/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_x86.h"
#include "base/bit_utils.h"
#include "base/logging.h"
#include "dex/compiler_ir.h"
#include "dex/quick/mir_to_lir.h"
#include "oat.h"
#include "utils.h"
#include "x86_lir.h"
namespace art {
#define MAX_ASSEMBLER_RETRIES 50
const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
{ kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data", "0x!0d" },
{ kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" },
{ kX86Nop, kNop, NO_OPERAND, { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop", "" },
#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
rm8_r8, rm32_r32, \
r8_rm8, r32_rm32, \
ax8_i8, ax32_i32, \
rm8_i8, rm8_i8_modrm, \
rm32_i32, rm32_i32_modrm, \
rm32_i8, rm32_i8_modrm) \
{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RR", "!0r,!1r" }, \
{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \
{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, false}, #opname "8MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, false}, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, false}, #opname "8TI", "fs:[!0d],!1d" }, \
\
{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RR", "!0r,!1r" }, \
{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \
\
{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RR", "!0r,!1r" }, \
{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \
\
{ kX86 ## opname ## 64MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 64AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 64TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 64RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RR", "!0r,!1r" }, \
{ kX86 ## opname ## 64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 64RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 64RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 64RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \
{ kX86 ## opname ## 64MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 64AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 64TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 64RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 64MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 64AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64TI8", "fs:[!0d],!1d" }
ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
0x80, 0x0 /* RegMem8/imm8 */,
0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
0x80, 0x1 /* RegMem8/imm8 */,
0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
0x80, 0x2 /* RegMem8/imm8 */,
0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
0x80, 0x3 /* RegMem8/imm8 */,
0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
0x80, 0x4 /* RegMem8/imm8 */,
0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
0x80, 0x5 /* RegMem8/imm8 */,
0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
0x80, 0x6 /* RegMem8/imm8 */,
0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
0x80, 0x7 /* RegMem8/imm8 */,
0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
#undef ENCODING_MAP
{ kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" },
{ kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
{ kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" },
{ kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
{ kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" },
{ kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
{ kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Imul64RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" },
{ kX86Imul64RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
{ kX86Imul64RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Imul64RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" },
{ kX86Imul64RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
{ kX86Imul64RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" },
{ kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" },
{ kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" },
{ kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" },
{ kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" },
{ kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" },
{ kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8MI", "[!0r+!1d],!2d" },
{ kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8TI", "fs:[!0d],!1d" },
{ kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" },
{ kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" },
{ kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" },
{ kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" },
{ kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" },
{ kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" },
{ kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" },
{ kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" },
{ kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" },
{ kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Movnti32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti32MR", "[!0r+!1d],!2r" },
{ kX86Movnti32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti32AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" },
{ kX86Mov32RR, kRegReg, IS_MOVE | IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" },
{ kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" },
{ kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" },
{ kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" },
{ kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" },
{ kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" },
{ kX86Lea32RM, kRegMem, IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" },
{ kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov64MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { REX_W, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" },
{ kX86Mov64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { REX_W, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Movnti64MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { REX_W, 0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti64MR", "[!0r+!1d],!2r" },
{ kX86Movnti64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { REX_W, 0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti64AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" },
{ kX86Mov64RR, kRegReg, IS_MOVE | IS_BINARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" },
{ kX86Mov64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" },
{ kX86Mov64RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov64RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" },
{ kX86Mov64RI32, kRegImm, IS_BINARY_OP | REG_DEF0, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64RI32", "!0r,!1d" },
{ kX86Mov64RI64, kMovRegQuadImm, IS_TERTIARY_OP | REG_DEF0, { REX_W, 0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI64", "!0r,!1q" },
{ kX86Mov64MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" },
{ kX86Mov64AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" },
{ kX86Lea64RM, kRegMem, IS_TERTIARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" },
{ kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" },
{ kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" },
{ kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
{ kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \
{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8RC", "!0r,cl" }, \
{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16RC", "!0r,cl" }, \
{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32RC", "!0r,cl" }, \
{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
{ kX86 ## opname ## 64RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \
{ kX86 ## opname ## 64MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 64RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64RC", "!0r,cl" }, \
{ kX86 ## opname ## 64MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 64AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
SHIFT_ENCODING_MAP(Rol, 0x0),
SHIFT_ENCODING_MAP(Ror, 0x1),
SHIFT_ENCODING_MAP(Rcl, 0x2),
SHIFT_ENCODING_MAP(Rcr, 0x3),
SHIFT_ENCODING_MAP(Sal, 0x4),
SHIFT_ENCODING_MAP(Shr, 0x5),
SHIFT_ENCODING_MAP(Sar, 0x7),
#undef SHIFT_ENCODING_MAP
{ kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" },
{ kX86Shld32RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" },
{ kX86Shld32RRC, kShiftRegRegCl, IS_TERTIARY_OP | REG_DEF0_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0x0F, 0xA5, 0, 0, 0, 0, false }, "Shld32RRC", "!0r,!1r,cl" },
{ kX86Shld32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
{ kX86Shrd32RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" },
{ kX86Shrd32RRC, kShiftRegRegCl, IS_TERTIARY_OP | REG_DEF0_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0x0F, 0xAD, 0, 0, 0, 0, false }, "Shrd32RRC", "!0r,!1r,cl" },
{ kX86Shrd32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
{ kX86Shld64RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" },
{ kX86Shld64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
{ kX86Shrd64RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" },
{ kX86Shrd64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
{ kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" },
{ kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" },
{ kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" },
{ kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" },
{ kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" },
{ kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" },
{ kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test64RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" },
{ kX86Test64MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" },
{ kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" },
{ kX86Test64RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" },
{ kX86Test32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RM", "!0r,[!1r+!2d]" },
#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
reg, reg_kind, reg_flags, \
mem, mem_kind, mem_flags, \
arr, arr_kind, arr_flags, imm, \
b_flags, hw_flags, w_flags, \
b_format, hw_format, w_format) \
{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \
{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \
{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \
{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
{ kX86 ## opname ## 64 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \
{ kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
#undef UNARY_ENCODING_MAP
{ kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0, false }, "Cdq", "" },
{ kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { REX_W, 0, 0x99, 0, 0, 0, 0, 0, false }, "Cqo", "" },
{ kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" },
{ kX86Bswap64R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { REX_W, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap64R", "!0r" },
{ kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0, false }, "Push32R", "!0r" },
{ kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0, false }, "Pop32R", "!0r" },
#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
// This is a special encoding with r8_form on the second register only
// for Movzx8 and Movsx8.
#define EXT_0F_R8_FORM_ENCODING_MAP(opname, prefix, opcode, reg_def) \
{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, true }, #opname "RR", "!0r,!1r" }, \
{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
#define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \
{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
#define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \
{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
{ kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" },
{ kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
{ kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" },
{ kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd, 0xF2, 0x2A, REG_DEF0),
EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss, 0xF3, 0x2A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0),
EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES|REG_USE0),
EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES|REG_USE0),
EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES|REG_USE0),
EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES|REG_USE0),
EXT_0F_ENCODING_MAP(Orpd, 0x66, 0x56, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Andpd, 0x66, 0x54, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Andps, 0x00, 0x54, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Xorpd, 0x66, 0x57, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Punpcklbw, 0x66, 0x60, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Punpcklwd, 0x66, 0x61, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Punpcklqdq, 0x66, 0x6C, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Sqrtsd, 0xF2, 0x51, REG_DEF0_USE0),
EXT_0F_ENCODING2_MAP(Pmulld, 0x66, 0x38, 0x40, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Pmullw, 0x66, 0xD5, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Pmuludq, 0x66, 0xF4, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Mulps, 0x00, 0x59, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Mulpd, 0x66, 0x59, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Paddb, 0x66, 0xFC, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Paddw, 0x66, 0xFD, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Paddd, 0x66, 0xFE, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Paddq, 0x66, 0xD4, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Psadbw, 0x66, 0xF6, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Addps, 0x00, 0x58, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Addpd, 0x66, 0x58, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Psubb, 0x66, 0xF8, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Psubw, 0x66, 0xF9, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Psubd, 0x66, 0xFA, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Psubq, 0x66, 0xFB, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Subps, 0x00, 0x5C, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Subpd, 0x66, 0x5C, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Pand, 0x66, 0xDB, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Por, 0x66, 0xEB, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Pxor, 0x66, 0xEF, REG_DEF0_USE0),
EXT_0F_ENCODING2_MAP(Phaddw, 0x66, 0x38, 0x01, REG_DEF0_USE0),
EXT_0F_ENCODING2_MAP(Phaddd, 0x66, 0x38, 0x02, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Haddpd, 0x66, 0x7C, REG_DEF0_USE0),
EXT_0F_ENCODING_MAP(Haddps, 0xF2, 0x7C, REG_DEF0_USE0),
{ kX86PextrbRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" },
{ kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" },
{ kX86PextrdRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" },
{ kX86PextrbMRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextrbMRI", "[!0r+!1d],!2r,!3d" },
{ kX86PextrwMRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x15, 0, 0, 1, false }, "PextrwMRI", "[!0r+!1d],!2r,!3d" },
{ kX86PextrdMRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextrdMRI", "[!0r+!1d],!2r,!3d" },
{ kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" },
{ kX86PshufdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" },
{ kX86ShufpsRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE0 | REG_USE1, { 0x00, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "ShufpsRRI", "!0r,!1r,!2d" },
{ kX86ShufpdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE0 | REG_USE1, { 0x66, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "ShufpdRRI", "!0r,!1r,!2d" },
{ kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" },
{ kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" },
{ kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" },
{ kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" },
{ kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" },
{ kX86PsrldqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 3, 0, 1, false }, "PsrldqRI", "!0r,!1d" },
{ kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" },
{ kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" },
{ kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" },
{ kX86Fild32M, kMem, IS_LOAD | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M", "[!0r,!1d]" },
{ kX86Fild64M, kMem, IS_LOAD | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M", "[!0r,!1d]" },
{ kX86Fld32M, kMem, IS_LOAD | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 0, 0, 0, false }, "Fld32M", "[!0r,!1d]" },
{ kX86Fld64M, kMem, IS_LOAD | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 0, 0, 0, false }, "Fld64M", "[!0r,!1d]" },
{ kX86Fstp32M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 3, 0, 0, false }, "Fstps32M", "[!0r,!1d]" },
{ kX86Fstp64M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0, false }, "Fstpd64M", "[!0r,!1d]" },
{ kX86Fst32M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 2, 0, 0, false }, "Fsts32M", "[!0r,!1d]" },
{ kX86Fst64M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 2, 0, 0, false }, "Fstd64M", "[!0r,!1d]" },
{ kX86Fprem, kNullary, NO_OPERAND | USE_FP_STACK, { 0xD9, 0, 0xF8, 0, 0, 0, 0, 0, false }, "Fprem64", "" },
{ kX86Fucompp, kNullary, NO_OPERAND | USE_FP_STACK, { 0xDA, 0, 0xE9, 0, 0, 0, 0, 0, false }, "Fucompp", "" },
{ kX86Fstsw16R, kNullary, NO_OPERAND | REG_DEFA | USE_FP_STACK, { 0x9B, 0xDF, 0xE0, 0, 0, 0, 0, 0, false }, "Fstsw16R", "ax" },
EXT_0F_ENCODING_MAP(Movdqa, 0x66, 0x6F, REG_DEF0),
{ kX86MovdqaMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "MovdqaMR", "[!0r+!1d],!2r" },
{ kX86MovdqaAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "MovdqaAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movups, 0x0, 0x10, REG_DEF0),
{ kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" },
{ kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movaps, 0x0, 0x28, REG_DEF0),
{ kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" },
{ kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" },
{ kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" },
{ kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" },
{ kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" },
{ kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0),
{ kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" },
{ kX86MovqrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" },
{ kX86MovqrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" },
{ kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" },
{ kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86MovsxdRR, kRegReg, IS_BINARY_OP | REG_DEF0 | REG_USE1, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" },
{ kX86MovsxdRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" },
{ kX86MovsxdRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true }, "Set8R", "!1c !0r" },
{ kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" },
{ kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
// TODO: load/store?
// Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
{ kX86Lfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 5, 0, 0, false }, "Lfence", "" },
{ kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" },
{ kX86Sfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 7, 0, 0, false }, "Sfence", "" },
EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
EXT_0F_ENCODING_MAP(Imul64, REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
{ kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" },
{ kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" },
{ kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
{ kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86LockCmpxchg64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, REX_W, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86LockCmpxchg64M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" },
{ kX86LockCmpxchg64A, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
{ kX86XchgMR, kMemReg, IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02, { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" },
EXT_0F_R8_FORM_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
EXT_0F_R8_FORM_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
EXT_0F_ENCODING_MAP(Movzx8q, REX_W, 0xB6, REG_DEF0),
EXT_0F_ENCODING_MAP(Movzx16q, REX_W, 0xB7, REG_DEF0),
EXT_0F_ENCODING_MAP(Movsx8q, REX, 0xBE, REG_DEF0),
EXT_0F_ENCODING_MAP(Movsx16q, REX_W, 0xBF, REG_DEF0),
#undef EXT_0F_ENCODING_MAP
{ kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0, false }, "Jcc8", "!1c !0t" },
{ kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" },
{ kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0, false }, "Jmp8", "!0t" },
{ kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0, false }, "Jmp32", "!0t" },
{ kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0, false }, "JmpR", "!0r" },
{ kX86Jecxz8, kJmp, NO_OPERAND | IS_BRANCH | NEEDS_FIXUP | REG_USEC, { 0, 0, 0xE3, 0, 0, 0, 0, 0, false }, "Jecxz", "!0t" },
{ kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0, false }, "JmpT", "fs:[!0d]" },
{ kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0, false }, "CallR", "!0r" },
{ kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" },
{ kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" },
{ kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallT", "fs:[!0d]" },
{ kX86CallI, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 4, false }, "CallI", "!0d" },
{ kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Ret", "" },
{ kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
{ kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr", "!0r,!1p" },
{ kX86RepneScasw, kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" },
};
std::ostream& operator<<(std::ostream& os, const X86OpCode& rhs) {
os << X86Mir2Lir::EncodingMap[rhs].name;
return os;
}
static bool NeedsRex(int32_t raw_reg) {
return raw_reg != kRIPReg && RegStorage::RegNum(raw_reg) > 7;
}
static uint8_t LowRegisterBits(int32_t raw_reg) {
uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32; // 3 bits
DCHECK_LT(low_reg, 8);
return low_reg;
}
static bool HasModrm(const X86EncodingMap* entry) {
switch (entry->kind) {
case kNullary: return false;
case kRegOpcode: return false;
default: return true;
}
}
static bool HasSib(const X86EncodingMap* entry) {
switch (entry->kind) {
case kArray: return true;
case kArrayReg: return true;
case kRegArray: return true;
case kArrayImm: return true;
case kRegArrayImm: return true;
case kShiftArrayImm: return true;
case kShiftArrayCl: return true;
case kArrayCond: return true;
case kCall:
switch (entry->opcode) {
case kX86CallA: return true;
default: return false;
}
case kPcRel:
switch (entry->opcode) {
case kX86PcRelLoadRA: return true;
default: return false;
}
default: return false;
}
}
static bool ModrmIsRegReg(const X86EncodingMap* entry) {
switch (entry->kind) {
// There is no modrm for this kind of instruction, therefore the reg doesn't form part of the
// modrm:
case kNullary: return true;
case kRegOpcode: return true;
case kMovRegImm: return true;
// Regular modrm value of 3 cases, when there is one register the other register holds an
// opcode so the base register is special.
case kReg: return true;
case kRegReg: return true;
case kRegRegStore: return true;
case kRegImm: return true;
case kRegRegImm: return true;
case kRegRegImmStore: return true;
case kShiftRegImm: return true;
case kShiftRegCl: return true;
case kRegCond: return true;
case kRegRegCond: return true;
case kShiftRegRegCl: return true;
case kJmp:
switch (entry->opcode) {
case kX86JmpR: return true;
default: return false;
}
case kCall:
switch (entry->opcode) {
case kX86CallR: return true;
default: return false;
}
default: return false;
}
}
static bool IsByteSecondOperand(const X86EncodingMap* entry) {
return StartsWith(entry->name, "Movzx8") || StartsWith(entry->name, "Movsx8");
}
size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
int32_t raw_base, int32_t displacement) {
bool has_modrm = HasModrm(entry);
bool has_sib = HasSib(entry);
bool r8_form = entry->skeleton.r8_form;
bool modrm_is_reg_reg = ModrmIsRegReg(entry);
if (has_sib) {
DCHECK(!modrm_is_reg_reg);
}
size_t size = 0;
if (entry->skeleton.prefix1 > 0) {
++size;
if (entry->skeleton.prefix2 > 0) {
++size;
}
}
if (cu_->target64 || kIsDebugBuild) {
bool registers_need_rex_prefix = NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base);
if (r8_form) {
// Do we need an empty REX prefix to normalize byte registers?
registers_need_rex_prefix = registers_need_rex_prefix ||
(RegStorage::RegNum(raw_reg) >= 4 && !IsByteSecondOperand(entry));
registers_need_rex_prefix = registers_need_rex_prefix ||
(modrm_is_reg_reg && (RegStorage::RegNum(raw_base) >= 4));
}
if (registers_need_rex_prefix) {
DCHECK(cu_->target64) << "Attempt to use a 64-bit only addressable register "
<< RegStorage::RegNum(raw_reg) << " with instruction " << entry->name;
if (entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W
&& entry->skeleton.prefix1 != REX && entry->skeleton.prefix2 != REX) {
++size; // rex
}
}
}
++size; // opcode
if (entry->skeleton.opcode == 0x0F) {
++size;
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
++size;
}
}
if (has_modrm) {
++size; // modrm
}
if (!modrm_is_reg_reg) {
if (has_sib || (LowRegisterBits(raw_base) == rs_rX86_SP_32.GetRegNum())
|| (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX)) {
// SP requires a SIB byte.
// GS access also needs a SIB byte for absolute adressing in 64-bit mode.
++size;
}
if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) {
// BP requires an explicit displacement, even when it's 0.
if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA &&
entry->opcode != kX86Lea32RM && entry->opcode != kX86Lea64RM) {
DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name;
}
if (raw_base == kRIPReg) {
DCHECK(cu_->target64) <<
"Attempt to use a 64-bit RIP adressing with instruction " << entry->name;
size += 4;
} else {
size += IS_SIMM8(displacement) ? 1 : 4;
}
}
}
size += entry->skeleton.immediate_bytes;
return size;
}
size_t X86Mir2Lir::GetInsnSize(LIR* lir) {
DCHECK(!IsPseudoLirOp(lir->opcode));
const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
DCHECK_EQ(entry->opcode, lir->opcode) << entry->name;
switch (entry->kind) {
case kData:
return 4; // 4 bytes of data.
case kNop:
return lir->operands[0]; // Length of nop is sole operand.
case kNullary:
return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0);
case kRegOpcode: // lir operands - 0: reg
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
case kReg: // lir operands - 0: reg
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
case kMem: // lir operands - 0: base, 1: disp
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
case kMemRegImm: // lir operands - 0: base, 1: disp, 2: reg 3: immediate
return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
lir->operands[3]);
case kThreadReg: // lir operands - 0: disp, 1: reg
// Thread displacement size is always 32bit.
return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, 0x12345678);
case kRegReg: // lir operands - 0: reg1, 1: reg2
return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
case kRegRegStore: // lir operands - 0: reg2, 1: reg1
return ComputeSize(entry, lir->operands[1], NO_REG, lir->operands[0], 0);
case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
lir->operands[4]);
case kRegThread: // lir operands - 0: reg, 1: disp
// Thread displacement size is always 32bit.
return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0x12345678);
case kRegImm: { // lir operands - 0: reg, 1: immediate
size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
// AX opcodes don't require the modrm byte.
if (entry->skeleton.ax_opcode == 0) {
return size;
} else {
return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
}
}
case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
case kThreadImm: // lir operands - 0: disp, 1: imm
// Thread displacement size is always 32bit.
return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
case kRegRegImm: // lir operands - 0: reg1, 1: reg2, 2: imm
// Note: RegRegImm form passes reg2 as index but encodes it using base.
return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, 0);
case kRegRegImmStore: // lir operands - 0: reg2, 1: reg1, 2: imm
// Note: RegRegImmStore form passes reg1 as index but encodes it using base.
return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG, 0);
case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
lir->operands[4]);
case kMovRegImm: // lir operands - 0: reg, 1: immediate
case kMovRegQuadImm:
return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 +
entry->skeleton.immediate_bytes;
case kShiftRegImm: // lir operands - 0: reg, 1: immediate
// Shift by immediate one has a shorter opcode.
return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0) -
(lir->operands[1] == 1 ? 1 : 0);
case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
// Shift by immediate one has a shorter opcode.
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]) -
(lir->operands[2] == 1 ? 1 : 0);
case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
// Shift by immediate one has a shorter opcode.
return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]) -
(lir->operands[4] == 1 ? 1 : 0);
case kShiftRegCl: // lir operands - 0: reg, 1: cl
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1]));
// Note: ShiftRegCl form passes reg as reg but encodes it using base.
return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4]));
return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
lir->operands[3]);
case kShiftRegRegCl: // lir operands - 0: reg1, 1: reg2, 2: cl
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
case kRegCond: // lir operands - 0: reg, 1: cond
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
DCHECK_EQ(false, entry->skeleton.r8_form);
return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
case kRegRegCond: // lir operands - 0: reg1, 1: reg2, 2: cond
DCHECK_EQ(false, entry->skeleton.r8_form);
return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
case kRegMemCond: // lir operands - 0: reg, 1: base, 2: disp, 3:cond
DCHECK_EQ(false, entry->skeleton.r8_form);
return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
case kJcc:
if (lir->opcode == kX86Jcc8) {
return 2; // opcode + rel8
} else {
DCHECK(lir->opcode == kX86Jcc32);
return 6; // 2 byte opcode + rel32
}
case kJmp:
if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) {
return 2; // opcode + rel8
} else if (lir->opcode == kX86Jmp32) {
return 5; // opcode + rel32
} else if (lir->opcode == kX86JmpT) {
// Thread displacement size is always 32bit.
return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
} else {
DCHECK(lir->opcode == kX86JmpR);
if (NeedsRex(lir->operands[0])) {
return 3; // REX.B + opcode + modrm
} else {
return 2; // opcode + modrm
}
}
case kCall:
switch (lir->opcode) {
case kX86CallI: return 5; // opcode 0:disp
case kX86CallR: return 2; // opcode modrm
case kX86CallM: // lir operands - 0: base, 1: disp
return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
case kX86CallT: // lir operands - 0: disp
// Thread displacement size is always 32bit.
return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
default:
break;
}
break;
case kPcRel:
if (entry->opcode == kX86PcRelLoadRA) {
// lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
// Force the displacement size to 32bit, it will hold a computed offset later.
return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
0x12345678);
} else {
DCHECK_EQ(entry->opcode, kX86PcRelAdr);
return 5; // opcode with reg + 4 byte immediate
}
case kUnimplemented:
break;
}
UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
return 0;
}
static uint8_t ModrmForDisp(int base, int disp) {
// BP requires an explicit disp, so do not omit it in the 0 case
if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
return 0;
} else if (IS_SIMM8(disp)) {
return 1;
} else {
return 2;
}
}
void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) {
if (kIsDebugBuild) {
// Sanity check r8_form is correctly specified.
if (entry->skeleton.r8_form) {
CHECK(strchr(entry->name, '8') != nullptr) << entry->name;
} else {
if (entry->skeleton.immediate_bytes != 1) { // Ignore ...I8 instructions.
if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8")
&& !StartsWith(entry->name, "Movzx8q") && !StartsWith(entry->name, "Movsx8q")) {
CHECK(strchr(entry->name, '8') == nullptr) << entry->name;
}
}
}
if (RegStorage::RegNum(raw_reg) >= 4) {
// ah, bh, ch and dh are not valid registers in 32-bit.
CHECK(cu_->target64 || !entry->skeleton.r8_form)
<< "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg))
<< " for instruction " << entry->name << " in "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
}
}
void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W);
bool r = NeedsRex(raw_reg_r);
bool x = NeedsRex(raw_reg_x);
bool b = NeedsRex(raw_reg_b);
bool r8_form = entry->skeleton.r8_form;
bool modrm_is_reg_reg = ModrmIsRegReg(entry);
uint8_t rex = 0;
if (r8_form) {
// Do we need an empty REX prefix to normalize byte register addressing?
if (RegStorage::RegNum(raw_reg_r) >= 4 && !IsByteSecondOperand(entry)) {
rex |= REX; // REX.0000
} else if (modrm_is_reg_reg && RegStorage::RegNum(raw_reg_b) >= 4) {
rex |= REX; // REX.0000
}
}
if (w) {
rex |= REX_W; // REX.W000
}
if (r) {
rex |= REX_R; // REX.0R00
}
if (x) {
rex |= REX_X; // REX.00X0
}
if (b) {
rex |= REX_B; // REX.000B
}
if (entry->skeleton.prefix1 != 0) {
if (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX) {
// 64 bit addresses by GS, not FS.
code_buffer_.push_back(THREAD_PREFIX_GS);
} else {
if (entry->skeleton.prefix1 == REX_W || entry->skeleton.prefix1 == REX) {
DCHECK(cu_->target64);
rex |= entry->skeleton.prefix1;
code_buffer_.push_back(rex);
rex = 0;
} else {
code_buffer_.push_back(entry->skeleton.prefix1);
}
}
if (entry->skeleton.prefix2 != 0) {
if (entry->skeleton.prefix2 == REX_W || entry->skeleton.prefix1 == REX) {
DCHECK(cu_->target64);
rex |= entry->skeleton.prefix2;
code_buffer_.push_back(rex);
rex = 0;
} else {
code_buffer_.push_back(entry->skeleton.prefix2);
}
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
if (rex != 0) {
DCHECK(cu_->target64);
code_buffer_.push_back(rex);
}
}
void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
}
void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry,
int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b);
EmitOpcode(entry);
}
void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) {
// BP requires an explicit disp, so do not omit it in the 0 case
if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
return;
} else if (IS_SIMM8(disp)) {
code_buffer_.push_back(disp & 0xFF);
} else {
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
}
}
void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) {
if (cu_->target64) {
// Absolute adressing for GS access.
uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rX86_SP_32.GetRegNum();
code_buffer_.push_back(modrm);
uint8_t sib = (0/*TIMES_1*/ << 6) | (rs_rX86_SP_32.GetRegNum() << 3) | rs_rBP.GetRegNum();
code_buffer_.push_back(sib);
} else {
uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rBP.GetRegNum();
code_buffer_.push_back(modrm);
}
}
void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) {
DCHECK_LT(reg_or_opcode, 8);
if (base == kRIPReg) {
// x86_64 RIP handling: always 32 bit displacement.
uint8_t modrm = (0x0 << 6) | (reg_or_opcode << 3) | 0x5;
code_buffer_.push_back(modrm);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
} else {
DCHECK_LT(base, 8);
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
code_buffer_.push_back(modrm);
if (base == rs_rX86_SP_32.GetRegNum()) {
// Special SIB for SP base
code_buffer_.push_back(0 << 6 | rs_rX86_SP_32.GetRegNum() << 3 | rs_rX86_SP_32.GetRegNum());
}
EmitDisp(base, disp);
}
}
void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
int scale, int32_t disp) {
DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 |
rs_rX86_SP_32.GetRegNum();
code_buffer_.push_back(modrm);
DCHECK_LT(scale, 4);
DCHECK_LT(RegStorage::RegNum(index), 8);
DCHECK_LT(RegStorage::RegNum(base), 8);
uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base);
code_buffer_.push_back(sib);
EmitDisp(base, disp);
}
void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
switch (entry->skeleton.immediate_bytes) {
case 1:
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
break;
case 2:
DCHECK(IS_SIMM16(imm));
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
break;
case 4:
DCHECK(IS_SIMM32(imm));
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
break;
case 8:
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
code_buffer_.push_back((imm >> 32) & 0xFF);
code_buffer_.push_back((imm >> 40) & 0xFF);
code_buffer_.push_back((imm >> 48) & 0xFF);
code_buffer_.push_back((imm >> 56) & 0xFF);
break;
default:
LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
<< ") for instruction: " << entry->name;
break;
}
}
void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
// There's no 3-byte instruction with +rd
DCHECK(entry->skeleton.opcode != 0x0F ||
(entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
DCHECK(!RegStorage::IsFloat(raw_reg));
uint8_t low_reg = LowRegisterBits(raw_reg);
code_buffer_.back() += low_reg;
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) {
CheckValidByteRegister(entry, raw_reg);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefix(entry, NO_REG, NO_REG, raw_base);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
int scale, int32_t disp) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
uint8_t low_index = LowRegisterBits(raw_index);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
int32_t raw_reg) {
CheckValidByteRegister(entry, raw_reg);
EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t low_base = (raw_base == kRIPReg) ? raw_base : LowRegisterBits(raw_base);
EmitModrmDisp(low_reg, low_base, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
int32_t disp) {
// Opcode will flip operands.
EmitMemReg(entry, raw_base, disp, raw_reg);
}
void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
int32_t raw_index, int scale, int32_t disp) {
CheckValidByteRegister(entry, raw_reg);
EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t low_index = LowRegisterBits(raw_index);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
int scale, int32_t disp, int32_t raw_reg) {
// Opcode will flip operands.
EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp);
}
void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
int32_t imm) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry,
int32_t raw_base, int32_t raw_index, int scale, int32_t disp,
int32_t imm) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
uint8_t low_index = LowRegisterBits(raw_index);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) {
DCHECK_EQ(false, entry->skeleton.r8_form);
DCHECK_NE(entry->skeleton.prefix1, 0);
EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG);
uint8_t low_reg = LowRegisterBits(raw_reg);
EmitModrmThread(low_reg);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) {
if (!IsByteSecondOperand(entry)) {
CheckValidByteRegister(entry, raw_reg1);
}
CheckValidByteRegister(entry, raw_reg2);
EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
uint8_t low_reg1 = LowRegisterBits(raw_reg1);
uint8_t low_reg2 = LowRegisterBits(raw_reg2);
uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
int32_t imm) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
uint8_t low_reg1 = LowRegisterBits(raw_reg1);
uint8_t low_reg2 = LowRegisterBits(raw_reg2);
uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) {
DCHECK(!RegStorage::IsFloat(raw_reg));
CheckValidByteRegister(entry, raw_reg);
EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(low_reg, low_base, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry,
int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) {
// Opcode will flip operands.
EmitRegMemImm(entry, raw_reg, raw_base, disp, imm);
}
void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
CheckValidByteRegister(entry, raw_reg);
EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
code_buffer_.push_back(entry->skeleton.ax_opcode);
} else {
uint8_t low_reg = LowRegisterBits(raw_reg);
EmitOpcode(entry);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
}
EmitImm(entry, imm);
}
void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
EmitModrmThread(entry->skeleton.modrm_opcode);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
EmitImm(entry, imm);
DCHECK_EQ(entry->skeleton.ax_opcode, 0);
}
void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
uint8_t low_reg = LowRegisterBits(raw_reg);
code_buffer_.push_back(0xB8 + low_reg);
switch (entry->skeleton.immediate_bytes) {
case 4:
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
break;
case 8:
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
code_buffer_.push_back((imm >> 32) & 0xFF);
code_buffer_.push_back((imm >> 40) & 0xFF);
code_buffer_.push_back((imm >> 48) & 0xFF);
code_buffer_.push_back((imm >> 56) & 0xFF);
break;
default:
LOG(FATAL) << "Unsupported immediate size for EmitMovRegImm: "
<< static_cast<uint32_t>(entry->skeleton.immediate_bytes);
}
}
void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
CheckValidByteRegister(entry, raw_reg);
EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
if (imm != 1) {
code_buffer_.push_back(entry->skeleton.opcode);
} else {
// Shorter encoding for 1 bit shift
code_buffer_.push_back(entry->skeleton.ax_opcode);
}
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
if (imm != 1) {
DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
}
}
void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) {
CheckValidByteRegister(entry, raw_reg);
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base,
int32_t displacement, int32_t raw_cl) {
DCHECK_EQ(false, entry->skeleton.r8_form);
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
EmitPrefix(entry, NO_REG, NO_REG, raw_base);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t raw_cl) {
DCHECK_EQ(false, entry->skeleton.r8_form);
DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
uint8_t low_reg1 = LowRegisterBits(raw_reg1);
uint8_t low_reg2 = LowRegisterBits(raw_reg2);
uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
int32_t imm) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefix(entry, NO_REG, NO_REG, raw_base);
if (imm != 1) {
code_buffer_.push_back(entry->skeleton.opcode);
} else {
// Shorter encoding for 1 bit shift
code_buffer_.push_back(entry->skeleton.ax_opcode);
}
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
if (imm != 1) {
DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
}
}
void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) {
CheckValidByteRegister(entry, raw_reg);
EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0x0F, entry->skeleton.opcode);
code_buffer_.push_back(0x0F);
DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
DCHECK_GE(cc, 0);
DCHECK_LT(cc, 16);
code_buffer_.push_back(0x90 | cc);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
}
void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
int32_t cc) {
DCHECK_EQ(false, entry->skeleton.r8_form);
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0x0F, entry->skeleton.opcode);
code_buffer_.push_back(0x0F);
DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
DCHECK_GE(cc, 0);
DCHECK_LT(cc, 16);
code_buffer_.push_back(0x90 | cc);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
}
void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
int32_t cc) {
// Generate prefix and opcode without the condition.
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
// Now add the condition. The last byte of opcode is the one that receives it.
DCHECK_GE(cc, 0);
DCHECK_LT(cc, 16);
code_buffer_.back() += cc;
// Not expecting to have to encode immediate or do anything special for ModR/M since there are
// two registers.
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
// For register to register encoding, the mod is 3.
const uint8_t mod = (3 << 6);
// Encode the ModR/M byte now.
uint8_t low_reg1 = LowRegisterBits(raw_reg1);
uint8_t low_reg2 = LowRegisterBits(raw_reg2);
const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
}
void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base,
int32_t disp, int32_t cc) {
// Generate prefix and opcode without the condition.
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base);
// Now add the condition. The last byte of opcode is the one that receives it.
DCHECK_GE(cc, 0);
DCHECK_LT(cc, 16);
code_buffer_.back() += cc;
// Not expecting to have to encode immediate or do anything special for ModR/M since there are
// two registers.
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
uint8_t low_reg1 = LowRegisterBits(raw_reg1);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(low_reg1, low_base, disp);
}
void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) {
if (entry->opcode == kX86Jmp8) {
DCHECK(IS_SIMM8(rel));
code_buffer_.push_back(0xEB);
code_buffer_.push_back(rel & 0xFF);
} else if (entry->opcode == kX86Jmp32) {
code_buffer_.push_back(0xE9);
code_buffer_.push_back(rel & 0xFF);
code_buffer_.push_back((rel >> 8) & 0xFF);
code_buffer_.push_back((rel >> 16) & 0xFF);
code_buffer_.push_back((rel >> 24) & 0xFF);
} else if (entry->opcode == kX86Jecxz8) {
DCHECK(IS_SIMM8(rel));
code_buffer_.push_back(0xE3);
code_buffer_.push_back(rel & 0xFF);
} else {
DCHECK(entry->opcode == kX86JmpR);
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefix(entry, NO_REG, NO_REG, rel);
code_buffer_.push_back(entry->skeleton.opcode);
uint8_t low_reg = LowRegisterBits(rel);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
}
}
void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) {
DCHECK_GE(cc, 0);
DCHECK_LT(cc, 16);
if (entry->opcode == kX86Jcc8) {
DCHECK(IS_SIMM8(rel));
code_buffer_.push_back(0x70 | cc);
code_buffer_.push_back(rel & 0xFF);
} else {
DCHECK(entry->opcode == kX86Jcc32);
code_buffer_.push_back(0x0F);
code_buffer_.push_back(0x80 | cc);
code_buffer_.push_back(rel & 0xFF);
code_buffer_.push_back((rel >> 8) & 0xFF);
code_buffer_.push_back((rel >> 16) & 0xFF);
code_buffer_.push_back((rel >> 24) & 0xFF);
}
}
void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
uint8_t low_base = LowRegisterBits(raw_base);
EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
DCHECK_EQ(4, entry->skeleton.immediate_bytes);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
}
void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) {
DCHECK_EQ(false, entry->skeleton.r8_form);
DCHECK_NE(entry->skeleton.prefix1, 0);
EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
EmitModrmThread(entry->skeleton.modrm_opcode);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
int32_t raw_index, int scale, int32_t table_or_disp) {
int disp;
if (entry->opcode == kX86PcRelLoadRA) {
const SwitchTable* tab_rec = UnwrapPointer<SwitchTable>(table_or_disp);
disp = tab_rec->offset - tab_rec->anchor->offset;
} else {
DCHECK(entry->opcode == kX86PcRelAdr);
const EmbeddedData* tab_rec = UnwrapPointer<EmbeddedData>(raw_base_or_table);
disp = tab_rec->offset;
}
if (entry->opcode == kX86PcRelLoadRA) {
DCHECK_EQ(false, entry->skeleton.r8_form);
EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t low_reg = LowRegisterBits(raw_reg);
uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP_32.GetRegNum();
code_buffer_.push_back(modrm);
DCHECK_LT(scale, 4);
uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table);
uint8_t low_index = LowRegisterBits(raw_index);
uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table;
code_buffer_.push_back(sib);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
} else {
uint8_t low_reg = LowRegisterBits(raw_reg);
code_buffer_.push_back(entry->skeleton.opcode + low_reg);
}
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
}
void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
<< BuildInsnString(entry->fmt, lir, 0);
for (size_t i = 0; i < GetInsnSize(lir); ++i) {
code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
}
}
/*
* Assemble the LIR into binary instruction format. Note that we may
* discover that pc-relative displacements may not fit the selected
* instruction. In those cases we will try to substitute a new code
* sequence or request that the trace be shortened and retried.
*/
AssemblerStatus X86Mir2Lir::AssembleInstructions(LIR* first_lir_insn, CodeOffset start_addr) {
UNUSED(start_addr);
LIR *lir;
AssemblerStatus res = kSuccess; // Assume success
const bool kVerbosePcFixup = false;
for (lir = first_lir_insn; lir != nullptr; lir = NEXT_LIR(lir)) {
if (IsPseudoLirOp(lir->opcode)) {
continue;
}
if (lir->flags.is_nop) {
continue;
}
if (lir->flags.fixup != kFixupNone) {
switch (lir->opcode) {
case kX86Jcc8: {
LIR *target_lir = lir->target;
DCHECK(target_lir != nullptr);
int delta = 0;
CodeOffset pc;
if (IS_SIMM8(lir->operands[0])) {
pc = lir->offset + 2 /* opcode + rel8 */;
} else {
pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
}
CodeOffset target = target_lir->offset;
delta = target - pc;
if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
if (kVerbosePcFixup) {
LOG(INFO) << "Retry for JCC growth at " << lir->offset
<< " delta: " << delta << " old delta: " << lir->operands[0];
}
lir->opcode = kX86Jcc32;
lir->flags.size = GetInsnSize(lir);
DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
res = kRetryAll;
}
if (kVerbosePcFixup) {
LOG(INFO) << "Source:";
DumpLIRInsn(lir, 0);
LOG(INFO) << "Target:";
DumpLIRInsn(target_lir, 0);
LOG(INFO) << "Delta " << delta;
}
lir->operands[0] = delta;
break;
}
case kX86Jcc32: {
LIR *target_lir = lir->target;
DCHECK(target_lir != nullptr);
CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
CodeOffset target = target_lir->offset;
int delta = target - pc;
if (kVerbosePcFixup) {
LOG(INFO) << "Source:";
DumpLIRInsn(lir, 0);
LOG(INFO) << "Target:";
DumpLIRInsn(target_lir, 0);
LOG(INFO) << "Delta " << delta;
}
lir->operands[0] = delta;
break;
}
case kX86Jecxz8: {
LIR *target_lir = lir->target;
DCHECK(target_lir != nullptr);
CodeOffset pc;
pc = lir->offset + 2; // opcode + rel8
CodeOffset target = target_lir->offset;
int delta = target - pc;
lir->operands[0] = delta;
DCHECK(IS_SIMM8(delta));
break;
}
case kX86Jmp8: {
LIR *target_lir = lir->target;
DCHECK(target_lir != nullptr);
int delta = 0;
CodeOffset pc;
if (IS_SIMM8(lir->operands[0])) {
pc = lir->offset + 2 /* opcode + rel8 */;
} else {
pc = lir->offset + 5 /* opcode + rel32 */;
}
CodeOffset target = target_lir->offset;
delta = target - pc;
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
// Useless branch
NopLIR(lir);
if (kVerbosePcFixup) {
LOG(INFO) << "Retry for useless branch at " << lir->offset;
}
res = kRetryAll;
} else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
if (kVerbosePcFixup) {
LOG(INFO) << "Retry for JMP growth at " << lir->offset;
}
lir->opcode = kX86Jmp32;
lir->flags.size = GetInsnSize(lir);
DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
res = kRetryAll;
}
lir->operands[0] = delta;
break;
}
case kX86Jmp32: {
LIR *target_lir = lir->target;
DCHECK(target_lir != nullptr);
CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
CodeOffset target = target_lir->offset;
int delta = target - pc;
lir->operands[0] = delta;
break;
}
default:
if (lir->flags.fixup == kFixupLoad) {
LIR *target_lir = lir->target;
DCHECK(target_lir != nullptr);
CodeOffset target = target_lir->offset;
// Handle 64 bit RIP addressing.
if (lir->operands[1] == kRIPReg) {
// Offset is relative to next instruction.
lir->operands[2] = target - (lir->offset + lir->flags.size);
} else {
const LIR* anchor = UnwrapPointer<LIR>(lir->operands[4]);
lir->operands[2] = target - anchor->offset;
int newSize = GetInsnSize(lir);
if (newSize != lir->flags.size) {
lir->flags.size = newSize;
res = kRetryAll;
}
}
} else if (lir->flags.fixup == kFixupSwitchTable) {
DCHECK(cu_->target64);
DCHECK_EQ(lir->opcode, kX86Lea64RM) << "Unknown instruction: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
DCHECK_EQ(lir->operands[1], static_cast<int>(kRIPReg));
// Grab the target offset from the saved data.
const EmbeddedData* tab_rec = UnwrapPointer<Mir2Lir::EmbeddedData>(lir->operands[4]);
CodeOffset target = tab_rec->offset;
// Handle 64 bit RIP addressing.
// Offset is relative to next instruction.
lir->operands[2] = target - (lir->offset + lir->flags.size);
}
break;
}
}
/*
* If one of the pc-relative instructions expanded we'll have
* to make another pass. Don't bother to fully assemble the
* instruction.
*/
if (res != kSuccess) {
continue;
}
CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
size_t starting_cbuf_size = code_buffer_.size();
switch (entry->kind) {
case kData: // 4 bytes of data
code_buffer_.push_back(lir->operands[0]);
break;
case kNullary: // 1 byte of opcode and possible prefixes.
EmitNullary(entry);
break;
case kRegOpcode: // lir operands - 0: reg
EmitOpRegOpcode(entry, lir->operands[0]);
break;
case kReg: // lir operands - 0: reg
EmitOpReg(entry, lir->operands[0]);
break;
case kMem: // lir operands - 0: base, 1: disp
EmitOpMem(entry, lir->operands[0], lir->operands[1]);
break;
case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
break;
case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kArrayImm: // lir operands - 0: base, 1: index, 2: disp, 3:scale, 4:immediate
EmitArrayImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kRegThread: // lir operands - 0: reg, 1: disp
EmitRegThread(entry, lir->operands[0], lir->operands[1]);
break;
case kRegReg: // lir operands - 0: reg1, 1: reg2
EmitRegReg(entry, lir->operands[0], lir->operands[1]);
break;
case kRegRegStore: // lir operands - 0: reg2, 1: reg1
EmitRegReg(entry, lir->operands[1], lir->operands[0]);
break;
case kMemRegImm: // lir operands - 0: base, 1: disp, 2: reg 3: immediate
EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3]);
break;
case kRegRegImm: // lir operands - 0: reg1, 1: reg2, 2: imm
EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegRegImmStore: // lir operands - 0: reg2, 1: reg1, 2: imm
EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
break;
case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3]);
break;
case kRegImm: // lir operands - 0: reg, 1: immediate
EmitRegImm(entry, lir->operands[0], lir->operands[1]);
break;
case kThreadImm: // lir operands - 0: disp, 1: immediate
EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
break;
case kMovRegImm: // lir operands - 0: reg, 1: immediate
EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
break;
case kMovRegQuadImm: {
int64_t value = static_cast<int64_t>(static_cast<int64_t>(lir->operands[1]) << 32 |
static_cast<uint32_t>(lir->operands[2]));
EmitMovRegImm(entry, lir->operands[0], value);
}
break;
case kShiftRegImm: // lir operands - 0: reg, 1: immediate
EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
break;
case kShiftMemImm: // lir operands - 0: base, 1: disp, 2:immediate
EmitShiftMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kShiftRegCl: // lir operands - 0: reg, 1: cl
EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
break;
case kShiftMemCl: // lir operands - 0: base, 1:displacement, 2: cl
EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kShiftRegRegCl: // lir operands - 0: reg1, 1: reg2, 2: cl
EmitShiftRegRegCl(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
break;
case kRegCond: // lir operands - 0: reg, 1: condition
EmitRegCond(entry, lir->operands[0], lir->operands[1]);
break;
case kMemCond: // lir operands - 0: base, 1: displacement, 2: condition
EmitMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegMemCond: // lir operands - 0: reg, 1: reg, displacement, 3: condition
EmitRegMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3]);
break;
case kJmp: // lir operands - 0: rel
if (entry->opcode == kX86JmpT) {
// This works since the instruction format for jmp and call is basically the same and
// EmitCallThread loads opcode info.
EmitCallThread(entry, lir->operands[0]);
} else {
EmitJmp(entry, lir->operands[0]);
}
break;
case kJcc: // lir operands - 0: rel, 1: CC, target assigned
EmitJcc(entry, lir->operands[0], lir->operands[1]);
break;
case kCall:
switch (entry->opcode) {
case kX86CallI: // lir operands - 0: disp
EmitCallImmediate(entry, lir->operands[0]);
break;
case kX86CallM: // lir operands - 0: base, 1: disp
EmitCallMem(entry, lir->operands[0], lir->operands[1]);
break;
case kX86CallT: // lir operands - 0: disp
EmitCallThread(entry, lir->operands[0]);
break;
default:
EmitUnimplemented(entry, lir);
break;
}
break;
case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kNop: // TODO: these instruction kinds are missing implementations.
case kThreadReg:
case kRegArrayImm:
case kShiftArrayImm:
case kShiftArrayCl:
case kArrayCond:
case kUnimplemented:
EmitUnimplemented(entry, lir);
break;
}
DCHECK_EQ(lir->flags.size, GetInsnSize(lir));
CHECK_EQ(lir->flags.size, code_buffer_.size() - starting_cbuf_size)
<< "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
}
return res;
}
// LIR offset assignment.
// TODO: consolidate w/ Arm assembly mechanism.
int X86Mir2Lir::AssignInsnOffsets() {
LIR* lir;
int offset = 0;
for (lir = first_lir_insn_; lir != nullptr; lir = NEXT_LIR(lir)) {
lir->offset = offset;
if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
if (!lir->flags.is_nop) {
offset += lir->flags.size;
}
} else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
if (offset & 0x2) {
offset += 2;
lir->operands[0] = 1;
} else {
lir->operands[0] = 0;
}
}
/* Pseudo opcodes don't consume space */
}
return offset;
}
/*
* Walk the compilation unit and assign offsets to instructions
* and literals and compute the total size of the compiled unit.
* TODO: consolidate w/ Arm assembly mechanism.
*/
void X86Mir2Lir::AssignOffsets() {
int offset = AssignInsnOffsets();
if (const_vectors_ != nullptr) {
// Vector literals must be 16-byte aligned. The header that is placed
// in the code section causes misalignment so we take it into account.
// Otherwise, we are sure that for x86 method is aligned to 16.
DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u);
uint32_t bytes_to_fill = (0x10 - ((offset + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF;
offset += bytes_to_fill;
// Now assign each literal the right offset.
for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
p->offset = offset;
offset += 16;
}
}
/* Const values have to be word aligned */
offset = RoundUp(offset, 4);
/* Set up offsets for literals */
data_offset_ = offset;
offset = AssignLiteralOffset(offset);
offset = AssignSwitchTablesOffset(offset);
offset = AssignFillArrayDataOffset(offset);
total_size_ = offset;
}
/*
* Go over each instruction in the list and calculate the offset from the top
* before sending them off to the assembler. If out-of-range branch distance is
* seen rearrange the instructions a bit to correct it.
* TODO: consolidate w/ Arm assembly mechanism.
*/
void X86Mir2Lir::AssembleLIR() {
cu_->NewTimingSplit("Assemble");
// We will remove the method address if we never ended up using it
if (pc_rel_base_reg_.Valid() && !pc_rel_base_reg_used_) {
if (kIsDebugBuild) {
LOG(WARNING) << "PC-relative addressing base promoted but unused in "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
setup_pc_rel_base_reg_->flags.is_nop = true;
NEXT_LIR(setup_pc_rel_base_reg_)->flags.is_nop = true;
}
AssignOffsets();
int assembler_retries = 0;
/*
* Assemble here. Note that we generate code with optimistic assumptions
* and if found now to work, we'll have to redo the sequence and retry.
*/
while (true) {
AssemblerStatus res = AssembleInstructions(first_lir_insn_, 0);
if (res == kSuccess) {
break;
} else {
assembler_retries++;
if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
CodegenDump();
LOG(FATAL) << "Assembler error - too many retries";
}
// Redo offsets and try again
AssignOffsets();
code_buffer_.clear();
}
}
// Install literals
InstallLiteralPools();
// Install switch tables
InstallSwitchTables();
// Install fill array data
InstallFillArrayData();
// Create the mapping table and native offset to reference map.
cu_->NewTimingSplit("PcMappingTable");
CreateMappingTables();
cu_->NewTimingSplit("GcMap");
CreateNativeGcMap();
}
} // namespace art