/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hardware/sensors.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <math.h>
#include <poll.h>
#include <pthread.h>
#include <stdlib.h>
#include <linux/input.h>
#include <utils/Atomic.h>
#include <utils/Log.h>
#include "sensors.h"
#include "MPLSensor.h"
#include "LightSensor.h"
#include "ProximitySensor.h"
/*****************************************************************************/
/* The SENSORS Module */
#ifdef ENABLE_DMP_SCREEN_AUTO_ROTATION
#define GLOBAL_SENSORS (MPLSensor::NumSensors + 1)
#else
#define GLOBAL_SENSORS MPLSensor::NumSensors
#endif
#define LOCAL_SENSORS (2)
#define SENSORS_LIGHT_HANDLE (ID_L)
#define SENSORS_PROXIMITY_HANDLE (ID_PX)
static struct sensor_t sSensorList[GLOBAL_SENSORS + LOCAL_SENSORS] = {
{
.name = "Light Sensor",
.vendor = "Avago Technologies",
.version = 1,
.handle = SENSORS_LIGHT_HANDLE,
.type = SENSOR_TYPE_LIGHT,
.maxRange = 30000.0f,
.resolution = 1.0f,
.power = 0.5f,
.minDelay = 100000,
.reserved = {}
},
{
.name = "Proximity Sensor",
.vendor = "Avago Technologies",
.version = 1,
.handle = SENSORS_PROXIMITY_HANDLE,
.type = SENSOR_TYPE_PROXIMITY,
.maxRange = 5.0f,
.resolution = 1.0f,
.power = 0.5f,
.minDelay = 100000,
.reserved = {}
},
};
static int sensors = (sizeof(sSensorList) / sizeof(sensor_t));
static int open_sensors(const struct hw_module_t* module, const char* id,
struct hw_device_t** device);
static int sensors__get_sensors_list(struct sensors_module_t* module,
struct sensor_t const** list)
{
*list = sSensorList;
return sensors;
}
static struct hw_module_methods_t sensors_module_methods = {
open: open_sensors
};
struct sensors_module_t HAL_MODULE_INFO_SYM = {
common: {
tag: HARDWARE_MODULE_TAG,
version_major: 1,
version_minor: 0,
id: SENSORS_HARDWARE_MODULE_ID,
name: "LGE Sensor module",
author: "LG Electronics Inc.",
methods: &sensors_module_methods,
dso: NULL,
reserved: {0}
},
get_sensors_list: sensors__get_sensors_list,
};
struct sensors_poll_context_t {
sensors_poll_device_1_t device; // must be first
sensors_poll_context_t();
~sensors_poll_context_t();
int activate(int handle, int enabled);
int setDelay(int handle, int64_t ns);
int pollEvents(sensors_event_t* data, int count);
int batch(int handle, int flags, int64_t period_ns, int64_t timeout);
// return true if the constructor is completed
bool isValid() { return mInitialized; };
int flush(int handle);
private:
enum {
mpl = 0,
compass,
dmpOrient,
dmpSign,
dmpPed,
light,
proximity,
numSensorDrivers, // wake pipe goes here
numFds,
};
static const size_t wake = numFds - 1;
static const char WAKE_MESSAGE = 'W';
struct pollfd mPollFds[numFds];
int mWritePipeFd;
SensorBase *mSensor[numSensorDrivers];
CompassSensor *mCompassSensor;
// return true if the constructor is completed
bool mInitialized;
int handleToDriver(int handle) const {
switch (handle) {
case ID_GY:
case ID_RG:
case ID_A:
case ID_M:
case ID_RM:
case ID_PS:
case ID_O:
case ID_RV:
case ID_GRV:
case ID_LA:
case ID_GR:
case ID_SM:
case ID_P:
case ID_SC:
case ID_GMRV:
case ID_SO:
return mpl;
case ID_L:
return light;
case ID_PX:
return proximity;
}
return -EINVAL;
}
};
/******************************************************************************/
sensors_poll_context_t::sensors_poll_context_t() {
/* TODO: Handle external pressure sensor */
mCompassSensor = new CompassSensor();
MPLSensor *mplSensor = new MPLSensor(mCompassSensor);
mInitialized = false;
// Must clean this up early or else the destructor will make a mess.
memset(mSensor, 0, sizeof(mSensor));
// setup the callback object for handing mpl callbacks
setCallbackObject(mplSensor);
// populate the sensor list
sensors = LOCAL_SENSORS +
mplSensor->populateSensorList(sSensorList + LOCAL_SENSORS,
sizeof(sSensorList[0]) * (ARRAY_SIZE(sSensorList) - LOCAL_SENSORS));
mSensor[mpl] = mplSensor;
mPollFds[mpl].fd = mSensor[mpl]->getFd();
mPollFds[mpl].events = POLLIN;
mPollFds[mpl].revents = 0;
mSensor[compass] = mplSensor;
mPollFds[compass].fd = mCompassSensor->getFd();
mPollFds[compass].events = POLLIN;
mPollFds[compass].revents = 0;
mSensor[dmpOrient] = mplSensor;
mPollFds[dmpOrient].fd = ((MPLSensor*) mSensor[dmpOrient])->getDmpOrientFd();
mPollFds[dmpOrient].events = POLLPRI;
mPollFds[dmpOrient].revents = 0;
mSensor[dmpSign] = mplSensor;
mPollFds[dmpSign].fd = ((MPLSensor*) mSensor[dmpSign])->getDmpSignificantMotionFd();
mPollFds[dmpSign].events = POLLPRI;
mPollFds[dmpSign].revents = 0;
mSensor[dmpPed] = mplSensor;
mPollFds[dmpPed].fd = ((MPLSensor*) mSensor[dmpPed])->getDmpPedometerFd();
mPollFds[dmpPed].events = POLLPRI;
mPollFds[dmpPed].revents = 0;
mSensor[light] = new LightSensor();
mPollFds[light].fd = mSensor[light]->getFd();
mPollFds[light].events = POLLIN;
mPollFds[light].revents = 0;
mSensor[proximity] = new ProximitySensor();
mPollFds[proximity].fd = mSensor[proximity]->getFd();
mPollFds[proximity].events = POLLIN;
mPollFds[proximity].revents = 0;
if (mPollFds[light].fd < 0 || mPollFds[proximity].fd < 0) {
delete mCompassSensor;
return;
}
/* Timer based sensor initialization */
int wakeFds[2];
int result = pipe(wakeFds);
ALOGE_IF(result < 0, "error creating wake pipe (%s)", strerror(errno));
fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);
fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);
mWritePipeFd = wakeFds[1];
mPollFds[wake].fd = wakeFds[0];
mPollFds[wake].events = POLLIN;
mPollFds[wake].revents = 0;
mInitialized = true;
}
sensors_poll_context_t::~sensors_poll_context_t() {
for (int i=0 ; i<numSensorDrivers ; i++) {
delete mSensor[i];
}
delete mCompassSensor;
close(mPollFds[wake].fd);
close(mWritePipeFd);
mInitialized = false;
}
int sensors_poll_context_t::activate(int handle, int enabled) {
if (!mInitialized) return -EINVAL;
int index = handleToDriver(handle);
if (index < 0) return index;
int err = mSensor[index]->enable(handle, enabled);
if (!err) {
const char wakeMessage(WAKE_MESSAGE);
int result = write(mWritePipeFd, &wakeMessage, 1);
ALOGE_IF(result < 0, "error sending wake message (%s)", strerror(errno));
}
return err;
}
int sensors_poll_context_t::setDelay(int handle, int64_t ns)
{
int index = handleToDriver(handle);
if (index < 0) return index;
return mSensor[index]->setDelay(handle, ns);
}
int sensors_poll_context_t::pollEvents(sensors_event_t *data, int count)
{
int nbEvents = 0;
int n = 0;
int nb, polltime = -1;
do {
for (int i = 0; count && i < numSensorDrivers; i++) {
SensorBase* const sensor(mSensor[i]);
if (mPollFds[i].revents & (POLLIN | POLLPRI)) {
nb = 0;
if (i == mpl) {
((MPLSensor*) sensor)->buildMpuEvent();
mPollFds[i].revents = 0;
nb = ((MPLSensor*) sensor)->readEvents(data, count);
if (nb > 0) {
count -= nb;
nbEvents += nb;
data += nb;
}
} else if (i == compass) {
((MPLSensor*) sensor)->buildCompassEvent();
mPollFds[i].revents = 0;
nb = ((MPLSensor*) sensor)->readEvents(data, count);
if (nb > 0) {
count -= nb;
nbEvents += nb;
data += nb;
}
} else if (i == dmpOrient) {
nb = ((MPLSensor*) sensor)->readDmpOrientEvents(data, count);
mPollFds[dmpOrient].revents= 0;
if (isDmpScreenAutoRotationEnabled() && nb > 0) {
count -= nb;
nbEvents += nb;
data += nb;
}
} else if (i == dmpSign) {
ALOGI("HAL: dmpSign interrupt");
nb = ((MPLSensor*) sensor)->readDmpSignificantMotionEvents(data, count);
mPollFds[i].revents = 0;
count -= nb;
nbEvents += nb;
data += nb;
} else if (i == dmpPed) {
ALOGI("HAL: dmpPed interrupt");
nb = ((MPLSensor*) sensor)->readDmpPedometerEvents(data, count, ID_P, SENSOR_TYPE_STEP_DETECTOR, 0);
mPollFds[i].revents = 0;
count -= nb;
nbEvents += nb;
data += nb;
} else {
// LightSensor and ProximitySensor
nb = sensor->readEvents(data, count);
if (nb < count) {
// no more data for this sensor
mPollFds[i].revents = 0;
}
count -= nb;
nbEvents += nb;
data += nb;
}
ALOGI_IF(0, "sensors_mpl:readEvents() - nb=%d, count=%d, nbEvents=%d, data->timestamp=%lld, data->data[0]=%f,",
nb, count, nbEvents, data->timestamp, data->data[0]);
}
}
/* to see if any step counter events */
if (((MPLSensor*) mSensor[mpl])->hasStepCountPendingEvents() == true) {
nb = 0;
nb = ((MPLSensor*) mSensor[mpl])->readDmpPedometerEvents(data, count, ID_SC, SENSOR_TYPE_STEP_COUNTER, 0);
ALOGI_IF(0, "sensors_mpl:readStepCount() - nb=%d, count=%d, nbEvents=%d, data->timestamp=%lld, data->data[0]=%f,",
nb, count, nbEvents, data->timestamp, data->data[0]);
if (nb > 0) {
count -= nb;
nbEvents += nb;
data += nb;
}
}
if (count) {
do {
n = poll(mPollFds, numFds, nbEvents ? 0 : polltime);
} while (n < 0 && errno == EINTR);
if (n < 0) {
ALOGE("poll() failed (%s)", strerror(errno));
return -errno;
}
if (mPollFds[wake].revents & (POLLIN | POLLPRI)) {
char msg;
int result = read(mPollFds[wake].fd, &msg, 1);
ALOGE_IF(result < 0, "error reading from wake pipe (%s)", strerror(errno));
ALOGE_IF(msg != WAKE_MESSAGE, "unknown message on wake queue (0x%02x)", int(msg));
mPollFds[wake].revents = 0;
}
}
} while (n && count);
return nbEvents;
}
int sensors_poll_context_t::batch(int handle, int flags, int64_t period_ns, int64_t timeout)
{
int index = handleToDriver(handle);
if (index < 0) return index;
return mSensor[index]->batch(handle, flags, period_ns, timeout);
}
int sensors_poll_context_t::flush(int handle)
{
int index = handleToDriver(handle);
if (index < 0) return index;
return mSensor[index]->flush(handle);
}
/******************************************************************************/
static int poll__close(struct hw_device_t *dev)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
if (ctx) {
delete ctx;
}
return 0;
}
static int poll__activate(struct sensors_poll_device_t *dev,
int handle, int enabled)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->activate(handle, enabled);
}
static int poll__setDelay(struct sensors_poll_device_t *dev,
int handle, int64_t ns)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
int s= ctx->setDelay(handle, ns);
return s;
}
static int poll__poll(struct sensors_poll_device_t *dev,
sensors_event_t* data, int count)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->pollEvents(data, count);
}
static int poll__batch(struct sensors_poll_device_1 *dev,
int handle, int flags, int64_t period_ns, int64_t timeout)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->batch(handle, flags, period_ns, timeout);
}
static int poll__flush(struct sensors_poll_device_1 *dev,
int handle)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->flush(handle);
}
/******************************************************************************/
/** Open a new instance of a sensor device using name */
static int open_sensors(const struct hw_module_t* module, const char* id,
struct hw_device_t** device)
{
int status = -EINVAL;
sensors_poll_context_t *dev = new sensors_poll_context_t();
if (!dev->isValid()) {
ALOGE("Failed to open the sensors");
return status;
}
memset(&dev->device, 0, sizeof(sensors_poll_device_1));
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_0;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = poll__close;
dev->device.activate = poll__activate;
dev->device.setDelay = poll__setDelay;
dev->device.poll = poll__poll;
/* Batch processing */
dev->device.batch = poll__batch;
dev->device.flush = poll__flush;
*device = &dev->device.common;
status = 0;
return status;
}