(-1)) {
if (cu->target64) {
cg->LoadConstantWide(cg->TargetPtrReg(kInvokeTgt), direct_code);
} else {
cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
}
} else {
CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
cg->LoadCodeAddress(target_method, type, kInvokeTgt);
}
}
break;
case 2: {
// Grab target method*
CHECK_EQ(cu->dex_file, target_method.dex_file);
const size_t pointer_size = GetInstructionSetPointerSize(cu->instruction_set);
cg->LoadWordDisp(arg0_ref,
mirror::Array::DataOffset(pointer_size).Uint32Value() +
target_method.dex_method_index * pointer_size, arg0_ref);
break;
}
case 3: // Grab the code from the method*
if (direct_code == 0) {
int32_t offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
InstructionSetPointerSize(cu->instruction_set)).Int32Value();
// Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
cg->LoadWordDisp(arg0_ref, offset, cg->TargetPtrReg(kInvokeTgt));
}
break;
default:
return -1;
}
}
return state + 1;
}
NextCallInsn MipsMir2Lir::GetNextSDCallInsn() {
return NextSDCallInsn;
}
LIR* MipsMir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info ATTRIBUTE_UNUSED) {
return OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
}
} // namespace art
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the Mips ISA */
#include "codegen_mips.h"
#include "art_method.h"
#include "base/logging.h"
#include "dex/mir_graph.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
#include "mips_lir.h"
#include "mirror/object_array-inl.h"
namespace art {
bool MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) {
// TODO
UNUSED(bb, mir, special);
return false;
}
/*
* The lack of pc-relative loads on Mips presents somewhat of a challenge
* for our PIC switch table strategy. To materialize the current location
* we'll do a dummy JAL and reference our tables using rRA as the
* base register. Note that rRA will be used both as the base to
* locate the switch table data and as the reference base for the switch
* target offsets stored in the table. We'll use a special pseudo-instruction
* to represent the jal and trigger the construction of the
* switch table offsets (which will happen after final assembly and all
* labels are fixed).
*
* The test loop will look something like:
*
* ori r_end, rZERO, #table_size ; size in bytes
* jal BaseLabel ; stores "return address" (BaseLabel) in rRA
* nop ; opportunistically fill
* BaseLabel:
* addiu r_base, rRA, <table> - <BaseLabel> ; table relative to BaseLabel
addu r_end, r_end, r_base ; end of table
* lw r_val, [rSP, v_reg_off] ; Test Value
* loop:
* beq r_base, r_end, done
* lw r_key, 0(r_base)
* addu r_base, 8
* bne r_val, r_key, loop
* lw r_disp, -4(r_base)
* addu rRA, r_disp
* jalr rZERO, rRA
* done:
*
*/
void MipsMir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
// Add the table to the list - we'll process it later.
SwitchTable* tab_rec =
static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
tab_rec->switch_mir = mir;
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
int elements = table[1];
switch_tables_.push_back(tab_rec);
// The table is composed of 8-byte key/disp pairs.
int byte_size = elements * 8;
int size_hi = byte_size >> 16;
int size_lo = byte_size & 0xffff;
RegStorage r_end = AllocPtrSizeTemp();
if (size_hi) {
NewLIR2(kMipsLui, r_end.GetReg(), size_hi);
}
// Must prevent code motion for the curr pc pair.
GenBarrier(); // Scheduling barrier
NewLIR0(kMipsCurrPC); // Really a jal to .+8.
// Now, fill the branch delay slot.
if (size_hi) {
NewLIR3(kMipsOri, r_end.GetReg(), r_end.GetReg(), size_lo);
} else {
NewLIR3(kMipsOri, r_end.GetReg(), rZERO, size_lo);
}
GenBarrier(); // Scheduling barrier.
// Construct BaseLabel and set up table base register.
LIR* base_label = NewLIR0(kPseudoTargetLabel);
// Remember base label so offsets can be computed later.
tab_rec->anchor = base_label;
RegStorage r_base = AllocPtrSizeTemp();
NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
OpRegRegReg(kOpAdd, r_end, r_end, r_base);
// Grab switch test value.
rl_src = LoadValue(rl_src, kCoreReg);
// Test loop.
RegStorage r_key = AllocTemp();
LIR* loop_label = NewLIR0(kPseudoTargetLabel);
LIR* exit_branch = OpCmpBranch(kCondEq, r_base, r_end, nullptr);
Load32Disp(r_base, 0, r_key);
OpRegImm(kOpAdd, r_base, 8);
OpCmpBranch(kCondNe, rl_src.reg, r_key, loop_label);
RegStorage r_disp = AllocTemp();
Load32Disp(r_base, -4, r_disp);
const RegStorage rs_ra = TargetPtrReg(kLr);
OpRegRegReg(kOpAdd, rs_ra, rs_ra, r_disp);
OpReg(kOpBx, rs_ra);
// Loop exit.
LIR* exit_label = NewLIR0(kPseudoTargetLabel);
exit_branch->target = exit_label;
}
/*
* Code pattern will look something like:
*
* lw r_val
* jal BaseLabel ; stores "return address" (BaseLabel) in rRA
* nop ; opportunistically fill
* [subiu r_val, bias] ; Remove bias if low_val != 0
* bound check -> done
* lw r_disp, [rRA, r_val]
* addu rRA, r_disp
* jalr rZERO, rRA
* done:
*/
void MipsMir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
// Add the table to the list - we'll process it later.
SwitchTable* tab_rec =
static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
tab_rec->switch_mir = mir;
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
int size = table[1];
switch_tables_.push_back(tab_rec);
// Get the switch value.
rl_src = LoadValue(rl_src, kCoreReg);
// Prepare the bias. If too big, handle 1st stage here.
int low_key = s4FromSwitchData(&table[2]);
bool large_bias = false;
RegStorage r_key;
if (low_key == 0) {
r_key = rl_src.reg;
} else if ((low_key & 0xffff) != low_key) {
r_key = AllocTemp();
LoadConstant(r_key, low_key);
large_bias = true;
} else {
r_key = AllocTemp();
}
// Must prevent code motion for the curr pc pair.
GenBarrier();
NewLIR0(kMipsCurrPC); // Really a jal to .+8.
// Now, fill the branch delay slot with bias strip.
if (low_key == 0) {
NewLIR0(kMipsNop);
} else {
if (large_bias) {
OpRegRegReg(kOpSub, r_key, rl_src.reg, r_key);
} else {
OpRegRegImm(kOpSub, r_key, rl_src.reg, low_key);
}
}
GenBarrier(); // Scheduling barrier.
// Construct BaseLabel and set up table base register.
LIR* base_label = NewLIR0(kPseudoTargetLabel);
// Remember base label so offsets can be computed later.
tab_rec->anchor = base_label;
// Bounds check - if < 0 or >= size continue following switch.
LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, nullptr);
// Materialize the table base pointer.
RegStorage r_base = AllocPtrSizeTemp();
NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
// Load the displacement from the switch table.
RegStorage r_disp = AllocTemp();
LoadBaseIndexed(r_base, r_key, r_disp, 2, k32);
// Add to rRA and go.
const RegStorage rs_ra = TargetPtrReg(kLr);
OpRegRegReg(kOpAdd, rs_ra, rs_ra, r_disp);
OpReg(kOpBx, rs_ra);
// Branch_over target here.
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
}
void MipsMir2Lir::GenMoveException(RegLocation rl_dest) {
int ex_offset = cu_->target64 ? Thread::ExceptionOffset<8>().Int32Value() :
Thread::ExceptionOffset<4>().Int32Value();
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
RegStorage reset_reg = AllocTempRef();
LoadRefDisp(TargetPtrReg(kSelf), ex_offset, rl_result.reg, kNotVolatile);
LoadConstant(reset_reg, 0);
StoreRefDisp(TargetPtrReg(kSelf), ex_offset, reset_reg, kNotVolatile);
FreeTemp(reset_reg);
StoreValue(rl_dest, rl_result);
}
void MipsMir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) {
RegStorage reg_card_base = AllocPtrSizeTemp();
RegStorage reg_card_no = AllocPtrSizeTemp();
if (cu_->target64) {
// NOTE: native pointer.
LoadWordDisp(TargetPtrReg(kSelf), Thread::CardTableOffset<8>().Int32Value(), reg_card_base);
OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
StoreBaseIndexed(reg_card_base, reg_card_no, As32BitReg(reg_card_base), 0, kUnsignedByte);
} else {
// NOTE: native pointer.
LoadWordDisp(TargetPtrReg(kSelf), Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
}
FreeTemp(reg_card_base);
FreeTemp(reg_card_no);
}
static dwarf::Reg DwarfCoreReg(int num) {
return dwarf::Reg::MipsCore(num);
}
void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0);
int spill_count = num_core_spills_ + num_fp_spills_;
/*
* On entry, A0, A1, A2 & A3 are live. On Mips64, A4, A5, A6 & A7 are also live.
* Let the register allocation mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing.
*/
const RegStorage arg0 = TargetReg(kArg0);
const RegStorage arg1 = TargetReg(kArg1);
const RegStorage arg2 = TargetReg(kArg2);
const RegStorage arg3 = TargetReg(kArg3);
const RegStorage arg4 = TargetReg(kArg4);
const RegStorage arg5 = TargetReg(kArg5);
const RegStorage arg6 = TargetReg(kArg6);
const RegStorage arg7 = TargetReg(kArg7);
LockTemp(arg0);
LockTemp(arg1);
LockTemp(arg2);
LockTemp(arg3);
if (cu_->target64) {
LockTemp(arg4);
LockTemp(arg5);
LockTemp(arg6);
LockTemp(arg7);
}
bool skip_overflow_check;
InstructionSet target = (cu_->target64) ? kMips64 : kMips;
int ptr_size = cu_->target64 ? 8 : 4;
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, target);
RegStorage check_reg = AllocPtrSizeTemp();
RegStorage new_sp = AllocPtrSizeTemp();
const RegStorage rs_sp = TargetPtrReg(kSp);
const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(target);
const bool large_frame = static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes;
bool generate_explicit_stack_overflow_check = large_frame ||
!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks();
if (!skip_overflow_check) {
if (generate_explicit_stack_overflow_check) {
// Load stack limit.
if (cu_->target64) {
LoadWordDisp(TargetPtrReg(kSelf), Thread::StackEndOffset<8>().Int32Value(), check_reg);
} else {
Load32Disp(TargetPtrReg(kSelf), Thread::StackEndOffset<4>().Int32Value(), check_reg);
}
} else {
// Implicit stack overflow check.
// Generate a load from [sp, #-overflowsize]. If this is in the stack
// redzone we will get a segmentation fault.
Load32Disp(rs_sp, -kStackOverflowReservedUsableBytes, rs_rZERO);
MarkPossibleStackOverflowException();
}
}
// Spill core callee saves.
SpillCoreRegs();
// NOTE: promotion of FP regs currently unsupported, thus no FP spill.
DCHECK_EQ(num_fp_spills_, 0);
const int frame_sub = frame_size_ - spill_count * ptr_size;
if (!skip_overflow_check && generate_explicit_stack_overflow_check) {
class StackOverflowSlowPath : public LIRSlowPath {
public:
StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
: LIRSlowPath(m2l, branch), sp_displace_(sp_displace) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
// RA is offset 0 since we push in reverse order.
m2l_->LoadWordDisp(m2l_->TargetPtrReg(kSp), 0, m2l_->TargetPtrReg(kLr));
m2l_->OpRegImm(kOpAdd, m2l_->TargetPtrReg(kSp), sp_displace_);
m2l_->cfi().AdjustCFAOffset(-sp_displace_);
m2l_->ClobberCallerSave();
RegStorage r_tgt = m2l_->CallHelperSetup(kQuickThrowStackOverflow); // Doesn't clobber LR.
m2l_->CallHelper(r_tgt, kQuickThrowStackOverflow, false /* MarkSafepointPC */,
false /* UseLink */);
m2l_->cfi().AdjustCFAOffset(sp_displace_);
}
private:
const size_t sp_displace_;
};
OpRegRegImm(kOpSub, new_sp, rs_sp, frame_sub);
LIR* branch = OpCmpBranch(kCondUlt, new_sp, check_reg, nullptr);
AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, spill_count * ptr_size));
// TODO: avoid copy for small frame sizes.
OpRegCopy(rs_sp, new_sp); // Establish stack.
cfi_.AdjustCFAOffset(frame_sub);
} else {
// Here if skip_overflow_check or doing implicit stack overflow check.
// Just make room on the stack for the frame now.
OpRegImm(kOpSub, rs_sp, frame_sub);
cfi_.AdjustCFAOffset(frame_sub);
}
FlushIns(ArgLocs, rl_method);
FreeTemp(arg0);
FreeTemp(arg1);
FreeTemp(arg2);
FreeTemp(arg3);
if (cu_->target64) {
FreeTemp(arg4);
FreeTemp(arg5);
FreeTemp(arg6);
FreeTemp(arg7);
}
}
void MipsMir2Lir::GenExitSequence() {
cfi_.RememberState();
/*
* In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(TargetPtrReg(kRet0));
LockTemp(TargetPtrReg(kRet1));
UnSpillCoreRegs();
OpReg(kOpBx, TargetPtrReg(kLr));
// The CFI should be restored for any code that follows the exit block.
cfi_.RestoreState();
cfi_.DefCFAOffset(frame_size_);
}
void MipsMir2Lir::GenSpecialExitSequence() {
OpReg(kOpBx, TargetPtrReg(kLr));
}
void MipsMir2Lir::GenSpecialEntryForSuspend() {
// Keep 16-byte stack alignment - push A0, i.e. ArtMethod*, 2 filler words and RA for mips32,
// but A0 and RA for mips64.
core_spill_mask_ = (1u << TargetPtrReg(kLr).GetRegNum());
num_core_spills_ = 1u;
fp_spill_mask_ = 0u;
num_fp_spills_ = 0u;
frame_size_ = 16u;
core_vmap_table_.clear();
fp_vmap_table_.clear();
const RegStorage rs_sp = TargetPtrReg(kSp);
OpRegImm(kOpSub, rs_sp, frame_size_);
cfi_.AdjustCFAOffset(frame_size_);
StoreWordDisp(rs_sp, frame_size_ - (cu_->target64 ? 8 : 4), TargetPtrReg(kLr));
cfi_.RelOffset(DwarfCoreReg(rRA), frame_size_ - (cu_->target64 ? 8 : 4));
StoreWordDisp(rs_sp, 0, TargetPtrReg(kArg0));
// Do not generate CFI for scratch register A0.
}
void MipsMir2Lir::GenSpecialExitForSuspend() {
// Pop the frame. Don't pop ArtMethod*, it's no longer needed.
const RegStorage rs_sp = TargetPtrReg(kSp);
LoadWordDisp(rs_sp, frame_size_ - (cu_->target64 ? 8 : 4), TargetPtrReg(kLr));
cfi_.Restore(DwarfCoreReg(rRA));
OpRegImm(kOpAdd, rs_sp, frame_size_);
cfi_.AdjustCFAOffset(-frame_size_);
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method, uint32_t, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
if (info->string_init_offset != 0) {
RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
switch (state) {
case 0: { // Grab target method* from thread pointer
cg->LoadWordDisp(cg->TargetPtrReg(kSelf), info->string_init_offset, arg0_ref);
break;
}
case 1: // Grab the code from the method*
if (direct_code == 0) {
int32_t offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
InstructionSetPointerSize(cu->instruction_set)).Int32Value();
cg->LoadWordDisp(arg0_ref, offset, cg->TargetPtrReg(kInvokeTgt));
}
break;
default:
return -1;
}
} else if (direct_code != 0 && direct_method != 0) {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
if (direct_code != static_cast<uintptr_t>(-1)) {
if (cu->target64) {
cg->LoadConstantWide(cg->TargetPtrReg(kInvokeTgt), direct_code);
} else {
cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
}
} else {
cg->LoadCodeAddress(target_method, type, kInvokeTgt);
}
if (direct_method != static_cast<uintptr_t>(-1)) {
if (cu->target64) {
cg->LoadConstantWide(cg->TargetReg(kArg0, kRef), direct_method);
} else {
cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
}
} else {
cg->LoadMethodAddress(target_method, type, kArg0);
}
break;
default:
return -1;
}
} else {
RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
switch (state) {
case 0: // Get the current Method* [sets kArg0]
// TUNING: we can save a reg copy if Method* has been promoted.
cg->LoadCurrMethodDirect(arg0_ref);
break;
case 1: // Get method->dex_cache_resolved_methods_
cg->LoadRefDisp(arg0_ref,
ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
arg0_ref,
kNotVolatile);
// Set up direct code if known.
if (direct_code != 0) {
if (direct_code != static_cast<uintptr_t>(-1)) {
if (cu->target64) {
cg->LoadConstantWide(cg->TargetPtrReg(kInvokeTgt), direct_code);
} else {
cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
}
} else {
CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
cg->LoadCodeAddress(target_method, type, kInvokeTgt);
}
}
break;
case 2: {
// Grab target method*
CHECK_EQ(cu->dex_file, target_method.dex_file);
const size_t pointer_size = GetInstructionSetPointerSize(cu->instruction_set);
cg->LoadWordDisp(arg0_ref,
mirror::Array::DataOffset(pointer_size).Uint32Value() +
target_method.dex_method_index * pointer_size, arg0_ref);
break;
}
case 3: // Grab the code from the method*
if (direct_code == 0) {
int32_t offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
InstructionSetPointerSize(cu->instruction_set)).Int32Value();
// Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
cg->LoadWordDisp(arg0_ref, offset, cg->TargetPtrReg(kInvokeTgt));
}
break;
default:
return -1;
}
}
return state + 1;
}
NextCallInsn MipsMir2Lir::GetNextSDCallInsn() {
return NextSDCallInsn;
}
LIR* MipsMir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info ATTRIBUTE_UNUSED) {
return OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
}
} // namespace art
您还没有登录,登录后您可以:
-
收藏Android系统代码
-
收藏喜欢的文章
-
多个平台共享账号
去登录
首次使用?从这里 注册