES 2.
{ "max_vertex_attribs", "gl_MaxVertexAttribs", getInteger<GL_MAX_VERTEX_ATTRIBS> },
{ "max_vertex_uniform_vectors", "gl_MaxVertexUniformVectors", getInteger<GL_MAX_VERTEX_UNIFORM_VECTORS> },
{ "max_fragment_uniform_vectors", "gl_MaxFragmentUniformVectors", getInteger<GL_MAX_FRAGMENT_UNIFORM_VECTORS> },
{ "max_texture_image_units", "gl_MaxTextureImageUnits", getInteger<GL_MAX_TEXTURE_IMAGE_UNITS> },
{ "max_vertex_texture_image_units", "gl_MaxVertexTextureImageUnits", getInteger<GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS> },
{ "max_combined_texture_image_units", "gl_MaxCombinedTextureImageUnits", getInteger<GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS> },
{ "max_draw_buffers", "gl_MaxDrawBuffers", getInteger<GL_MAX_DRAW_BUFFERS> },
// GLES 3.
{ "max_vertex_output_vectors", "gl_MaxVertexOutputVectors", getVectorsFromComps<GL_MAX_VERTEX_OUTPUT_COMPONENTS> },
{ "max_fragment_input_vectors", "gl_MaxFragmentInputVectors", getVectorsFromComps<GL_MAX_FRAGMENT_INPUT_COMPONENTS> },
{ "min_program_texel_offset", "gl_MinProgramTexelOffset", getInteger<GL_MIN_PROGRAM_TEXEL_OFFSET> },
{ "max_program_texel_offset", "gl_MaxProgramTexelOffset", getInteger<GL_MAX_PROGRAM_TEXEL_OFFSET> }
};
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(builtinConstants); ndx++)
{
const char* const caseName = builtinConstants[ndx].caseName;
const char* const varName = builtinConstants[ndx].varName;
const ShaderBuiltinConstantCase::GetConstantValueFunc getValue = builtinConstants[ndx].getValue;
addChild(new ShaderBuiltinConstantCase(m_context, (string(caseName) + "_vertex").c_str(), varName, varName, getValue, glu::SHADERTYPE_VERTEX));
addChild(new ShaderBuiltinConstantCase(m_context, (string(caseName) + "_fragment").c_str(), varName, varName, getValue, glu::SHADERTYPE_FRAGMENT));
}
addChild(new ShaderDepthRangeTest(m_context, "depth_range_vertex", "gl_DepthRange", true));
addChild(new ShaderDepthRangeTest(m_context, "depth_range_fragment", "gl_DepthRange", false));
// Vertex shader builtin variables.
addChild(new VertexIDCase (m_context));
// \todo [2013-03-20 pyry] gl_InstanceID -- tested in instancing tests quite thoroughly.
// Fragment shader builtin variables.
addChild(new FragCoordXYZCase (m_context));
addChild(new FragCoordWCase (m_context));
addChild(new PointCoordCase (m_context));
addChild(new FrontFacingCase (m_context));
}
} // Functional
} // gles3
} // deqp