/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <ctype.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <libgen.h> #include <paths.h> #include <signal.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/epoll.h> #include <sys/mount.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/un.h> #include <sys/wait.h> #include <termios.h> #include <unistd.h> #include <mtd/mtd-user.h> #include <selinux/selinux.h> #include <selinux/label.h> #include <selinux/android.h> #include <base/file.h> #include <base/stringprintf.h> #include <cutils/android_reboot.h> #include <cutils/fs.h> #include <cutils/iosched_policy.h> #include <cutils/list.h> #include <cutils/sockets.h> #include <private/android_filesystem_config.h> #include <memory> #include "devices.h" #include "init.h" #include "log.h" #include "property_service.h" #include "bootchart.h" #include "signal_handler.h" #include "keychords.h" #include "init_parser.h" #include "util.h" #include "ueventd.h" #include "watchdogd.h" struct selabel_handle *sehandle; struct selabel_handle *sehandle_prop; static int property_triggers_enabled = 0; static char qemu[32]; static struct action *cur_action = NULL; static struct command *cur_command = NULL; static int have_console; static char console_name[PROP_VALUE_MAX] = "/dev/console"; static time_t process_needs_restart; static const char *ENV[32]; bool waiting_for_exec = false; static int epoll_fd = -1; void register_epoll_handler(int fd, void (*fn)()) { epoll_event ev; ev.events = EPOLLIN; ev.data.ptr = reinterpret_cast<void*>(fn); if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) { ERROR("epoll_ctl failed: %s\n", strerror(errno)); } } void service::NotifyStateChange(const char* new_state) { if (!properties_initialized()) { // If properties aren't available yet, we can't set them. return; } if ((flags & SVC_EXEC) != 0) { // 'exec' commands don't have properties tracking their state. return; } char prop_name[PROP_NAME_MAX]; if (snprintf(prop_name, sizeof(prop_name), "init.svc.%s", name) >= PROP_NAME_MAX) { // If the property name would be too long, we can't set it. ERROR("Property name \"init.svc.%s\" too long; not setting to %s\n", name, new_state); return; } property_set(prop_name, new_state); } /* add_environment - add "key=value" to the current environment */ int add_environment(const char *key, const char *val) { size_t n; size_t key_len = strlen(key); /* The last environment entry is reserved to terminate the list */ for (n = 0; n < (ARRAY_SIZE(ENV) - 1); n++) { /* Delete any existing entry for this key */ if (ENV[n] != NULL) { size_t entry_key_len = strcspn(ENV[n], "="); if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) { free((char*)ENV[n]); ENV[n] = NULL; } } /* Add entry if a free slot is available */ if (ENV[n] == NULL) { char* entry; asprintf(&entry, "%s=%s", key, val); ENV[n] = entry; return 0; } } ERROR("No env. room to store: '%s':'%s'\n", key, val); return -1; } void zap_stdio(void) { int fd; fd = open("/dev/null", O_RDWR); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } static void open_console() { int fd; if ((fd = open(console_name, O_RDWR)) < 0) { fd = open("/dev/null", O_RDWR); } ioctl(fd, TIOCSCTTY, 0); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } static void publish_socket(const char *name, int fd) { char key[64] = ANDROID_SOCKET_ENV_PREFIX; char val[64]; strlcpy(key + sizeof(ANDROID_SOCKET_ENV_PREFIX) - 1, name, sizeof(key) - sizeof(ANDROID_SOCKET_ENV_PREFIX)); snprintf(val, sizeof(val), "%d", fd); add_environment(key, val); /* make sure we don't close-on-exec */ fcntl(fd, F_SETFD, 0); } void service_start(struct service *svc, const char *dynamic_args) { // Starting a service removes it from the disabled or reset state and // immediately takes it out of the restarting state if it was in there. svc->flags &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET|SVC_RESTART|SVC_DISABLED_START)); svc->time_started = 0; // Running processes require no additional work --- if they're in the // process of exiting, we've ensured that they will immediately restart // on exit, unless they are ONESHOT. if (svc->flags & SVC_RUNNING) { return; } bool needs_console = (svc->flags & SVC_CONSOLE); if (needs_console && !have_console) { ERROR("service '%s' requires console\n", svc->name); svc->flags |= SVC_DISABLED; return; } struct stat s; if (stat(svc->args[0], &s) != 0) { ERROR("cannot find '%s', disabling '%s'\n", svc->args[0], svc->name); svc->flags |= SVC_DISABLED; return; } if ((!(svc->flags & SVC_ONESHOT)) && dynamic_args) { ERROR("service '%s' must be one-shot to use dynamic args, disabling\n", svc->args[0]); svc->flags |= SVC_DISABLED; return; } char* scon = NULL; if (is_selinux_enabled() > 0) { if (svc->seclabel) { scon = strdup(svc->seclabel); if (!scon) { ERROR("Out of memory while starting '%s'\n", svc->name); return; } } else { char *mycon = NULL, *fcon = NULL; INFO("computing context for service '%s'\n", svc->args[0]); int rc = getcon(&mycon); if (rc < 0) { ERROR("could not get context while starting '%s'\n", svc->name); return; } rc = getfilecon(svc->args[0], &fcon); if (rc < 0) { ERROR("could not get context while starting '%s'\n", svc->name); freecon(mycon); return; } rc = security_compute_create(mycon, fcon, string_to_security_class("process"), &scon); if (rc == 0 && !strcmp(scon, mycon)) { ERROR("Warning! Service %s needs a SELinux domain defined; please fix!\n", svc->name); } freecon(mycon); freecon(fcon); if (rc < 0) { ERROR("could not get context while starting '%s'\n", svc->name); return; } } } NOTICE("Starting service '%s'...\n", svc->name); pid_t pid = fork(); if (pid == 0) { struct socketinfo *si; struct svcenvinfo *ei; char tmp[32]; int fd, sz; umask(077); if (properties_initialized()) { get_property_workspace(&fd, &sz); snprintf(tmp, sizeof(tmp), "%d,%d", dup(fd), sz); add_environment("ANDROID_PROPERTY_WORKSPACE", tmp); } for (ei = svc->envvars; ei; ei = ei->next) add_environment(ei->name, ei->value); for (si = svc->sockets; si; si = si->next) { int socket_type = ( !strcmp(si->type, "stream") ? SOCK_STREAM : (!strcmp(si->type, "dgram") ? SOCK_DGRAM : SOCK_SEQPACKET)); int s = create_socket(si->name, socket_type, si->perm, si->uid, si->gid, si->socketcon ?: scon); if (s >= 0) { publish_socket(si->name, s); } } freecon(scon); scon = NULL; if (svc->writepid_files_) { std::string pid_str = android::base::StringPrintf("%d", pid); for (auto& file : *svc->writepid_files_) { if (!android::base::WriteStringToFile(pid_str, file)) { ERROR("couldn't write %s to %s: %s\n", pid_str.c_str(), file.c_str(), strerror(errno)); } } } if (svc->ioprio_class != IoSchedClass_NONE) { if (android_set_ioprio(getpid(), svc->ioprio_class, svc->ioprio_pri)) { ERROR("Failed to set pid %d ioprio = %d,%d: %s\n", getpid(), svc->ioprio_class, svc->ioprio_pri, strerror(errno)); } } if (needs_console) { setsid(); open_console(); } else { zap_stdio(); } if (false) { for (size_t n = 0; svc->args[n]; n++) { INFO("args[%zu] = '%s'\n", n, svc->args[n]); } for (size_t n = 0; ENV[n]; n++) { INFO("env[%zu] = '%s'\n", n, ENV[n]); } } setpgid(0, getpid()); // As requested, set our gid, supplemental gids, and uid. if (svc->gid) { if (setgid(svc->gid) != 0) { ERROR("setgid failed: %s\n", strerror(errno)); _exit(127); } } if (svc->nr_supp_gids) { if (setgroups(svc->nr_supp_gids, svc->supp_gids) != 0) { ERROR("setgroups failed: %s\n", strerror(errno)); _exit(127); } } if (svc->uid) { if (setuid(svc->uid) != 0) { ERROR("setuid failed: %s\n", strerror(errno)); _exit(127); } } if (svc->seclabel) { if (is_selinux_enabled() > 0 && setexeccon(svc->seclabel) < 0) { ERROR("cannot setexeccon('%s'): %s\n", svc->seclabel, strerror(errno)); _exit(127); } } if (!dynamic_args) { if (execve(svc->args[0], (char**) svc->args, (char**) ENV) < 0) { ERROR("cannot execve('%s'): %s\n", svc->args[0], strerror(errno)); } } else { char *arg_ptrs[INIT_PARSER_MAXARGS+1]; int arg_idx = svc->nargs; char *tmp = strdup(dynamic_args); char *next = tmp; char *bword; /* Copy the static arguments */ memcpy(arg_ptrs, svc->args, (svc->nargs * sizeof(char *))); while((bword = strsep(&next, " "))) { arg_ptrs[arg_idx++] = bword; if (arg_idx == INIT_PARSER_MAXARGS) break; } arg_ptrs[arg_idx] = NULL; execve(svc->args[0], (char**) arg_ptrs, (char**) ENV); } _exit(127); } freecon(scon); if (pid < 0) { ERROR("failed to start '%s'\n", svc->name); svc->pid = 0; return; } svc->time_started = gettime(); svc->pid = pid; svc->flags |= SVC_RUNNING; if ((svc->flags & SVC_EXEC) != 0) { INFO("SVC_EXEC pid %d (uid %d gid %d+%zu context %s) started; waiting...\n", svc->pid, svc->uid, svc->gid, svc->nr_supp_gids, svc->seclabel ? : "default"); waiting_for_exec = true; } svc->NotifyStateChange("running"); } /* The how field should be either SVC_DISABLED, SVC_RESET, or SVC_RESTART */ static void service_stop_or_reset(struct service *svc, int how) { /* The service is still SVC_RUNNING until its process exits, but if it has * already exited it shoudn't attempt a restart yet. */ svc->flags &= ~(SVC_RESTARTING | SVC_DISABLED_START); if ((how != SVC_DISABLED) && (how != SVC_RESET) && (how != SVC_RESTART)) { /* Hrm, an illegal flag. Default to SVC_DISABLED */ how = SVC_DISABLED; } /* if the service has not yet started, prevent * it from auto-starting with its class */ if (how == SVC_RESET) { svc->flags |= (svc->flags & SVC_RC_DISABLED) ? SVC_DISABLED : SVC_RESET; } else { svc->flags |= how; } if (svc->pid) { NOTICE("Service '%s' is being killed...\n", svc->name); kill(-svc->pid, SIGKILL); svc->NotifyStateChange("stopping"); } else { svc->NotifyStateChange("stopped"); } } void service_reset(struct service *svc) { service_stop_or_reset(svc, SVC_RESET); } void service_stop(struct service *svc) { service_stop_or_reset(svc, SVC_DISABLED); } void service_restart(struct service *svc) { if (svc->flags & SVC_RUNNING) { /* Stop, wait, then start the service. */ service_stop_or_reset(svc, SVC_RESTART); } else if (!(svc->flags & SVC_RESTARTING)) { /* Just start the service since it's not running. */ service_start(svc, NULL); } /* else: Service is restarting anyways. */ } void property_changed(const char *name, const char *value) { if (property_triggers_enabled) queue_property_triggers(name, value); } static void restart_service_if_needed(struct service *svc) { time_t next_start_time = svc->time_started + 5; if (next_start_time <= gettime()) { svc->flags &= (~SVC_RESTARTING); service_start(svc, NULL); return; } if ((next_start_time < process_needs_restart) || (process_needs_restart == 0)) { process_needs_restart = next_start_time; } } static void restart_processes() { process_needs_restart = 0; service_for_each_flags(SVC_RESTARTING, restart_service_if_needed); } static void msg_start(const char *name) { struct service *svc = NULL; char *tmp = NULL; char *args = NULL; if (!strchr(name, ':')) svc = service_find_by_name(name); else { tmp = strdup(name); if (tmp) { args = strchr(tmp, ':'); *args = '\0'; args++; svc = service_find_by_name(tmp); } } if (svc) { service_start(svc, args); } else { ERROR("no such service '%s'\n", name); } if (tmp) free(tmp); } static void msg_stop(const char *name) { struct service *svc = service_find_by_name(name); if (svc) { service_stop(svc); } else { ERROR("no such service '%s'\n", name); } } static void msg_restart(const char *name) { struct service *svc = service_find_by_name(name); if (svc) { service_restart(svc); } else { ERROR("no such service '%s'\n", name); } } void handle_control_message(const char *msg, const char *arg) { if (!strcmp(msg,"start")) { msg_start(arg); } else if (!strcmp(msg,"stop")) { msg_stop(arg); } else if (!strcmp(msg,"restart")) { msg_restart(arg); } else { ERROR("unknown control msg '%s'\n", msg); } } static struct command *get_first_command(struct action *act) { struct listnode *node; node = list_head(&act->commands); if (!node || list_empty(&act->commands)) return NULL; return node_to_item(node, struct command, clist); } static struct command *get_next_command(struct action *act, struct command *cmd) { struct listnode *node; node = cmd->clist.next; if (!node) return NULL; if (node == &act->commands) return NULL; return node_to_item(node, struct command, clist); } static int is_last_command(struct action *act, struct command *cmd) { return (list_tail(&act->commands) == &cmd->clist); } void build_triggers_string(char *name_str, int length, struct action *cur_action) { struct listnode *node; struct trigger *cur_trigger; list_for_each(node, &cur_action->triggers) { cur_trigger = node_to_item(node, struct trigger, nlist); if (node != cur_action->triggers.next) { strlcat(name_str, " " , length); } strlcat(name_str, cur_trigger->name , length); } } void execute_one_command() { Timer t; char cmd_str[256] = ""; char name_str[256] = ""; if (!cur_action || !cur_command || is_last_command(cur_action, cur_command)) { cur_action = action_remove_queue_head(); cur_command = NULL; if (!cur_action) { return; } build_triggers_string(name_str, sizeof(name_str), cur_action); INFO("processing action %p (%s)\n", cur_action, name_str); cur_command = get_first_command(cur_action); } else { cur_command = get_next_command(cur_action, cur_command); } if (!cur_command) { return; } int result = cur_command->func(cur_command->nargs, cur_command->args); if (klog_get_level() >= KLOG_INFO_LEVEL) { for (int i = 0; i < cur_command->nargs; i++) { strlcat(cmd_str, cur_command->args[i], sizeof(cmd_str)); if (i < cur_command->nargs - 1) { strlcat(cmd_str, " ", sizeof(cmd_str)); } } char source[256]; if (cur_command->filename) { snprintf(source, sizeof(source), " (%s:%d)", cur_command->filename, cur_command->line); } else { *source = '\0'; } INFO("Command '%s' action=%s%s returned %d took %.2fs\n", cmd_str, cur_action ? name_str : "", source, result, t.duration()); } } static int wait_for_coldboot_done_action(int nargs, char **args) { Timer t; NOTICE("Waiting for %s...\n", COLDBOOT_DONE); // Any longer than 1s is an unreasonable length of time to delay booting. // If you're hitting this timeout, check that you didn't make your // sepolicy regular expressions too expensive (http://b/19899875). if (wait_for_file(COLDBOOT_DONE, 1)) { ERROR("Timed out waiting for %s\n", COLDBOOT_DONE); } NOTICE("Waiting for %s took %.2fs.\n", COLDBOOT_DONE, t.duration()); return 0; } /* * Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed * by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom. * Does nothing if Hardware RNG is not present. * * Since we don't yet trust the quality of Hardware RNG, these bytes are not * mixed into the primary pool of Linux RNG and the entropy estimate is left * unmodified. * * If the HW RNG device /dev/hw_random is present, we require that at least * 512 bytes read from it are written into Linux RNG. QA is expected to catch * devices/configurations where these I/O operations are blocking for a long * time. We do not reboot or halt on failures, as this is a best-effort * attempt. */ static int mix_hwrng_into_linux_rng_action(int nargs, char **args) { int result = -1; int hwrandom_fd = -1; int urandom_fd = -1; char buf[512]; ssize_t chunk_size; size_t total_bytes_written = 0; hwrandom_fd = TEMP_FAILURE_RETRY( open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); if (hwrandom_fd == -1) { if (errno == ENOENT) { ERROR("/dev/hw_random not found\n"); /* It's not an error to not have a Hardware RNG. */ result = 0; } else { ERROR("Failed to open /dev/hw_random: %s\n", strerror(errno)); } goto ret; } urandom_fd = TEMP_FAILURE_RETRY( open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); if (urandom_fd == -1) { ERROR("Failed to open /dev/urandom: %s\n", strerror(errno)); goto ret; } while (total_bytes_written < sizeof(buf)) { chunk_size = TEMP_FAILURE_RETRY( read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written)); if (chunk_size == -1) { ERROR("Failed to read from /dev/hw_random: %s\n", strerror(errno)); goto ret; } else if (chunk_size == 0) { ERROR("Failed to read from /dev/hw_random: EOF\n"); goto ret; } chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size)); if (chunk_size == -1) { ERROR("Failed to write to /dev/urandom: %s\n", strerror(errno)); goto ret; } total_bytes_written += chunk_size; } INFO("Mixed %zu bytes from /dev/hw_random into /dev/urandom", total_bytes_written); result = 0; ret: if (hwrandom_fd != -1) { close(hwrandom_fd); } if (urandom_fd != -1) { close(urandom_fd); } return result; } static int keychord_init_action(int nargs, char **args) { keychord_init(); return 0; } static int console_init_action(int nargs, char **args) { char console[PROP_VALUE_MAX]; if (property_get("ro.boot.console", console) > 0) { snprintf(console_name, sizeof(console_name), "/dev/%s", console); } int fd = open(console_name, O_RDWR | O_CLOEXEC); if (fd >= 0) have_console = 1; close(fd); fd = open("/dev/tty0", O_WRONLY | O_CLOEXEC); if (fd >= 0) { const char *msg; msg = "\n" "\n" "\n" "\n" "\n" "\n" "\n" // console is 40 cols x 30 lines "\n" "\n" "\n" "\n" "\n" "\n" "\n" " A N D R O I D "; write(fd, msg, strlen(msg)); close(fd); } return 0; } static void import_kernel_nv(char *name, bool for_emulator) { char *value = strchr(name, '='); int name_len = strlen(name); if (value == 0) return; *value++ = 0; if (name_len == 0) return; if (for_emulator) { /* in the emulator, export any kernel option with the * ro.kernel. prefix */ char buff[PROP_NAME_MAX]; int len = snprintf( buff, sizeof(buff), "ro.kernel.%s", name ); if (len < (int)sizeof(buff)) property_set( buff, value ); return; } if (!strcmp(name,"qemu")) { strlcpy(qemu, value, sizeof(qemu)); } else if (!strncmp(name, "androidboot.", 12) && name_len > 12) { const char *boot_prop_name = name + 12; char prop[PROP_NAME_MAX]; int cnt; cnt = snprintf(prop, sizeof(prop), "ro.boot.%s", boot_prop_name); if (cnt < PROP_NAME_MAX) property_set(prop, value); } } static void export_kernel_boot_props() { struct { const char *src_prop; const char *dst_prop; const char *default_value; } prop_map[] = { { "ro.boot.serialno", "ro.serialno", "", }, { "ro.boot.mode", "ro.bootmode", "unknown", }, { "ro.boot.baseband", "ro.baseband", "unknown", }, { "ro.boot.bootloader", "ro.bootloader", "unknown", }, { "ro.boot.hardware", "ro.hardware", "unknown", }, { "ro.boot.revision", "ro.revision", "0", }, }; for (size_t i = 0; i < ARRAY_SIZE(prop_map); i++) { char value[PROP_VALUE_MAX]; int rc = property_get(prop_map[i].src_prop, value); property_set(prop_map[i].dst_prop, (rc > 0) ? value : prop_map[i].default_value); } } static void process_kernel_dt(void) { static const char android_dir[] = "/proc/device-tree/firmware/android"; std::string file_name = android::base::StringPrintf("%s/compatible", android_dir); std::string dt_file; android::base::ReadFileToString(file_name, &dt_file); if (!dt_file.compare("android,firmware")) { ERROR("firmware/android is not compatible with 'android,firmware'\n"); return; } std::unique_ptr<DIR, int(*)(DIR*)>dir(opendir(android_dir), closedir); if (!dir) return; struct dirent *dp; while ((dp = readdir(dir.get())) != NULL) { if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible")) continue; file_name = android::base::StringPrintf("%s/%s", android_dir, dp->d_name); android::base::ReadFileToString(file_name, &dt_file); std::replace(dt_file.begin(), dt_file.end(), ',', '.'); std::string property_name = android::base::StringPrintf("ro.boot.%s", dp->d_name); property_set(property_name.c_str(), dt_file.c_str()); } } static void process_kernel_cmdline(void) { /* don't expose the raw commandline to nonpriv processes */ chmod("/proc/cmdline", 0440); /* first pass does the common stuff, and finds if we are in qemu. * second pass is only necessary for qemu to export all kernel params * as props. */ import_kernel_cmdline(false, import_kernel_nv); if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); } static int queue_property_triggers_action(int nargs, char **args) { queue_all_property_triggers(); /* enable property triggers */ property_triggers_enabled = 1; return 0; } static void selinux_init_all_handles(void) { sehandle = selinux_android_file_context_handle(); selinux_android_set_sehandle(sehandle); sehandle_prop = selinux_android_prop_context_handle(); } enum selinux_enforcing_status { SELINUX_DISABLED, SELINUX_PERMISSIVE, SELINUX_ENFORCING }; static selinux_enforcing_status selinux_status_from_cmdline() { selinux_enforcing_status status = SELINUX_ENFORCING; std::function<void(char*,bool)> fn = [&](char* name, bool in_qemu) { char *value = strchr(name, '='); if (value == nullptr) { return; } *value++ = '\0'; if (strcmp(name, "androidboot.selinux") == 0) { if (strcmp(value, "disabled") == 0) { status = SELINUX_DISABLED; } else if (strcmp(value, "permissive") == 0) { status = SELINUX_PERMISSIVE; } } }; import_kernel_cmdline(false, fn); return status; } static bool selinux_is_disabled(void) { if (ALLOW_DISABLE_SELINUX) { if (access("/sys/fs/selinux", F_OK) != 0) { // SELinux is not compiled into the kernel, or has been disabled // via the kernel command line "selinux=0". return true; } return selinux_status_from_cmdline() == SELINUX_DISABLED; } return false; } static bool selinux_is_enforcing(void) { if (ALLOW_DISABLE_SELINUX) { return selinux_status_from_cmdline() == SELINUX_ENFORCING; } return true; } int selinux_reload_policy(void) { if (selinux_is_disabled()) { return -1; } INFO("SELinux: Attempting to reload policy files\n"); if (selinux_android_reload_policy() == -1) { return -1; } if (sehandle) selabel_close(sehandle); if (sehandle_prop) selabel_close(sehandle_prop); selinux_init_all_handles(); return 0; } static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) { snprintf(buf, len, "property=%s", !data ? "NULL" : (char *)data); return 0; } static void security_failure() { ERROR("Security failure; rebooting into recovery mode...\n"); android_reboot(ANDROID_RB_RESTART2, 0, "recovery"); while (true) { pause(); } // never reached } static void selinux_initialize(bool in_kernel_domain) { Timer t; selinux_callback cb; cb.func_log = selinux_klog_callback; selinux_set_callback(SELINUX_CB_LOG, cb); cb.func_audit = audit_callback; selinux_set_callback(SELINUX_CB_AUDIT, cb); if (selinux_is_disabled()) { return; } if (in_kernel_domain) { INFO("Loading SELinux policy...\n"); if (selinux_android_load_policy() < 0) { ERROR("failed to load policy: %s\n", strerror(errno)); security_failure(); } bool is_enforcing = selinux_is_enforcing(); security_setenforce(is_enforcing); if (write_file("/sys/fs/selinux/checkreqprot", "0") == -1) { security_failure(); } NOTICE("(Initializing SELinux %s took %.2fs.)\n", is_enforcing ? "enforcing" : "non-enforcing", t.duration()); } else { selinux_init_all_handles(); } } int main(int argc, char** argv) { if (!strcmp(basename(argv[0]), "ueventd")) { return ueventd_main(argc, argv); } if (!strcmp(basename(argv[0]), "watchdogd")) { return watchdogd_main(argc, argv); } // Clear the umask. umask(0); add_environment("PATH", _PATH_DEFPATH); bool is_first_stage = (argc == 1) || (strcmp(argv[1], "--second-stage") != 0); // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. if (is_first_stage) { mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); mount("proc", "/proc", "proc", 0, NULL); mount("sysfs", "/sys", "sysfs", 0, NULL); } // We must have some place other than / to create the device nodes for // kmsg and null, otherwise we won't be able to remount / read-only // later on. Now that tmpfs is mounted on /dev, we can actually talk // to the outside world. open_devnull_stdio(); klog_init(); klog_set_level(KLOG_NOTICE_LEVEL); NOTICE("init%s started!\n", is_first_stage ? "" : " second stage"); if (!is_first_stage) { // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); property_init(); // If arguments are passed both on the command line and in DT, // properties set in DT always have priority over the command-line ones. process_kernel_dt(); process_kernel_cmdline(); // Propogate the kernel variables to internal variables // used by init as well as the current required properties. export_kernel_boot_props(); } // Set up SELinux, including loading the SELinux policy if we're in the kernel domain. selinux_initialize(is_first_stage); // If we're in the kernel domain, re-exec init to transition to the init domain now // that the SELinux policy has been loaded. if (is_first_stage) { if (restorecon("/init") == -1) { ERROR("restorecon failed: %s\n", strerror(errno)); security_failure(); } char* path = argv[0]; char* args[] = { path, const_cast<char*>("--second-stage"), nullptr }; if (execv(path, args) == -1) { ERROR("execv(\"%s\") failed: %s\n", path, strerror(errno)); security_failure(); } } // These directories were necessarily created before initial policy load // and therefore need their security context restored to the proper value. // This must happen before /dev is populated by ueventd. INFO("Running restorecon...\n"); restorecon("/dev"); restorecon("/dev/socket"); restorecon("/dev/__properties__"); restorecon_recursive("/sys"); epoll_fd = epoll_create1(EPOLL_CLOEXEC); if (epoll_fd == -1) { ERROR("epoll_create1 failed: %s\n", strerror(errno)); exit(1); } signal_handler_init(); property_load_boot_defaults(); start_property_service(); init_parse_config_file("/init.rc"); action_for_each_trigger("early-init", action_add_queue_tail); // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done"); // ... so that we can start queuing up actions that require stuff from /dev. queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); queue_builtin_action(keychord_init_action, "keychord_init"); queue_builtin_action(console_init_action, "console_init"); // Trigger all the boot actions to get us started. action_for_each_trigger("init", action_add_queue_tail); // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random // wasn't ready immediately after wait_for_coldboot_done queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); // Don't mount filesystems or start core system services in charger mode. char bootmode[PROP_VALUE_MAX]; if (property_get("ro.bootmode", bootmode) > 0 && strcmp(bootmode, "charger") == 0) { action_for_each_trigger("charger", action_add_queue_tail); } else { action_for_each_trigger("late-init", action_add_queue_tail); } // Run all property triggers based on current state of the properties. queue_builtin_action(queue_property_triggers_action, "queue_property_triggers"); while (true) { if (!waiting_for_exec) { execute_one_command(); restart_processes(); } int timeout = -1; if (process_needs_restart) { timeout = (process_needs_restart - gettime()) * 1000; if (timeout < 0) timeout = 0; } if (!action_queue_empty() || cur_action) { timeout = 0; } bootchart_sample(&timeout); epoll_event ev; int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, timeout)); if (nr == -1) { ERROR("epoll_wait failed: %s\n", strerror(errno)); } else if (nr == 1) { ((void (*)()) ev.data.ptr)(); } } return 0; }