/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG TRACE_USB #include "sysdeps.h" #include <cutils/properties.h> #include <dirent.h> #include <errno.h> #include <linux/usb/ch9.h> #include <linux/usb/functionfs.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/types.h> #include <unistd.h> #include "adb.h" #include "transport.h" #define MAX_PACKET_SIZE_FS 64 #define MAX_PACKET_SIZE_HS 512 #define MAX_PACKET_SIZE_SS 1024 #define cpu_to_le16(x) htole16(x) #define cpu_to_le32(x) htole32(x) struct usb_handle { adb_cond_t notify; adb_mutex_t lock; int (*write)(usb_handle *h, const void *data, int len); int (*read)(usb_handle *h, void *data, int len); void (*kick)(usb_handle *h); // Legacy f_adb int fd; // FunctionFS int control; int bulk_out; /* "out" from the host's perspective => source for adbd */ int bulk_in; /* "in" from the host's perspective => sink for adbd */ }; struct func_desc { struct usb_interface_descriptor intf; struct usb_endpoint_descriptor_no_audio source; struct usb_endpoint_descriptor_no_audio sink; } __attribute__((packed)); struct ss_func_desc { struct usb_interface_descriptor intf; struct usb_endpoint_descriptor_no_audio source; struct usb_ss_ep_comp_descriptor source_comp; struct usb_endpoint_descriptor_no_audio sink; struct usb_ss_ep_comp_descriptor sink_comp; } __attribute__((packed)); struct desc_v1 { struct usb_functionfs_descs_head_v1 { __le32 magic; __le32 length; __le32 fs_count; __le32 hs_count; } __attribute__((packed)) header; struct func_desc fs_descs, hs_descs; } __attribute__((packed)); struct desc_v2 { struct usb_functionfs_descs_head_v2 header; // The rest of the structure depends on the flags in the header. __le32 fs_count; __le32 hs_count; __le32 ss_count; struct func_desc fs_descs, hs_descs; struct ss_func_desc ss_descs; } __attribute__((packed)); struct func_desc fs_descriptors = { .intf = { .bLength = sizeof(fs_descriptors.intf), .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 2, .bInterfaceClass = ADB_CLASS, .bInterfaceSubClass = ADB_SUBCLASS, .bInterfaceProtocol = ADB_PROTOCOL, .iInterface = 1, /* first string from the provided table */ }, .source = { .bLength = sizeof(fs_descriptors.source), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_FS, }, .sink = { .bLength = sizeof(fs_descriptors.sink), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_FS, }, }; struct func_desc hs_descriptors = { .intf = { .bLength = sizeof(hs_descriptors.intf), .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 2, .bInterfaceClass = ADB_CLASS, .bInterfaceSubClass = ADB_SUBCLASS, .bInterfaceProtocol = ADB_PROTOCOL, .iInterface = 1, /* first string from the provided table */ }, .source = { .bLength = sizeof(hs_descriptors.source), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_HS, }, .sink = { .bLength = sizeof(hs_descriptors.sink), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_HS, }, }; static struct ss_func_desc ss_descriptors = { .intf = { .bLength = sizeof(ss_descriptors.intf), .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 2, .bInterfaceClass = ADB_CLASS, .bInterfaceSubClass = ADB_SUBCLASS, .bInterfaceProtocol = ADB_PROTOCOL, .iInterface = 1, /* first string from the provided table */ }, .source = { .bLength = sizeof(ss_descriptors.source), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_SS, }, .source_comp = { .bLength = sizeof(ss_descriptors.source_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }, .sink = { .bLength = sizeof(ss_descriptors.sink), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_SS, }, .sink_comp = { .bLength = sizeof(ss_descriptors.sink_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }, }; #define STR_INTERFACE_ "ADB Interface" static const struct { struct usb_functionfs_strings_head header; struct { __le16 code; const char str1[sizeof(STR_INTERFACE_)]; } __attribute__((packed)) lang0; } __attribute__((packed)) strings = { .header = { .magic = cpu_to_le32(FUNCTIONFS_STRINGS_MAGIC), .length = cpu_to_le32(sizeof(strings)), .str_count = cpu_to_le32(1), .lang_count = cpu_to_le32(1), }, .lang0 = { cpu_to_le16(0x0409), /* en-us */ STR_INTERFACE_, }, }; static void *usb_adb_open_thread(void *x) { struct usb_handle *usb = (struct usb_handle *)x; int fd; while (true) { // wait until the USB device needs opening adb_mutex_lock(&usb->lock); while (usb->fd != -1) adb_cond_wait(&usb->notify, &usb->lock); adb_mutex_unlock(&usb->lock); D("[ usb_thread - opening device ]\n"); do { /* XXX use inotify? */ fd = unix_open("/dev/android_adb", O_RDWR); if (fd < 0) { // to support older kernels fd = unix_open("/dev/android", O_RDWR); } if (fd < 0) { adb_sleep_ms(1000); } } while (fd < 0); D("[ opening device succeeded ]\n"); close_on_exec(fd); usb->fd = fd; D("[ usb_thread - registering device ]\n"); register_usb_transport(usb, 0, 0, 1); } // never gets here return 0; } static int usb_adb_write(usb_handle *h, const void *data, int len) { int n; D("about to write (fd=%d, len=%d)\n", h->fd, len); n = adb_write(h->fd, data, len); if(n != len) { D("ERROR: fd = %d, n = %d, errno = %d (%s)\n", h->fd, n, errno, strerror(errno)); return -1; } D("[ done fd=%d ]\n", h->fd); return 0; } static int usb_adb_read(usb_handle *h, void *data, int len) { int n; D("about to read (fd=%d, len=%d)\n", h->fd, len); n = adb_read(h->fd, data, len); if(n != len) { D("ERROR: fd = %d, n = %d, errno = %d (%s)\n", h->fd, n, errno, strerror(errno)); return -1; } D("[ done fd=%d ]\n", h->fd); return 0; } static void usb_adb_kick(usb_handle *h) { D("usb_kick\n"); adb_mutex_lock(&h->lock); adb_close(h->fd); h->fd = -1; // notify usb_adb_open_thread that we are disconnected adb_cond_signal(&h->notify); adb_mutex_unlock(&h->lock); } static void usb_adb_init() { usb_handle* h = reinterpret_cast<usb_handle*>(calloc(1, sizeof(usb_handle))); if (h == nullptr) fatal("couldn't allocate usb_handle"); h->write = usb_adb_write; h->read = usb_adb_read; h->kick = usb_adb_kick; h->fd = -1; adb_cond_init(&h->notify, 0); adb_mutex_init(&h->lock, 0); // Open the file /dev/android_adb_enable to trigger // the enabling of the adb USB function in the kernel. // We never touch this file again - just leave it open // indefinitely so the kernel will know when we are running // and when we are not. int fd = unix_open("/dev/android_adb_enable", O_RDWR); if (fd < 0) { D("failed to open /dev/android_adb_enable\n"); } else { close_on_exec(fd); } D("[ usb_init - starting thread ]\n"); adb_thread_t tid; if(adb_thread_create(&tid, usb_adb_open_thread, h)){ fatal_errno("cannot create usb thread"); } } static void init_functionfs(struct usb_handle *h) { ssize_t ret; struct desc_v1 v1_descriptor; struct desc_v2 v2_descriptor; v2_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC_V2); v2_descriptor.header.length = cpu_to_le32(sizeof(v2_descriptor)); v2_descriptor.header.flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC | FUNCTIONFS_HAS_SS_DESC; v2_descriptor.fs_count = 3; v2_descriptor.hs_count = 3; v2_descriptor.ss_count = 5; v2_descriptor.fs_descs = fs_descriptors; v2_descriptor.hs_descs = hs_descriptors; v2_descriptor.ss_descs = ss_descriptors; if (h->control < 0) { // might have already done this before D("OPENING %s\n", USB_FFS_ADB_EP0); h->control = adb_open(USB_FFS_ADB_EP0, O_RDWR); if (h->control < 0) { D("[ %s: cannot open control endpoint: errno=%d]\n", USB_FFS_ADB_EP0, errno); goto err; } ret = adb_write(h->control, &v2_descriptor, sizeof(v2_descriptor)); if (ret < 0) { v1_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC); v1_descriptor.header.length = cpu_to_le32(sizeof(v1_descriptor)); v1_descriptor.header.fs_count = 3; v1_descriptor.header.hs_count = 3; v1_descriptor.fs_descs = fs_descriptors; v1_descriptor.hs_descs = hs_descriptors; D("[ %s: Switching to V1_descriptor format errno=%d ]\n", USB_FFS_ADB_EP0, errno); ret = adb_write(h->control, &v1_descriptor, sizeof(v1_descriptor)); if (ret < 0) { D("[ %s: write descriptors failed: errno=%d ]\n", USB_FFS_ADB_EP0, errno); goto err; } } ret = adb_write(h->control, &strings, sizeof(strings)); if (ret < 0) { D("[ %s: writing strings failed: errno=%d]\n", USB_FFS_ADB_EP0, errno); goto err; } } h->bulk_out = adb_open(USB_FFS_ADB_OUT, O_RDWR); if (h->bulk_out < 0) { D("[ %s: cannot open bulk-out ep: errno=%d ]\n", USB_FFS_ADB_OUT, errno); goto err; } h->bulk_in = adb_open(USB_FFS_ADB_IN, O_RDWR); if (h->bulk_in < 0) { D("[ %s: cannot open bulk-in ep: errno=%d ]\n", USB_FFS_ADB_IN, errno); goto err; } return; err: if (h->bulk_in > 0) { adb_close(h->bulk_in); h->bulk_in = -1; } if (h->bulk_out > 0) { adb_close(h->bulk_out); h->bulk_out = -1; } if (h->control > 0) { adb_close(h->control); h->control = -1; } return; } static void *usb_ffs_open_thread(void *x) { struct usb_handle *usb = (struct usb_handle *)x; while (true) { // wait until the USB device needs opening adb_mutex_lock(&usb->lock); while (usb->control != -1 && usb->bulk_in != -1 && usb->bulk_out != -1) adb_cond_wait(&usb->notify, &usb->lock); adb_mutex_unlock(&usb->lock); while (true) { init_functionfs(usb); if (usb->control >= 0 && usb->bulk_in >= 0 && usb->bulk_out >= 0) break; adb_sleep_ms(1000); } property_set("sys.usb.ffs.ready", "1"); D("[ usb_thread - registering device ]\n"); register_usb_transport(usb, 0, 0, 1); } // never gets here return 0; } static int bulk_write(int bulk_in, const uint8_t* buf, size_t length) { size_t count = 0; int ret; do { ret = adb_write(bulk_in, buf + count, length - count); if (ret < 0) { if (errno != EINTR) return ret; } else { count += ret; } } while (count < length); D("[ bulk_write done fd=%d ]\n", bulk_in); return count; } static int usb_ffs_write(usb_handle* h, const void* data, int len) { D("about to write (fd=%d, len=%d)\n", h->bulk_in, len); int n = bulk_write(h->bulk_in, reinterpret_cast<const uint8_t*>(data), len); if (n != len) { D("ERROR: fd = %d, n = %d: %s\n", h->bulk_in, n, strerror(errno)); return -1; } D("[ done fd=%d ]\n", h->bulk_in); return 0; } static int bulk_read(int bulk_out, uint8_t* buf, size_t length) { size_t count = 0; int ret; do { ret = adb_read(bulk_out, buf + count, length - count); if (ret < 0) { if (errno != EINTR) { D("[ bulk_read failed fd=%d length=%zu count=%zu ]\n", bulk_out, length, count); return ret; } } else { count += ret; } } while (count < length); return count; } static int usb_ffs_read(usb_handle* h, void* data, int len) { D("about to read (fd=%d, len=%d)\n", h->bulk_out, len); int n = bulk_read(h->bulk_out, reinterpret_cast<uint8_t*>(data), len); if (n != len) { D("ERROR: fd = %d, n = %d: %s\n", h->bulk_out, n, strerror(errno)); return -1; } D("[ done fd=%d ]\n", h->bulk_out); return 0; } static void usb_ffs_kick(usb_handle *h) { int err; err = ioctl(h->bulk_in, FUNCTIONFS_CLEAR_HALT); if (err < 0) D("[ kick: source (fd=%d) clear halt failed (%d) ]", h->bulk_in, errno); err = ioctl(h->bulk_out, FUNCTIONFS_CLEAR_HALT); if (err < 0) D("[ kick: sink (fd=%d) clear halt failed (%d) ]", h->bulk_out, errno); adb_mutex_lock(&h->lock); // don't close ep0 here, since we may not need to reinitialize it with // the same descriptors again. if however ep1/ep2 fail to re-open in // init_functionfs, only then would we close and open ep0 again. adb_close(h->bulk_out); adb_close(h->bulk_in); h->bulk_out = h->bulk_in = -1; // notify usb_ffs_open_thread that we are disconnected adb_cond_signal(&h->notify); adb_mutex_unlock(&h->lock); } static void usb_ffs_init() { D("[ usb_init - using FunctionFS ]\n"); usb_handle* h = reinterpret_cast<usb_handle*>(calloc(1, sizeof(usb_handle))); if (h == nullptr) fatal("couldn't allocate usb_handle"); h->write = usb_ffs_write; h->read = usb_ffs_read; h->kick = usb_ffs_kick; h->control = -1; h->bulk_out = -1; h->bulk_out = -1; adb_cond_init(&h->notify, 0); adb_mutex_init(&h->lock, 0); D("[ usb_init - starting thread ]\n"); adb_thread_t tid; if (adb_thread_create(&tid, usb_ffs_open_thread, h)){ fatal_errno("[ cannot create usb thread ]\n"); } } void usb_init() { if (access(USB_FFS_ADB_EP0, F_OK) == 0) usb_ffs_init(); else usb_adb_init(); } void usb_cleanup() { } int usb_write(usb_handle *h, const void *data, int len) { return h->write(h, data, len); } int usb_read(usb_handle *h, void *data, int len) { return h->read(h, data, len); } int usb_close(usb_handle *h) { return 0; } void usb_kick(usb_handle *h) { h->kick(h); }