/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mir_to_lir-inl.h"
#include <functional>
#include "arch/arm/instruction_set_features_arm.h"
#include "base/bit_utils.h"
#include "base/macros.h"
#include "dex/compiler_ir.h"
#include "dex/mir_graph.h"
#include "dex/quick/arm/arm_lir.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "mirror/array.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_reference.h"
#include "utils/dex_cache_arrays_layout-inl.h"
#include "verifier/method_verifier.h"
namespace art {
// Shortcuts to repeatedly used long types.
typedef mirror::ObjectArray<mirror::Object> ObjArray;
typedef mirror::ObjectArray<mirror::Class> ClassArray;
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
ALWAYS_INLINE static inline bool ForceSlowFieldPath(CompilationUnit* cu) {
return (cu->enable_debug & (1 << kDebugSlowFieldPath)) != 0;
}
ALWAYS_INLINE static inline bool ForceSlowStringPath(CompilationUnit* cu) {
return (cu->enable_debug & (1 << kDebugSlowStringPath)) != 0;
}
ALWAYS_INLINE static inline bool ForceSlowTypePath(CompilationUnit* cu) {
return (cu->enable_debug & (1 << kDebugSlowTypePath)) != 0;
}
void Mir2Lir::GenIfNullUseHelperImm(RegStorage r_result, QuickEntrypointEnum trampoline, int imm) {
class CallHelperImmMethodSlowPath : public LIRSlowPath {
public:
CallHelperImmMethodSlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont,
QuickEntrypointEnum trampoline_in, int imm_in,
RegStorage r_result_in)
: LIRSlowPath(m2l, fromfast, cont), trampoline_(trampoline_in),
imm_(imm_in), r_result_(r_result_in) {
}
void Compile() {
GenerateTargetLabel();
m2l_->CallRuntimeHelperImm(trampoline_, imm_, true);
m2l_->OpRegCopy(r_result_, m2l_->TargetReg(kRet0, kRef));
m2l_->OpUnconditionalBranch(cont_);
}
private:
QuickEntrypointEnum trampoline_;
const int imm_;
const RegStorage r_result_;
};
LIR* branch = OpCmpImmBranch(kCondEq, r_result, 0, nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) CallHelperImmMethodSlowPath(this, branch, cont, trampoline, imm,
r_result));
}
RegStorage Mir2Lir::GenGetOtherTypeForSgetSput(const MirSFieldLoweringInfo& field_info,
int opt_flags) {
DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
// May do runtime call so everything to home locations.
FlushAllRegs();
RegStorage r_base = TargetReg(kArg0, kRef);
LockTemp(r_base);
if (CanUseOpPcRelDexCacheArrayLoad()) {
uint32_t offset = dex_cache_arrays_layout_.TypeOffset(field_info.StorageIndex());
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, r_base, false);
} else {
// Using fixed register to sync with possible call to runtime support.
RegStorage r_method = LoadCurrMethodWithHint(r_base);
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
kNotVolatile);
int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
}
// r_base now points at static storage (Class*) or null if the type is not yet resolved.
LIR* unresolved_branch = nullptr;
if (!field_info.IsClassInDexCache() && (opt_flags & MIR_CLASS_IS_IN_DEX_CACHE) == 0) {
// Check if r_base is null.
unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, nullptr);
}
LIR* uninit_branch = nullptr;
if (!field_info.IsClassInitialized() && (opt_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
// Check if r_base is not yet initialized class.
RegStorage r_tmp = TargetReg(kArg2, kNotWide);
LockTemp(r_tmp);
uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
mirror::Class::StatusOffset().Int32Value(),
mirror::Class::kStatusInitialized, nullptr, nullptr);
FreeTemp(r_tmp);
}
if (unresolved_branch != nullptr || uninit_branch != nullptr) {
//
// Slow path to ensure a class is initialized for sget/sput.
//
class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
public:
// There are up to two branches to the static field slow path, the "unresolved" when the type
// entry in the dex cache is null, and the "uninit" when the class is not yet initialized.
// At least one will be non-null here, otherwise we wouldn't generate the slow path.
StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
RegStorage r_base_in)
: LIRSlowPath(m2l, unresolved != nullptr ? unresolved : uninit, cont),
second_branch_(unresolved != nullptr ? uninit : nullptr),
storage_index_(storage_index), r_base_(r_base_in) {
}
void Compile() {
LIR* target = GenerateTargetLabel();
if (second_branch_ != nullptr) {
second_branch_->target = target;
}
m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
// Copy helper's result into r_base, a no-op on all but MIPS.
m2l_->OpRegCopy(r_base_, m2l_->TargetReg(kRet0, kRef));
m2l_->OpUnconditionalBranch(cont_);
}
private:
// Second branch to the slow path, or null if there's only one branch.
LIR* const second_branch_;
const int storage_index_;
const RegStorage r_base_;
};
// The slow path is invoked if the r_base is null or the class pointed
// to by it is not initialized.
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
field_info.StorageIndex(), r_base));
}
return r_base;
}
/*
* Generate a kPseudoBarrier marker to indicate the boundary of special
* blocks.
*/
void Mir2Lir::GenBarrier() {
LIR* barrier = NewLIR0(kPseudoBarrier);
/* Mark all resources as being clobbered */
DCHECK(!barrier->flags.use_def_invalid);
barrier->u.m.def_mask = &kEncodeAll;
}
void Mir2Lir::GenDivZeroException() {
LIR* branch = OpUnconditionalBranch(nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
LIR* branch = OpCondBranch(c_code, nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch_in)
: LIRSlowPath(m2l, branch_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
}
};
AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
}
void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, RegStorage index_in,
RegStorage length_in)
: LIRSlowPath(m2l, branch_in),
index_(index_in), length_(length_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
}
private:
const RegStorage index_;
const RegStorage length_;
};
LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
}
void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, int index_in, RegStorage length_in)
: LIRSlowPath(m2l, branch_in),
index_(index_in), length_(length_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
m2l_->OpRegCopy(arg1_32, length_);
m2l_->LoadConstant(arg0_32, index_);
m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
}
private:
const int32_t index_;
const RegStorage length_;
};
LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
}
LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
: LIRSlowPath(m2l, branch) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
}
};
LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
return branch;
}
/* Perform null-check on a register. */
LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
return GenExplicitNullCheck(m_reg, opt_flags);
}
// If null check has not been eliminated, reset redundant store tracking.
if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) {
ResetDefTracking();
}
return nullptr;
}
/* Perform an explicit null-check on a register. */
LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return nullptr;
}
return GenNullCheck(m_reg);
}
void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
// Insert after last instruction.
MarkSafepointPC(last_lir_insn_);
}
}
void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
MarkSafepointPCAfter(after);
}
}
void Mir2Lir::MarkPossibleStackOverflowException() {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
MarkSafepointPC(last_lir_insn_);
}
}
void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
// Force an implicit null check by performing a memory operation (load) from the given
// register with offset 0. This will cause a signal if the register contains 0 (null).
RegStorage tmp = AllocTemp();
// TODO: for Mips, would be best to use rZERO as the bogus register target.
LIR* load = Load32Disp(reg, 0, tmp);
FreeTemp(tmp);
MarkSafepointPC(load);
}
}
void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
RegLocation rl_src2, LIR* taken) {
ConditionCode cond;
RegisterClass reg_class = (rl_src1.ref || rl_src2.ref) ? kRefReg : kCoreReg;
switch (opcode) {
case Instruction::IF_EQ:
cond = kCondEq;
break;
case Instruction::IF_NE:
cond = kCondNe;
break;
case Instruction::IF_LT:
cond = kCondLt;
break;
case Instruction::IF_GE:
cond = kCondGe;
break;
case Instruction::IF_GT:
cond = kCondGt;
break;
case Instruction::IF_LE:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
// Normalize such that if either operand is constant, src2 will be constant
if (rl_src1.is_const) {
RegLocation rl_temp = rl_src1;
rl_src1 = rl_src2;
rl_src2 = rl_temp;
cond = FlipComparisonOrder(cond);
}
rl_src1 = LoadValue(rl_src1, reg_class);
// Is this really an immediate comparison?
if (rl_src2.is_const) {
// If it's already live in a register or not easily materialized, just keep going
RegLocation rl_temp = UpdateLoc(rl_src2);
int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
if ((rl_temp.location == kLocDalvikFrame) &&
InexpensiveConstantInt(constant_value, opcode)) {
// OK - convert this to a compare immediate and branch
OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
return;
}
// It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
// for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
// mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
// the 32b literal 0 for null.
if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
// Use the OpCmpImmBranch and ignore the value in the register.
OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
return;
}
}
rl_src2 = LoadValue(rl_src2, reg_class);
OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
}
void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken) {
ConditionCode cond;
RegisterClass reg_class = rl_src.ref ? kRefReg : kCoreReg;
rl_src = LoadValue(rl_src, reg_class);
switch (opcode) {
case Instruction::IF_EQZ:
cond = kCondEq;
break;
case Instruction::IF_NEZ:
cond = kCondNe;
break;
case Instruction::IF_LTZ:
cond = kCondLt;
break;
case Instruction::IF_GEZ:
cond = kCondGe;
break;
case Instruction::IF_GTZ:
cond = kCondGt;
break;
case Instruction::IF_LEZ:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
OpCmpImmBranch(cond, rl_src.reg, 0, taken);
}
void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (rl_src.location == kLocPhysReg) {
OpRegCopy(rl_result.reg, rl_src.reg);
} else {
LoadValueDirect(rl_src, rl_result.reg.GetLow());
}
OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenLongToInt(RegLocation rl_dest, RegLocation rl_src) {
rl_src = UpdateLocWide(rl_src);
rl_src = NarrowRegLoc(rl_src);
StoreValue(rl_dest, rl_src);
}
void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpKind op = kOpInvalid;
switch (opcode) {
case Instruction::INT_TO_BYTE:
op = kOp2Byte;
break;
case Instruction::INT_TO_SHORT:
op = kOp2Short;
break;
case Instruction::INT_TO_CHAR:
op = kOp2Char;
break;
default:
LOG(ERROR) << "Bad int conversion type";
}
OpRegReg(op, rl_result.reg, rl_src.reg);
StoreValue(rl_dest, rl_result);
}
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
FlushAllRegs(); /* Everything to home location */
const DexFile* dex_file = cu_->dex_file;
CompilerDriver* driver = cu_->compiler_driver;
if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
bool is_type_initialized; // Ignored as an array does not have an initializer.
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
bool is_finalizable;
if (kEmbedClassInCode &&
driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
&direct_type_ptr, &is_finalizable)) {
// The fast path.
if (!use_direct_type_ptr) {
LoadClassType(*dex_file, type_idx, kArg0);
CallRuntimeHelperRegRegLocationMethod(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
rl_src, true);
} else {
// Use the direct pointer.
CallRuntimeHelperImmRegLocationMethod(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
true);
}
} else {
// The slow path.
CallRuntimeHelperImmRegLocationMethod(kQuickAllocArray, type_idx, rl_src, true);
}
} else {
CallRuntimeHelperImmRegLocationMethod(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
}
StoreValue(rl_dest, GetReturn(kRefReg));
}
/*
* Similar to GenNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
void Mir2Lir::GenFilledNewArray(CallInfo* info) {
size_t elems = info->num_arg_words;
int type_idx = info->index;
FlushAllRegs(); /* Everything to home location */
QuickEntrypointEnum target;
if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
type_idx)) {
target = kQuickCheckAndAllocArray;
} else {
target = kQuickCheckAndAllocArrayWithAccessCheck;
}
CallRuntimeHelperImmImmMethod(target, type_idx, elems, true);
FreeTemp(TargetReg(kArg2, kNotWide));
FreeTemp(TargetReg(kArg1, kNotWide));
/*
* NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in kRet0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
RegStorage ref_reg = TargetReg(kRet0, kRef);
LockTemp(ref_reg);
// TODO: use the correct component size, currently all supported types
// share array alignment with ints (see comment at head of function)
size_t component_size = sizeof(int32_t);
if (elems > 5) {
DCHECK(info->is_range); // Non-range insn can't encode more than 5 elems.
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (size_t i = 0; i < elems; i++) {
RegLocation loc = UpdateLoc(info->args[i]);
if (loc.location == kLocPhysReg) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (loc.ref) {
StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
} else {
Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
}
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
// This is addressing the stack, which may be out of the 4G area.
RegStorage r_src = AllocTempRef();
RegStorage r_dst = AllocTempRef();
RegStorage r_idx = AllocTempRef(); // Not really a reference, but match src/dst.
RegStorage r_val;
switch (cu_->instruction_set) {
case kThumb2:
case kArm64:
r_val = TargetReg(kLr, kNotWide);
break;
case kX86:
case kX86_64:
FreeTemp(ref_reg);
r_val = AllocTemp();
break;
case kMips:
case kMips64:
r_val = AllocTemp();
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
}
// Set up source pointer
RegLocation rl_first = info->args[0];
OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
// Set up the target pointer
OpRegRegImm(kOpAdd, r_dst, ref_reg,
mirror::Array::DataOffset(component_size).Int32Value());
// Set up the loop counter (known to be > 0)
LoadConstant(r_idx, static_cast<int>(elems - 1));
// Generate the copy loop. Going backwards for convenience
LIR* loop_head_target = NewLIR0(kPseudoTargetLabel);
// Copy next element
{
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
// NOTE: No dalvik register annotation, local optimizations will be stopped
// by the loop boundaries.
}
StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
FreeTemp(r_val);
OpDecAndBranch(kCondGe, r_idx, loop_head_target);
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
// Restore the target pointer
OpRegRegImm(kOpAdd, ref_reg, r_dst,
-mirror::Array::DataOffset(component_size).Int32Value());
}
FreeTemp(r_idx);
FreeTemp(r_dst);
FreeTemp(r_src);
} else {
DCHECK_LE(elems, 5u); // Usually but not necessarily non-range.
// TUNING: interleave
for (size_t i = 0; i < elems; i++) {
RegLocation rl_arg;
if (info->args[i].ref) {
rl_arg = LoadValue(info->args[i], kRefReg);
StoreRefDisp(ref_reg,
mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg,
kNotVolatile);
} else {
rl_arg = LoadValue(info->args[i], kCoreReg);
Store32Disp(ref_reg,
mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
}
// If the LoadValue caused a temp to be allocated, free it
if (IsTemp(rl_arg.reg)) {
FreeTemp(rl_arg.reg);
}
}
}
if (elems != 0 && info->args[0].ref) {
// If there is at least one potentially non-null value, unconditionally mark the GC card.
for (size_t i = 0; i < elems; i++) {
if (!mir_graph_->IsConstantNullRef(info->args[i])) {
UnconditionallyMarkGCCard(ref_reg);
break;
}
}
}
if (info->result.location != kLocInvalid) {
StoreValue(info->result, GetReturn(kRefReg));
}
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void Mir2Lir::GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
if (kIsDebugBuild) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(table);
CHECK_EQ(payload->ident, static_cast<uint16_t>(Instruction::kArrayDataSignature));
}
uint32_t table_offset_from_start = mir->offset + static_cast<int32_t>(table_offset);
CallRuntimeHelperImmRegLocation(kQuickHandleFillArrayData, table_offset_from_start, rl_src, true);
}
void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, OpSize size) {
const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
DCHECK_EQ(SPutMemAccessType(mir->dalvikInsn.opcode), field_info.MemAccessType());
cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
if (!ForceSlowFieldPath(cu_) && field_info.FastPut()) {
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
RegStorage r_base;
if (field_info.IsReferrersClass()) {
// Fast path, static storage base is this method's class
r_base = AllocTempRef();
RegStorage r_method = LoadCurrMethodWithHint(r_base);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
kNotVolatile);
} else {
// Medium path, static storage base in a different class which requires checks that the other
// class is initialized.
r_base = GenGetOtherTypeForSgetSput(field_info, mir->optimization_flags);
if (!field_info.IsClassInitialized() &&
(mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
// Ensure load of status and store of value don't re-order.
// TODO: Presumably the actual value store is control-dependent on the status load,
// and will thus not be reordered in any case, since stores are never speculated.
// Does later code "know" that the class is now initialized? If so, we still
// need the barrier to guard later static loads.
GenMemBarrier(kLoadAny);
}
}
// rBase now holds static storage base
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
if (IsWide(size)) {
rl_src = LoadValueWide(rl_src, reg_class);
} else {
rl_src = LoadValue(rl_src, reg_class);
}
if (IsRef(size)) {
StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
} else {
StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, size,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
}
if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) {
MarkGCCard(mir->optimization_flags, rl_src.reg, r_base);
}
FreeTemp(r_base);
} else {
FlushAllRegs(); // Everything to home locations
QuickEntrypointEnum target;
switch (size) {
case kReference:
target = kQuickSetObjStatic;
break;
case k64:
case kDouble:
target = kQuickSet64Static;
break;
case k32:
case kSingle:
target = kQuickSet32Static;
break;
case kSignedHalf:
case kUnsignedHalf:
target = kQuickSet16Static;
break;
case kSignedByte:
case kUnsignedByte:
target = kQuickSet8Static;
break;
case kWord: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << size;
target = kQuickSet32Static;
}
CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
}
}
void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type) {
const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
DCHECK_EQ(SGetMemAccessType(mir->dalvikInsn.opcode), field_info.MemAccessType());
cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
if (!ForceSlowFieldPath(cu_) && field_info.FastGet()) {
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
RegStorage r_base;
if (field_info.IsReferrersClass()) {
// Fast path, static storage base is this method's class
r_base = AllocTempRef();
RegStorage r_method = LoadCurrMethodWithHint(r_base);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
kNotVolatile);
} else {
// Medium path, static storage base in a different class which requires checks that the other
// class is initialized
r_base = GenGetOtherTypeForSgetSput(field_info, mir->optimization_flags);
if (!field_info.IsClassInitialized() &&
(mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
// Ensure load of status and load of value don't re-order.
GenMemBarrier(kLoadAny);
}
}
// r_base now holds static storage base
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
int field_offset = field_info.FieldOffset().Int32Value();
if (IsRef(size)) {
// TODO: DCHECK?
LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
kNotVolatile);
} else {
LoadBaseDisp(r_base, field_offset, rl_result.reg, size, field_info.IsVolatile() ?
kVolatile : kNotVolatile);
}
FreeTemp(r_base);
if (IsWide(size)) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
} else {
DCHECK(SizeMatchesTypeForEntrypoint(size, type));
FlushAllRegs(); // Everything to home locations
QuickEntrypointEnum target;
switch (type) {
case Primitive::kPrimNot:
target = kQuickGetObjStatic;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
target = kQuickGet64Static;
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
target = kQuickGet32Static;
break;
case Primitive::kPrimShort:
target = kQuickGetShortStatic;
break;
case Primitive::kPrimChar:
target = kQuickGetCharStatic;
break;
case Primitive::kPrimByte:
target = kQuickGetByteStatic;
break;
case Primitive::kPrimBoolean:
target = kQuickGetBooleanStatic;
break;
case Primitive::kPrimVoid: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << type;
target = kQuickGet32Static;
}
CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
// FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
if (IsWide(size)) {
RegLocation rl_result = GetReturnWide(kCoreReg);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
StoreValue(rl_dest, rl_result);
}
}
}
// Generate code for all slow paths.
void Mir2Lir::HandleSlowPaths() {
// We should check slow_paths_.Size() every time, because a new slow path
// may be created during slowpath->Compile().
for (LIRSlowPath* slowpath : slow_paths_) {
slowpath->Compile();
}
slow_paths_.clear();
}
void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
RegLocation rl_dest, RegLocation rl_obj) {
const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
if (kIsDebugBuild) {
auto mem_access_type = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode) ?
IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode) :
IGetMemAccessType(mir->dalvikInsn.opcode);
DCHECK_EQ(mem_access_type, field_info.MemAccessType()) << mir->dalvikInsn.opcode;
}
cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
if (!ForceSlowFieldPath(cu_) && field_info.FastGet()) {
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
// A load of the class will lead to an iget with offset 0.
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
rl_obj = LoadValue(rl_obj, kRefReg);
GenNullCheck(rl_obj.reg, opt_flags);
RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
int field_offset = field_info.FieldOffset().Int32Value();
LIR* load_lir;
if (IsRef(size)) {
load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
kVolatile : kNotVolatile);
} else {
load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, size,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
}
MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
if (IsWide(size)) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
} else {
DCHECK(SizeMatchesTypeForEntrypoint(size, type));
QuickEntrypointEnum target;
switch (type) {
case Primitive::kPrimNot:
target = kQuickGetObjInstance;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
target = kQuickGet64Instance;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimInt:
target = kQuickGet32Instance;
break;
case Primitive::kPrimShort:
target = kQuickGetShortInstance;
break;
case Primitive::kPrimChar:
target = kQuickGetCharInstance;
break;
case Primitive::kPrimByte:
target = kQuickGetByteInstance;
break;
case Primitive::kPrimBoolean:
target = kQuickGetBooleanInstance;
break;
case Primitive::kPrimVoid: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << type;
target = kQuickGet32Instance;
}
// Second argument of pGetXXInstance is always a reference.
DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
// FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
if (IsWide(size)) {
RegLocation rl_result = GetReturnWide(kCoreReg);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
StoreValue(rl_dest, rl_result);
}
}
}
void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
RegLocation rl_src, RegLocation rl_obj) {
const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
if (kIsDebugBuild) {
auto mem_access_type = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode) ?
IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode) :
IPutMemAccessType(mir->dalvikInsn.opcode);
DCHECK_EQ(mem_access_type, field_info.MemAccessType());
}
cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
if (!ForceSlowFieldPath(cu_) && field_info.FastPut()) {
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
// Dex code never writes to the class field.
DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
sizeof(mirror::HeapReference<mirror::Class>));
rl_obj = LoadValue(rl_obj, kRefReg);
if (IsWide(size)) {
rl_src = LoadValueWide(rl_src, reg_class);
} else {
rl_src = LoadValue(rl_src, reg_class);
}
GenNullCheck(rl_obj.reg, opt_flags);
int field_offset = field_info.FieldOffset().Int32Value();
LIR* null_ck_insn;
if (IsRef(size)) {
null_ck_insn = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
kVolatile : kNotVolatile);
} else {
null_ck_insn = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, size,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
}
MarkPossibleNullPointerExceptionAfter(opt_flags, null_ck_insn);
if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) {
MarkGCCard(opt_flags, rl_src.reg, rl_obj.reg);
}
} else {
QuickEntrypointEnum target;
switch (size) {
case kReference:
target = kQuickSetObjInstance;
break;
case k64:
case kDouble:
target = kQuickSet64Instance;
break;
case k32:
case kSingle:
target = kQuickSet32Instance;
break;
case kSignedHalf:
case kUnsignedHalf:
target = kQuickSet16Instance;
break;
case kSignedByte:
case kUnsignedByte:
target = kQuickSet8Instance;
break;
case kWord: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << size;
target = kQuickSet32Instance;
}
CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
true);
}
}
void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_src) {
bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
(opt_flags & MIR_IGNORE_NULL_CHECK));
QuickEntrypointEnum target = needs_range_check
? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
: kQuickAputObjectWithBoundCheck)
: kQuickAputObject;
CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
}
void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
RegLocation rl_result;
if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx)) {
// Call out to helper which resolves type and verifies access.
// Resolved type returned in kRet0.
CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
rl_result = GetReturn(kRefReg);
} else {
rl_result = EvalLoc(rl_dest, kRefReg, true);
// We don't need access checks, load type from dex cache
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, rl_result.reg, false);
} else {
int32_t dex_cache_offset =
ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
RegStorage res_reg = AllocTempRef();
RegStorage r_method = LoadCurrMethodWithHint(res_reg);
LoadRefDisp(r_method, dex_cache_offset, res_reg, kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
FreeTemp(res_reg);
}
if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
type_idx) || ForceSlowTypePath(cu_)) {
// Slow path, at runtime test if type is null and if so initialize
FlushAllRegs();
GenIfNullUseHelperImm(rl_result.reg, kQuickInitializeType, type_idx);
}
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
/* NOTE: Most strings should be available at compile time */
int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
Int32Value();
if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
*cu_->dex_file, string_idx) || ForceSlowStringPath(cu_)) {
// slow path, resolve string if not in dex cache
FlushAllRegs();
LockCallTemps(); // Using explicit registers
// Might call out to helper, which will return resolved string in kRet0
RegStorage ret0 = TargetReg(kRet0, kRef);
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.StringOffset(string_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, ret0, false);
} else {
// Method to declaring class.
RegStorage arg0 = TargetReg(kArg0, kRef);
RegStorage r_method = LoadCurrMethodWithHint(arg0);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), arg0, kNotVolatile);
// Declaring class to dex cache strings.
LoadRefDisp(arg0, mirror::Class::DexCacheStringsOffset().Int32Value(), arg0, kNotVolatile);
LoadRefDisp(arg0, offset_of_string, ret0, kNotVolatile);
}
GenIfNullUseHelperImm(ret0, kQuickResolveString, string_idx);
GenBarrier();
StoreValue(rl_dest, GetReturn(kRefReg));
} else {
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.StringOffset(string_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, rl_result.reg, false);
} else {
RegLocation rl_method = LoadCurrMethod();
RegStorage res_reg = AllocTempRef();
LoadRefDisp(rl_method.reg, ArtMethod::DeclaringClassOffset().Int32Value(), res_reg,
kNotVolatile);
LoadRefDisp(res_reg, mirror::Class::DexCacheStringsOffset().Int32Value(), res_reg,
kNotVolatile);
LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
FreeTemp(res_reg);
}
StoreValue(rl_dest, rl_result);
}
}
/*
* Let helper function take care of everything. Will
* call Class::NewInstanceFromCode(type_idx, method);
*/
void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
FlushAllRegs(); /* Everything to home location */
// alloc will always check for resolution, do we also need to verify
// access because the verifier was unable to?
const DexFile* dex_file = cu_->dex_file;
CompilerDriver* driver = cu_->compiler_driver;
if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
bool is_type_initialized;
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
bool is_finalizable;
if (kEmbedClassInCode &&
driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
&direct_type_ptr, &is_finalizable) &&
!is_finalizable) {
// The fast path.
if (!use_direct_type_ptr) {
LoadClassType(*dex_file, type_idx, kArg0);
if (!is_type_initialized) {
CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
} else {
CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
}
} else {
// Use the direct pointer.
if (!is_type_initialized) {
CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
} else {
CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
}
}
} else {
// The slow path.
CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
}
} else {
CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
}
StoreValue(rl_dest, GetReturn(kRefReg));
}
void Mir2Lir::GenThrow(RegLocation rl_src) {
FlushAllRegs();
CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
}
// For final classes there are no sub-classes to check and so we can answer the instance-of
// question with simple comparisons.
void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
// X86 has its own implementation.
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
RegLocation object = LoadValue(rl_src, kRefReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage result_reg = rl_result.reg;
if (IsSameReg(result_reg, object.reg)) {
result_reg = AllocTypedTemp(false, kCoreReg);
DCHECK(!IsSameReg(result_reg, object.reg));
}
LoadConstant(result_reg, 0); // assume false
LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, nullptr);
RegStorage check_class = AllocTypedTemp(false, kRefReg);
RegStorage object_class = AllocTypedTemp(false, kRefReg);
if (use_declaring_class) {
RegStorage r_method = LoadCurrMethodWithHint(check_class);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
kNotVolatile);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class,
kNotVolatile);
} else if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, check_class, false);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class,
kNotVolatile);
} else {
RegStorage r_method = LoadCurrMethodWithHint(check_class);
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
check_class, kNotVolatile);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class,
kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
}
// FIXME: what should we be comparing here? compressed or decompressed references?
if (cu_->instruction_set == kThumb2) {
OpRegReg(kOpCmp, check_class, object_class); // Same?
LIR* it = OpIT(kCondEq, ""); // if-convert the test
LoadConstant(result_reg, 1); // .eq case - load true
OpEndIT(it);
} else {
GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
}
LIR* target = NewLIR0(kPseudoTargetLabel);
null_branchover->target = target;
FreeTemp(object_class);
FreeTemp(check_class);
if (IsTemp(result_reg)) {
OpRegCopy(rl_result.reg, result_reg);
FreeTemp(result_reg);
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
FlushAllRegs();
// May generate a call - use explicit registers
LockCallTemps();
RegStorage class_reg = TargetReg(kArg2, kRef); // kArg2 will hold the Class*
RegStorage ref_reg = TargetReg(kArg0, kRef); // kArg0 will hold the ref.
RegStorage ret_reg = GetReturn(kRefReg).reg;
if (needs_access_check) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kArg0
CallRuntimeHelperImmMethod(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
OpRegCopy(class_reg, ret_reg); // Align usage with fast path
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
} else if (use_declaring_class) {
RegStorage r_method = LoadCurrMethodWithHint(TargetReg(kArg1, kRef));
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(),
class_reg, kNotVolatile);
} else {
if (can_assume_type_is_in_dex_cache) {
// Conditionally, as in the other case we will also load it.
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
}
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, class_reg, false);
} else {
RegStorage r_method = LoadCurrMethodWithHint(class_reg);
// Load dex cache entry into class_reg (kArg2)
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
class_reg, kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
}
if (!can_assume_type_is_in_dex_cache) {
GenIfNullUseHelperImm(class_reg, kQuickInitializeType, type_idx);
// Should load value here.
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
}
}
/* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
RegLocation rl_result = GetReturn(kCoreReg);
if (!IsSameReg(rl_result.reg, ref_reg)) {
// On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
LoadConstant(rl_result.reg, 0);
}
LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, nullptr);
/* load object->klass_ */
RegStorage ref_class_reg = TargetReg(kArg1, kRef); // kArg1 will hold the Class* of ref.
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
ref_class_reg, kNotVolatile);
/* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
LIR* branchover = nullptr;
if (type_known_final) {
// rl_result == ref == class.
GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
kCoreReg);
} else {
if (cu_->instruction_set == kThumb2) {
RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
LIR* it = nullptr;
if (!type_known_abstract) {
/* Uses conditional nullification */
OpRegReg(kOpCmp, ref_class_reg, class_reg); // Same?
it = OpIT(kCondEq, "EE"); // if-convert the test
LoadConstant(rl_result.reg, 1); // .eq case - load true
}
OpRegCopy(ref_reg, class_reg); // .ne case - arg0 <= class
OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
if (it != nullptr) {
OpEndIT(it);
}
FreeTemp(r_tgt);
} else {
if (!type_known_abstract) {
/* Uses branchovers */
LoadConstant(rl_result.reg, 1); // assume true
branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), nullptr);
}
OpRegCopy(TargetReg(kArg0, kRef), class_reg); // .ne case - arg0 <= class
CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
}
}
// TODO: only clobber when type isn't final?
ClobberCallerSave();
/* branch targets here */
LIR* target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
branch1->target = target;
if (branchover != nullptr) {
branchover->target = target;
}
}
void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
bool type_known_final, type_known_abstract, use_declaring_class;
bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx,
&type_known_final,
&type_known_abstract,
&use_declaring_class);
bool can_assume_type_is_in_dex_cache = !needs_access_check &&
cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
} else {
GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
use_declaring_class, can_assume_type_is_in_dex_cache,
type_idx, rl_dest, rl_src);
}
}
void Mir2Lir::GenCheckCast(int opt_flags, uint32_t insn_idx, uint32_t type_idx,
RegLocation rl_src) {
if ((opt_flags & MIR_IGNORE_CHECK_CAST) != 0) {
// Compiler analysis proved that this check-cast would never cause an exception.
return;
}
bool type_known_final, type_known_abstract, use_declaring_class;
bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx,
&type_known_final,
&type_known_abstract,
&use_declaring_class);
// Note: currently type_known_final is unused, as optimizing will only improve the performance
// of the exception throw path.
DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
// Verifier type analysis proved this check cast would never cause an exception.
return;
}
FlushAllRegs();
// May generate a call - use explicit registers
LockCallTemps();
RegStorage class_reg = TargetReg(kArg2, kRef); // kArg2 will hold the Class*
if (needs_access_check) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kRet0
// InitializeTypeAndVerifyAccess(idx, method)
CallRuntimeHelperImmMethod(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
OpRegCopy(class_reg, TargetReg(kRet0, kRef)); // Align usage with fast path
} else if (use_declaring_class) {
RegStorage method_reg = LoadCurrMethodWithHint(TargetReg(kArg1, kRef));
LoadRefDisp(method_reg, ArtMethod::DeclaringClassOffset().Int32Value(),
class_reg, kNotVolatile);
} else {
// Load dex cache entry into class_reg (kArg2)
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, class_reg, false);
} else {
RegStorage r_method = LoadCurrMethodWithHint(class_reg);
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
class_reg, kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
}
if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
// Need to test presence of type in dex cache at runtime
GenIfNullUseHelperImm(class_reg, kQuickInitializeType, type_idx);
}
}
// At this point, class_reg (kArg2) has class
LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef)); // kArg0 <= ref
// Slow path for the case where the classes are not equal. In this case we need
// to call a helper function to do the check.
class SlowPath : public LIRSlowPath {
public:
SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load)
: LIRSlowPath(m2l, fromfast, cont), load_(load) {
}
void Compile() {
GenerateTargetLabel();
if (load_) {
m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
m2l_->TargetReg(kArg1, kRef), kNotVolatile);
}
m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
m2l_->TargetReg(kArg1, kRef), true);
m2l_->OpUnconditionalBranch(cont_);
}
private:
const bool load_;
};
if (type_known_abstract) {
// Easier case, run slow path if target is non-null (slow path will load from target)
LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
} else {
// Harder, more common case. We need to generate a forward branch over the load
// if the target is null. If it's non-null we perform the load and branch to the
// slow path if the classes are not equal.
/* Null is OK - continue */
LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
/* load object->klass_ */
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
TargetReg(kArg1, kRef), kNotVolatile);
LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
// Add the slow path that will not perform load since this is already done.
AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
// Set the null check to branch to the continuation.
branch1->target = cont;
}
}
void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
RegLocation rl_result;
if (cu_->instruction_set == kThumb2) {
/*
* NOTE: This is the one place in the code in which we might have
* as many as six live temporary registers. There are 5 in the normal
* set for Arm. Until we have spill capabilities, temporarily add
* lr to the temp set. It is safe to do this locally, but note that
* lr is used explicitly elsewhere in the code generator and cannot
* normally be used as a general temp register.
*/
MarkTemp(TargetReg(kLr, kNotWide)); // Add lr to the temp pool
FreeTemp(TargetReg(kLr, kNotWide)); // and make it available
}
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// The longs may overlap - use intermediate temp if so
if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
RegStorage t_reg = AllocTemp();
OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
OpRegCopy(rl_result.reg.GetLow(), t_reg);
FreeTemp(t_reg);
} else {
OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
}
/*
* NOTE: If rl_dest refers to a frame variable in a large frame, the
* following StoreValueWide might need to allocate a temp register.
* To further work around the lack of a spill capability, explicitly
* free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
* Remove when spill is functional.
*/
FreeRegLocTemps(rl_result, rl_src1);
FreeRegLocTemps(rl_result, rl_src2);
StoreValueWide(rl_dest, rl_result);
if (cu_->instruction_set == kThumb2) {
Clobber(TargetReg(kLr, kNotWide));
UnmarkTemp(TargetReg(kLr, kNotWide)); // Remove lr from the temp pool
}
}
void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift) {
QuickEntrypointEnum target;
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
target = kQuickShlLong;
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
target = kQuickShrLong;
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
target = kQuickUshrLong;
break;
default:
LOG(FATAL) << "Unexpected case";
target = kQuickShlLong;
}
FlushAllRegs(); /* Send everything to home location */
CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
RegLocation rl_result = GetReturnWide(kCoreReg);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2, int flags) {
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
OpKind op = kOpBkpt;
bool is_div_rem = false;
bool check_zero = false;
bool unary = false;
RegLocation rl_result;
bool shift_op = false;
switch (opcode) {
case Instruction::NEG_INT:
op = kOpNeg;
unary = true;
break;
case Instruction::NOT_INT:
op = kOpMvn;
unary = true;
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
op = kOpAdd;
break;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
op = kOpSub;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
op = kOpMul;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
check_zero = true;
op = kOpDiv;
is_div_rem = true;
break;
/* NOTE: returns in kArg1 */
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
check_zero = true;
op = kOpRem;
is_div_rem = true;
break;
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
op = kOpXor;
break;
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
shift_op = true;
op = kOpLsr;
break;
default:
LOG(FATAL) << "Invalid word arith op: " << opcode;
}
if (!is_div_rem) {
if (unary) {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegReg(op, rl_result.reg, rl_src1.reg);
} else {
if ((shift_op) && (cu_->instruction_set != kArm64)) {
rl_src2 = LoadValue(rl_src2, kCoreReg);
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
FreeTemp(t_reg);
} else {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
}
}
StoreValue(rl_dest, rl_result);
} else {
bool done = false; // Set to true if we happen to find a way to use a real instruction.
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64 ||
cu_->instruction_set == kArm64) {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheck(rl_src2.reg);
}
rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
done = true;
} else if (cu_->instruction_set == kThumb2) {
if (cu_->compiler_driver->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()->
HasDivideInstruction()) {
// Use ARM SDIV instruction for division. For remainder we also need to
// calculate using a MUL and subtract.
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheck(rl_src2.reg);
}
rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
done = true;
}
}
// If we haven't already generated the code use the callout function.
if (!done) {
FlushAllRegs(); /* Send everything to home location */
LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheck(TargetReg(kArg1, kNotWide));
}
// NOTE: callout here is not a safepoint.
CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
if (op == kOpDiv)
rl_result = GetReturn(kCoreReg);
else
rl_result = GetReturnAlt();
}
StoreValue(rl_dest, rl_result);
}
}
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
// Returns true if no more than two bits are set in 'x'.
static bool IsPopCountLE2(unsigned int x) {
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode ATTRIBUTE_UNUSED, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) {
if ((lit < 2) || (!IsPowerOfTwo(lit))) {
return false;
}
int k = CTZ(lit);
if (k >= 30) {
// Avoid special cases.
return false;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_div) {
RegStorage t_reg = AllocTemp();
if (lit == 2) {
// Division by 2 is by far the most common division by constant.
OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
} else {
OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
}
} else {
RegStorage t_reg1 = AllocTemp();
RegStorage t_reg2 = AllocTemp();
if (lit == 2) {
OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
} else {
OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
}
}
StoreValue(rl_dest, rl_result);
return true;
}
// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
if (lit < 0) {
return false;
}
if (lit == 0) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstant(rl_result.reg, 0);
StoreValue(rl_dest, rl_result);
return true;
}
if (lit == 1) {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopy(rl_result.reg, rl_src.reg);
StoreValue(rl_dest, rl_result);
return true;
}
// There is RegRegRegShift on Arm, so check for more special cases
if (cu_->instruction_set == kThumb2) {
return EasyMultiply(rl_src, rl_dest, lit);
}
// Can we simplify this multiplication?
bool power_of_two = false;
bool pop_count_le2 = false;
bool power_of_two_minus_one = false;
if (IsPowerOfTwo(lit)) {
power_of_two = true;
} else if (IsPopCountLE2(lit)) {
pop_count_le2 = true;
} else if (IsPowerOfTwo(lit + 1)) {
power_of_two_minus_one = true;
} else {
return false;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (power_of_two) {
// Shift.
OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, CTZ(lit));
} else if (pop_count_le2) {
// Shift and add and shift.
int first_bit = CTZ(lit);
int second_bit = CTZ(lit ^ (1 << first_bit));
GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
} else {
// Reverse subtract: (src << (shift + 1)) - src.
DCHECK(power_of_two_minus_one);
// TUNING: rsb dst, src, src lsl#CTZ(lit + 1)
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpLsl, t_reg, rl_src.reg, CTZ(lit + 1));
OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
}
StoreValue(rl_dest, rl_result);
return true;
}
// Returns true if it generates instructions.
bool Mir2Lir::HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
if (!rl_src2.is_const ||
((cu_->instruction_set != kThumb2) && (cu_->instruction_set != kArm64))) {
return false;
}
if (!rl_src2.wide) {
int32_t divisor = mir_graph_->ConstantValue(rl_src2);
if (CanDivideByReciprocalMultiplyFloat(divisor)) {
// Generate multiply by reciprocal instead of div.
float recip = 1.0f/bit_cast<float, int32_t>(divisor);
GenMultiplyByConstantFloat(rl_dest, rl_src1, bit_cast<int32_t, float>(recip));
return true;
}
} else {
int64_t divisor = mir_graph_->ConstantValueWide(rl_src2);
if (CanDivideByReciprocalMultiplyDouble(divisor)) {
// Generate multiply by reciprocal instead of div.
double recip = 1.0/bit_cast<double, int64_t>(divisor);
GenMultiplyByConstantDouble(rl_dest, rl_src1, bit_cast<int64_t, double>(recip));
return true;
}
}
return false;
}
void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
int lit) {
RegLocation rl_result;
OpKind op = static_cast<OpKind>(0); /* Make gcc happy */
int shift_op = false;
bool is_div = false;
switch (opcode) {
case Instruction::RSUB_INT_LIT8:
case Instruction::RSUB_INT: {
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (cu_->instruction_set == kThumb2) {
OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
} else {
OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
OpRegImm(kOpAdd, rl_result.reg, lit);
}
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
lit = -lit;
FALLTHROUGH_INTENDED;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::ADD_INT_LIT8:
case Instruction::ADD_INT_LIT16:
op = kOpAdd;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::MUL_INT_LIT8:
case Instruction::MUL_INT_LIT16: {
if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
return;
}
op = kOpMul;
break;
}
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::AND_INT_LIT8:
case Instruction::AND_INT_LIT16:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::OR_INT_LIT8:
case Instruction::OR_INT_LIT16:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::XOR_INT_LIT8:
case Instruction::XOR_INT_LIT16:
op = kOpXor;
break;
case Instruction::SHL_INT_LIT8:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT_LIT8:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT_LIT8:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsr;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::DIV_INT_LIT8:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::REM_INT_LIT8:
case Instruction::REM_INT_LIT16: {
if (lit == 0) {
GenDivZeroException();
return;
}
if ((opcode == Instruction::DIV_INT) ||
(opcode == Instruction::DIV_INT_2ADDR) ||
(opcode == Instruction::DIV_INT_LIT8) ||
(opcode == Instruction::DIV_INT_LIT16)) {
is_div = true;
} else {
is_div = false;
}
if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
return;
}
bool done = false;
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64 ||
cu_->instruction_set == kArm64) {
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
done = true;
} else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
done = true;
} else if (cu_->instruction_set == kThumb2) {
if (cu_->compiler_driver->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()->
HasDivideInstruction()) {
// Use ARM SDIV instruction for division. For remainder we also need to
// calculate using a MUL and subtract.
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
done = true;
}
}
if (!done) {
FlushAllRegs(); /* Everything to home location. */
LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
Clobber(TargetReg(kArg0, kNotWide));
CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
if (is_div)
rl_result = GetReturn(kCoreReg);
else
rl_result = GetReturnAlt();
}
StoreValue(rl_dest, rl_result);
return;
}
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
}
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Avoid shifts by literal 0 - no support in Thumb. Change to copy.
if (shift_op && (lit == 0)) {
OpRegCopy(rl_result.reg, rl_src.reg);
} else {
OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2, int flags) {
RegLocation rl_result;
OpKind first_op = kOpBkpt;
OpKind second_op = kOpBkpt;
bool call_out = false;
bool check_zero = false;
int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
QuickEntrypointEnum target;
switch (opcode) {
case Instruction::NOT_LONG:
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Check for destructive overlap
if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
RegStorage t_reg = AllocTemp();
OpRegCopy(t_reg, rl_src2.reg.GetHigh());
OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
FreeTemp(t_reg);
} else {
OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
}
StoreValueWide(rl_dest, rl_result);
return;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
first_op = kOpAdd;
second_op = kOpAdc;
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
first_op = kOpSub;
second_op = kOpSbc;
break;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
call_out = true;
ret_reg = TargetReg(kRet0, kNotWide).GetReg();
target = kQuickLmul;
break;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
call_out = true;
check_zero = true;
ret_reg = TargetReg(kRet0, kNotWide).GetReg();
target = kQuickLdiv;
break;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
call_out = true;
check_zero = true;
target = kQuickLmod;
/* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
TargetReg(kRet0, kNotWide).GetReg();
break;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
first_op = kOpAnd;
second_op = kOpAnd;
break;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
first_op = kOpOr;
second_op = kOpOr;
break;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
first_op = kOpXor;
second_op = kOpXor;
break;
default:
LOG(FATAL) << "Invalid long arith op";
}
if (!call_out) {
GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
} else {
FlushAllRegs(); /* Send everything to home location */
if (check_zero) {
RegStorage r_tmp1 = TargetReg(kArg0, kWide);
RegStorage r_tmp2 = TargetReg(kArg2, kWide);
LoadValueDirectWideFixed(rl_src2, r_tmp2);
RegStorage r_tgt = CallHelperSetup(target);
if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheckWide(r_tmp2);
}
LoadValueDirectWideFixed(rl_src1, r_tmp1);
// NOTE: callout here is not a safepoint
CallHelper(r_tgt, target, false /* not safepoint */);
} else {
CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
}
// Adjust return regs in to handle case of rem returning kArg2/kArg3
if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
rl_result = GetReturnWide(kCoreReg);
else
rl_result = GetReturnWideAlt();
StoreValueWide(rl_dest, rl_result);
}
}
void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantNoClobber(rl_result.reg, value);
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
RegLocation rl_src, RegisterClass return_reg_class) {
/*
* Don't optimize the register usage since it calls out to support
* functions
*/
FlushAllRegs(); /* Send everything to home location */
CallRuntimeHelperRegLocation(trampoline, rl_src, false);
if (rl_dest.wide) {
RegLocation rl_result = GetReturnWide(return_reg_class);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(return_reg_class);
StoreValue(rl_dest, rl_result);
}
}
class Mir2Lir::SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
: LIRSlowPath(m2l, branch, cont) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoSuspendTarget);
m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
if (cont_ != nullptr) {
m2l_->OpUnconditionalBranch(cont_);
}
}
};
/* Check if we need to check for pending suspend request */
void Mir2Lir::GenSuspendTest(int opt_flags) {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK) != 0) {
return;
}
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
FlushAllRegs();
LIR* branch = OpTestSuspend(nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
} else {
FlushAllRegs(); // TODO: needed?
LIR* inst = CheckSuspendUsingLoad();
MarkSafepointPC(inst);
}
}
/* Check if we need to check for pending suspend request */
void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK) != 0) {
OpUnconditionalBranch(target);
return;
}
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
OpTestSuspend(target);
FlushAllRegs();
LIR* branch = OpUnconditionalBranch(nullptr);
AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
} else {
// For the implicit suspend check, just perform the trigger
// load and branch to the target.
FlushAllRegs();
LIR* inst = CheckSuspendUsingLoad();
MarkSafepointPC(inst);
OpUnconditionalBranch(target);
}
}
/* Call out to helper assembly routine that will null check obj and then lock it. */
void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
UNUSED(opt_flags); // TODO: avoid null check with specialized non-null helper.
FlushAllRegs();
CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
}
/* Call out to helper assembly routine that will null check obj and then unlock it. */
void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
UNUSED(opt_flags); // TODO: avoid null check with specialized non-null helper.
FlushAllRegs();
CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
}
/* Generic code for generating a wide constant into a VR. */
void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.reg, value);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
DCHECK(bb != nullptr);
ArenaVector<SuccessorBlockInfo*>::const_iterator succ_bb_iter = bb->successor_blocks.cbegin();
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
const uint16_t entries = table[1];
// Chained cmp-and-branch.
const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
int32_t starting_key = as_int32[0];
rl_src = LoadValue(rl_src, kCoreReg);
int i = 0;
for (; i < entries; ++i, ++succ_bb_iter) {
if (!InexpensiveConstantInt(starting_key + i, Instruction::Code::IF_EQ)) {
// Switch to using a temp and add.
break;
}
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block_id]);
}
if (i < entries) {
// The rest do not seem to be inexpensive. Try to allocate a temp and use add.
RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
if (key_temp.Valid()) {
LoadConstantNoClobber(key_temp, starting_key + i);
for (; i < entries - 1; ++i, ++succ_bb_iter) {
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block_id]);
OpRegImm(kOpAdd, key_temp, 1); // Increment key.
}
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block_id]);
} else {
// No free temp, just finish the old loop.
for (; i < entries; ++i, ++succ_bb_iter) {
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block_id]);
}
}
}
}
void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
if (cu_->verbose) {
DumpPackedSwitchTable(table);
}
const uint16_t entries = table[1];
if (entries <= kSmallSwitchThreshold) {
GenSmallPackedSwitch(mir, table_offset, rl_src);
} else {
// Use the backend-specific implementation.
GenLargePackedSwitch(mir, table_offset, rl_src);
}
}
void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
DCHECK(bb != nullptr);
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
const uint16_t entries = table[1];
// Chained cmp-and-branch.
rl_src = LoadValue(rl_src, kCoreReg);
int i = 0;
for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
int case_block_id = successor_block_info->block;
int key = successor_block_info->key;
OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block_id]);
i++;
}
DCHECK_EQ(i, entries);
}
void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
if (cu_->verbose) {
DumpSparseSwitchTable(table);
}
const uint16_t entries = table[1];
if (entries <= kSmallSwitchThreshold) {
GenSmallSparseSwitch(mir, table_offset, rl_src);
} else {
// Use the backend-specific implementation.
GenLargeSparseSwitch(mir, table_offset, rl_src);
}
}
bool Mir2Lir::SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type) {
switch (size) {
case kReference:
return type == Primitive::kPrimNot;
case k64:
case kDouble:
return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
case k32:
case kSingle:
return type == Primitive::kPrimInt || type == Primitive::kPrimFloat;
case kSignedHalf:
return type == Primitive::kPrimShort;
case kUnsignedHalf:
return type == Primitive::kPrimChar;
case kSignedByte:
return type == Primitive::kPrimByte;
case kUnsignedByte:
return type == Primitive::kPrimBoolean;
case kWord: // Intentional fallthrough.
default:
return false; // There are no sane types with this op size.
}
}
} // namespace art