/*
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project.
*/
/* ====================================================================
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <map>
#include <string>
#include <vector>
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include "../test/file_test.h"
#include "../test/scoped_types.h"
#include "../test/stl_compat.h"
// evp_test dispatches between multiple test types. HMAC tests test the legacy
// EVP_PKEY_HMAC API. PrivateKey tests take a key name parameter and single
// block, decode it as a PEM private key, and save it under that key name.
// Decrypt, Sign, and Verify tests take a previously imported key name as
// parameter and test their respective operations.
static const EVP_MD *GetDigest(FileTest *t, const std::string &name) {
if (name == "MD5") {
return EVP_md5();
} else if (name == "SHA1") {
return EVP_sha1();
} else if (name == "SHA224") {
return EVP_sha224();
} else if (name == "SHA256") {
return EVP_sha256();
} else if (name == "SHA384") {
return EVP_sha384();
} else if (name == "SHA512") {
return EVP_sha512();
}
t->PrintLine("Unknown digest: '%s'", name.c_str());
return nullptr;
}
using KeyMap = std::map<std::string, EVP_PKEY*>;
// ImportPrivateKey evaluates a PrivateKey test in |t| and writes the resulting
// private key to |key_map|.
static bool ImportPrivateKey(FileTest *t, KeyMap *key_map) {
const std::string &key_name = t->GetParameter();
if (key_map->count(key_name) > 0) {
t->PrintLine("Duplicate key '%s'.", key_name.c_str());
return false;
}
const std::string &block = t->GetBlock();
ScopedBIO bio(BIO_new_mem_buf(const_cast<char*>(block.data()), block.size()));
if (!bio) {
return false;
}
ScopedEVP_PKEY pkey(PEM_read_bio_PrivateKey(bio.get(), nullptr, 0, nullptr));
if (!pkey) {
t->PrintLine("Error reading private key.");
return false;
}
(*key_map)[key_name] = pkey.release();
return true;
}
static bool TestHMAC(FileTest *t) {
std::string digest_str;
if (!t->GetAttribute(&digest_str, "HMAC")) {
return false;
}
const EVP_MD *digest = GetDigest(t, digest_str);
if (digest == nullptr) {
return false;
}
std::vector<uint8_t> key, input, output;
if (!t->GetBytes(&key, "Key") ||
!t->GetBytes(&input, "Input") ||
!t->GetBytes(&output, "Output")) {
return false;
}
ScopedEVP_PKEY pkey(EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, nullptr,
bssl::vector_data(&key),
key.size()));
ScopedEVP_MD_CTX mctx;
if (!pkey ||
!EVP_DigestSignInit(mctx.get(), nullptr, digest, nullptr, pkey.get()) ||
!EVP_DigestSignUpdate(mctx.get(), bssl::vector_data(&input),
input.size())) {
return false;
}
size_t len;
std::vector<uint8_t> actual;
if (!EVP_DigestSignFinal(mctx.get(), nullptr, &len)) {
return false;
}
actual.resize(len);
if (!EVP_DigestSignFinal(mctx.get(), bssl::vector_data(&actual), &len)) {
return false;
}
actual.resize(len);
return t->ExpectBytesEqual(bssl::vector_data(&output), output.size(),
bssl::vector_data(&actual), actual.size());
}
static bool TestEVP(FileTest *t, void *arg) {
KeyMap *key_map = reinterpret_cast<KeyMap*>(arg);
if (t->GetType() == "PrivateKey") {
return ImportPrivateKey(t, key_map);
} else if (t->GetType() == "HMAC") {
return TestHMAC(t);
}
int (*key_op_init)(EVP_PKEY_CTX *ctx);
int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
const uint8_t *in, size_t in_len);
if (t->GetType() == "Decrypt") {
key_op_init = EVP_PKEY_decrypt_init;
key_op = EVP_PKEY_decrypt;
} else if (t->GetType() == "Sign") {
key_op_init = EVP_PKEY_sign_init;
key_op = EVP_PKEY_sign;
} else if (t->GetType() == "Verify") {
key_op_init = EVP_PKEY_verify_init;
key_op = nullptr; // EVP_PKEY_verify is handled differently.
} else {
t->PrintLine("Unknown test '%s'", t->GetType().c_str());
return false;
}
// Load the key.
const std::string &key_name = t->GetParameter();
if (key_map->count(key_name) == 0) {
t->PrintLine("Could not find key '%s'.", key_name.c_str());
return false;
}
EVP_PKEY *key = (*key_map)[key_name];
std::vector<uint8_t> input, output;
if (!t->GetBytes(&input, "Input") ||
!t->GetBytes(&output, "Output")) {
return false;
}
// Set up the EVP_PKEY_CTX.
ScopedEVP_PKEY_CTX ctx(EVP_PKEY_CTX_new(key, nullptr));
if (!ctx || !key_op_init(ctx.get())) {
return false;
}
if (t->HasAttribute("Digest")) {
const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("Digest"));
if (digest == nullptr ||
!EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) {
return false;
}
}
if (t->GetType() == "Verify") {
if (!EVP_PKEY_verify(ctx.get(), bssl::vector_data(&output), output.size(),
bssl::vector_data(&input), input.size())) {
// ECDSA sometimes doesn't push an error code. Push one on the error queue
// so it's distinguishable from other errors.
ERR_put_error(ERR_LIB_USER, 0, ERR_R_EVP_LIB, __FILE__, __LINE__);
return false;
}
return true;
}
size_t len;
std::vector<uint8_t> actual;
if (!key_op(ctx.get(), nullptr, &len, bssl::vector_data(&input),
input.size())) {
return false;
}
actual.resize(len);
if (!key_op(ctx.get(), bssl::vector_data(&actual), &len,
bssl::vector_data(&input), input.size())) {
return false;
}
actual.resize(len);
if (!t->ExpectBytesEqual(bssl::vector_data(&output), output.size(),
bssl::vector_data(&actual), len)) {
return false;
}
return true;
}
int main(int argc, char **argv) {
CRYPTO_library_init();
if (argc != 2) {
fprintf(stderr, "%s <test file.txt>\n", argv[0]);
return 1;
}
KeyMap map;
int ret = FileTestMain(TestEVP, &map, argv[1]);
// TODO(davidben): When we can rely on a move-aware std::map, make KeyMap a
// map of ScopedEVP_PKEY instead.
for (const auto &pair : map) {
EVP_PKEY_free(pair.second);
}
return ret;
}