#include "rs_core.rsh" extern float2 __attribute__((overloadable)) convert_float2(int2 c); extern float3 __attribute__((overloadable)) convert_float3(int3 c); extern float4 __attribute__((overloadable)) convert_float4(int4 c); extern int2 __attribute__((overloadable)) convert_int2(float2 c); extern int3 __attribute__((overloadable)) convert_int3(float3 c); extern int4 __attribute__((overloadable)) convert_int4(float4 c); extern float __attribute__((overloadable)) fmin(float v, float v2); extern float2 __attribute__((overloadable)) fmin(float2 v, float v2); extern float3 __attribute__((overloadable)) fmin(float3 v, float v2); extern float4 __attribute__((overloadable)) fmin(float4 v, float v2); extern float __attribute__((overloadable)) fmax(float v, float v2); extern float2 __attribute__((overloadable)) fmax(float2 v, float v2); extern float3 __attribute__((overloadable)) fmax(float3 v, float v2); extern float4 __attribute__((overloadable)) fmax(float4 v, float v2); // Float ops, 6.11.2 #define FN_FUNC_FN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v) { \ float2 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v) { \ float3 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v) { \ float4 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ r.w = fnc(v.w); \ return r; \ } #define IN_FUNC_FN(fnc) \ extern int2 __attribute__((overloadable)) fnc(float2 v) { \ int2 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ return r; \ } \ extern int3 __attribute__((overloadable)) fnc(float3 v) { \ int3 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ return r; \ } \ extern int4 __attribute__((overloadable)) fnc(float4 v) { \ int4 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ r.w = fnc(v.w); \ return r; \ } #define FN_FUNC_FN_FN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, float2 v2) { \ float2 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, float3 v2) { \ float3 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, float4 v2) { \ float4 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ r.w = fnc(v1.w, v2.w); \ return r; \ } #define FN_FUNC_FN_F(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, float v2) { \ float2 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, float v2) { \ float3 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, float v2) { \ float4 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ r.w = fnc(v1.w, v2); \ return r; \ } #define FN_FUNC_FN_IN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 v2) { \ float2 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 v2) { \ float3 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 v2) { \ float4 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ r.w = fnc(v1.w, v2.w); \ return r; \ } #define FN_FUNC_FN_I(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, int v2) { \ float2 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, int v2) { \ float3 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, int v2) { \ float4 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ r.w = fnc(v1.w, v2); \ return r; \ } #define FN_FUNC_FN_PFN(fnc) \ extern float2 __attribute__((overloadable)) \ fnc(float2 v1, float2 *v2) { \ float2 r; \ float t[2]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ v2->x = t[0]; \ v2->y = t[1]; \ return r; \ } \ extern float3 __attribute__((overloadable)) \ fnc(float3 v1, float3 *v2) { \ float3 r; \ float t[3]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ return r; \ } \ extern float4 __attribute__((overloadable)) \ fnc(float4 v1, float4 *v2) { \ float4 r; \ float t[4]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ r.w = fnc(v1.w, &t[3]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ v2->w = t[3]; \ return r; \ } #define FN_FUNC_FN_PIN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 *v2) { \ float2 r; \ int t[2]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ v2->x = t[0]; \ v2->y = t[1]; \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 *v2) { \ float3 r; \ int t[3]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 *v2) { \ float4 r; \ int t[4]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ r.w = fnc(v1.w, &t[3]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ v2->w = t[3]; \ return r; \ } #define FN_FUNC_FN_FN_FN(fnc) \ extern float2 __attribute__((overloadable)) \ fnc(float2 v1, float2 v2, float2 v3) { \ float2 r; \ r.x = fnc(v1.x, v2.x, v3.x); \ r.y = fnc(v1.y, v2.y, v3.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) \ fnc(float3 v1, float3 v2, float3 v3) { \ float3 r; \ r.x = fnc(v1.x, v2.x, v3.x); \ r.y = fnc(v1.y, v2.y, v3.y); \ r.z = fnc(v1.z, v2.z, v3.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) \ fnc(float4 v1, float4 v2, float4 v3) { \ float4 r; \ r.x = fnc(v1.x, v2.x, v3.x); \ r.y = fnc(v1.y, v2.y, v3.y); \ r.z = fnc(v1.z, v2.z, v3.z); \ r.w = fnc(v1.w, v2.w, v3.w); \ return r; \ } #define FN_FUNC_FN_FN_PIN(fnc) \ extern float2 __attribute__((overloadable)) \ fnc(float2 v1, float2 v2, int2 *v3) { \ float2 r; \ int t[2]; \ r.x = fnc(v1.x, v2.x, &t[0]); \ r.y = fnc(v1.y, v2.y, &t[1]); \ v3->x = t[0]; \ v3->y = t[1]; \ return r; \ } \ extern float3 __attribute__((overloadable)) \ fnc(float3 v1, float3 v2, int3 *v3) { \ float3 r; \ int t[3]; \ r.x = fnc(v1.x, v2.x, &t[0]); \ r.y = fnc(v1.y, v2.y, &t[1]); \ r.z = fnc(v1.z, v2.z, &t[2]); \ v3->x = t[0]; \ v3->y = t[1]; \ v3->z = t[2]; \ return r; \ } \ extern float4 __attribute__((overloadable)) \ fnc(float4 v1, float4 v2, int4 *v3) { \ float4 r; \ int t[4]; \ r.x = fnc(v1.x, v2.x, &t[0]); \ r.y = fnc(v1.y, v2.y, &t[1]); \ r.z = fnc(v1.z, v2.z, &t[2]); \ r.w = fnc(v1.w, v2.w, &t[3]); \ v3->x = t[0]; \ v3->y = t[1]; \ v3->z = t[2]; \ v3->w = t[3]; \ return r; \ } static const int iposinf = 0x7f800000; static const int ineginf = 0xff800000; static const float posinf() { float f = *((float*)&iposinf); return f; } static const float neginf() { float f = *((float*)&ineginf); return f; } static bool isinf(float f) { int i = *((int*)(void*)&f); return (i == iposinf) || (i == ineginf); } static bool isnan(float f) { int i = *((int*)(void*)&f); return (((i & 0x7f800000) == 0x7f800000) && (i & 0x007fffff)); } static bool isposzero(float f) { int i = *((int*)(void*)&f); return (i == 0x00000000); } static bool isnegzero(float f) { int i = *((int*)(void*)&f); return (i == 0x80000000); } static bool iszero(float f) { return isposzero(f) || isnegzero(f); } extern float __attribute__((overloadable)) acos(float); FN_FUNC_FN(acos) extern float __attribute__((overloadable)) acosh(float); FN_FUNC_FN(acosh) extern float __attribute__((overloadable)) acospi(float v) { return acos(v) / M_PI; } FN_FUNC_FN(acospi) extern float __attribute__((overloadable)) asin(float); FN_FUNC_FN(asin) extern float __attribute__((overloadable)) asinh(float); FN_FUNC_FN(asinh) extern float __attribute__((overloadable)) asinpi(float v) { return asin(v) / M_PI; } FN_FUNC_FN(asinpi) extern float __attribute__((overloadable)) atan(float); FN_FUNC_FN(atan) extern float __attribute__((overloadable)) atan2(float, float); FN_FUNC_FN_FN(atan2) extern float __attribute__((overloadable)) atanh(float); FN_FUNC_FN(atanh) extern float __attribute__((overloadable)) atanpi(float v) { return atan(v) / M_PI; } FN_FUNC_FN(atanpi) extern float __attribute__((overloadable)) atan2pi(float y, float x) { return atan2(y, x) / M_PI; } FN_FUNC_FN_FN(atan2pi) extern float __attribute__((overloadable)) cbrt(float); FN_FUNC_FN(cbrt) extern float __attribute__((overloadable)) ceil(float); FN_FUNC_FN(ceil) extern float __attribute__((overloadable)) copysign(float, float); FN_FUNC_FN_FN(copysign) extern float __attribute__((overloadable)) cos(float); FN_FUNC_FN(cos) extern float __attribute__((overloadable)) cosh(float); FN_FUNC_FN(cosh) extern float __attribute__((overloadable)) cospi(float v) { return cos(v * M_PI); } FN_FUNC_FN(cospi) extern float __attribute__((overloadable)) erfc(float); FN_FUNC_FN(erfc) extern float __attribute__((overloadable)) erf(float); FN_FUNC_FN(erf) extern float __attribute__((overloadable)) exp(float); FN_FUNC_FN(exp) extern float __attribute__((overloadable)) exp2(float); FN_FUNC_FN(exp2) extern float __attribute__((overloadable)) pow(float, float); extern float __attribute__((overloadable)) exp10(float v) { return exp2(v * 3.321928095f); } FN_FUNC_FN(exp10) extern float __attribute__((overloadable)) expm1(float); FN_FUNC_FN(expm1) extern float __attribute__((overloadable)) fabs(float v) { int i = *((int*)(void*)&v) & 0x7fffffff; return *((float*)(void*)&i); } FN_FUNC_FN(fabs) extern float __attribute__((overloadable)) fdim(float, float); FN_FUNC_FN_FN(fdim) extern float __attribute__((overloadable)) floor(float); FN_FUNC_FN(floor) extern float __attribute__((overloadable)) fma(float, float, float); FN_FUNC_FN_FN_FN(fma) extern float __attribute__((overloadable)) fmin(float, float); extern float __attribute__((overloadable)) fmod(float, float); FN_FUNC_FN_FN(fmod) extern float __attribute__((overloadable)) fract(float v, float *iptr) { int i = (int)floor(v); if (iptr) { iptr[0] = i; } return fmin(v - i, 0x1.fffffep-1f); } FN_FUNC_FN_PFN(fract) extern float __attribute__((overloadable)) frexp(float, int *); FN_FUNC_FN_PIN(frexp) extern float __attribute__((overloadable)) hypot(float, float); FN_FUNC_FN_FN(hypot) extern int __attribute__((overloadable)) ilogb(float); IN_FUNC_FN(ilogb) extern float __attribute__((overloadable)) ldexp(float, int); FN_FUNC_FN_IN(ldexp) FN_FUNC_FN_I(ldexp) extern float __attribute__((overloadable)) lgamma(float); FN_FUNC_FN(lgamma) extern float __attribute__((overloadable)) lgamma(float, int*); FN_FUNC_FN_PIN(lgamma) extern float __attribute__((overloadable)) log(float); FN_FUNC_FN(log) extern float __attribute__((overloadable)) log10(float); FN_FUNC_FN(log10) extern float __attribute__((overloadable)) log2(float v) { return log10(v) * 3.321928095f; } FN_FUNC_FN(log2) extern float __attribute__((overloadable)) log1p(float); FN_FUNC_FN(log1p) extern float __attribute__((overloadable)) logb(float); FN_FUNC_FN(logb) extern float __attribute__((overloadable)) mad(float a, float b, float c) { return a * b + c; } extern float2 __attribute__((overloadable)) mad(float2 a, float2 b, float2 c) { return a * b + c; } extern float3 __attribute__((overloadable)) mad(float3 a, float3 b, float3 c) { return a * b + c; } extern float4 __attribute__((overloadable)) mad(float4 a, float4 b, float4 c) { return a * b + c; } extern float __attribute__((overloadable)) modf(float, float *); FN_FUNC_FN_PFN(modf); extern float __attribute__((overloadable)) nan(uint v) { float f[1]; uint32_t *ip = (uint32_t *)f; *ip = v | 0x7fc00000; return f[0]; } extern float __attribute__((overloadable)) nextafter(float, float); FN_FUNC_FN_FN(nextafter) FN_FUNC_FN_FN(pow) extern float __attribute__((overloadable)) pown(float v, int p) { /* The mantissa of a float has fewer bits than an int (24 effective vs. 31). * For very large ints, we'll lose whether the exponent is even or odd, making * the selection of a correct sign incorrect. We correct this. Use copysign * to handle the negative zero case. */ float sign = (p & 0x1) ? copysign(1.f, v) : 1.f; float f = pow(v, (float)p); return copysign(f, sign); } FN_FUNC_FN_IN(pown) extern float __attribute__((overloadable)) powr(float v, float p) { return pow(v, p); } extern float2 __attribute__((overloadable)) powr(float2 v, float2 p) { return pow(v, p); } extern float3 __attribute__((overloadable)) powr(float3 v, float3 p) { return pow(v, p); } extern float4 __attribute__((overloadable)) powr(float4 v, float4 p) { return pow(v, p); } extern float __attribute__((overloadable)) remainder(float, float); FN_FUNC_FN_FN(remainder) extern float __attribute__((overloadable)) remquo(float, float, int *); FN_FUNC_FN_FN_PIN(remquo) extern float __attribute__((overloadable)) rint(float); FN_FUNC_FN(rint) extern float __attribute__((overloadable)) rootn(float v, int r) { if (r == 0) { return posinf(); } if (iszero(v)) { if (r < 0) { if (r & 1) { return copysign(posinf(), v); } else { return posinf(); } } else { if (r & 1) { return copysign(0.f, v); } else { return 0.f; } } } if (!isinf(v) && !isnan(v) && (v < 0.f)) { if (r & 1) { return (-1.f * pow(-1.f * v, 1.f / r)); } else { return nan(0); } } return pow(v, 1.f / r); } FN_FUNC_FN_IN(rootn); extern float __attribute__((overloadable)) round(float); FN_FUNC_FN(round) extern float __attribute__((overloadable)) sqrt(float); extern float __attribute__((overloadable)) rsqrt(float v) { return 1.f / sqrt(v); } #if (!defined(__i386__) && !defined(__x86_64__)) || defined(RS_DEBUG_RUNTIME) // These functions must be defined here if we are not using the SSE // implementation, which includes when we are built as part of the // debug runtime (libclcore_debug.bc). FN_FUNC_FN(sqrt) #else extern float2 __attribute__((overloadable)) sqrt(float2); extern float3 __attribute__((overloadable)) sqrt(float3); extern float4 __attribute__((overloadable)) sqrt(float4); #endif // (!defined(__i386__) && !defined(__x86_64__)) || defined(RS_DEBUG_RUNTIME) FN_FUNC_FN(rsqrt) extern float __attribute__((overloadable)) sin(float); FN_FUNC_FN(sin) extern float __attribute__((overloadable)) sincos(float v, float *cosptr) { *cosptr = cos(v); return sin(v); } extern float2 __attribute__((overloadable)) sincos(float2 v, float2 *cosptr) { *cosptr = cos(v); return sin(v); } extern float3 __attribute__((overloadable)) sincos(float3 v, float3 *cosptr) { *cosptr = cos(v); return sin(v); } extern float4 __attribute__((overloadable)) sincos(float4 v, float4 *cosptr) { *cosptr = cos(v); return sin(v); } extern float __attribute__((overloadable)) sinh(float); FN_FUNC_FN(sinh) extern float __attribute__((overloadable)) sinpi(float v) { return sin(v * M_PI); } FN_FUNC_FN(sinpi) extern float __attribute__((overloadable)) tan(float); FN_FUNC_FN(tan) extern float __attribute__((overloadable)) tanh(float); FN_FUNC_FN(tanh) extern float __attribute__((overloadable)) tanpi(float v) { return tan(v * M_PI); } FN_FUNC_FN(tanpi) extern float __attribute__((overloadable)) tgamma(float); FN_FUNC_FN(tgamma) extern float __attribute__((overloadable)) trunc(float); FN_FUNC_FN(trunc) // Int ops (partial), 6.11.3 #define XN_FUNC_YN(typeout, fnc, typein) \ extern typeout __attribute__((overloadable)) fnc(typein); \ extern typeout##2 __attribute__((overloadable)) fnc(typein##2 v) { \ typeout##2 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ return r; \ } \ extern typeout##3 __attribute__((overloadable)) fnc(typein##3 v) { \ typeout##3 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ return r; \ } \ extern typeout##4 __attribute__((overloadable)) fnc(typein##4 v) { \ typeout##4 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ r.w = fnc(v.w); \ return r; \ } #define UIN_FUNC_IN(fnc) \ XN_FUNC_YN(uchar, fnc, char) \ XN_FUNC_YN(ushort, fnc, short) \ XN_FUNC_YN(uint, fnc, int) #define IN_FUNC_IN(fnc) \ XN_FUNC_YN(uchar, fnc, uchar) \ XN_FUNC_YN(char, fnc, char) \ XN_FUNC_YN(ushort, fnc, ushort) \ XN_FUNC_YN(short, fnc, short) \ XN_FUNC_YN(uint, fnc, uint) \ XN_FUNC_YN(int, fnc, int) #define XN_FUNC_XN_XN_BODY(type, fnc, body) \ extern type __attribute__((overloadable)) \ fnc(type v1, type v2) { \ return body; \ } \ extern type##2 __attribute__((overloadable)) \ fnc(type##2 v1, type##2 v2) { \ type##2 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ return r; \ } \ extern type##3 __attribute__((overloadable)) \ fnc(type##3 v1, type##3 v2) { \ type##3 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ return r; \ } \ extern type##4 __attribute__((overloadable)) \ fnc(type##4 v1, type##4 v2) { \ type##4 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ r.w = fnc(v1.w, v2.w); \ return r; \ } #define IN_FUNC_IN_IN_BODY(fnc, body) \ XN_FUNC_XN_XN_BODY(uchar, fnc, body) \ XN_FUNC_XN_XN_BODY(char, fnc, body) \ XN_FUNC_XN_XN_BODY(ushort, fnc, body) \ XN_FUNC_XN_XN_BODY(short, fnc, body) \ XN_FUNC_XN_XN_BODY(uint, fnc, body) \ XN_FUNC_XN_XN_BODY(int, fnc, body) \ XN_FUNC_XN_XN_BODY(float, fnc, body) /** * abs */ extern uint32_t __attribute__((overloadable)) abs(int32_t v) { if (v < 0) return -v; return v; } extern uint16_t __attribute__((overloadable)) abs(int16_t v) { if (v < 0) return -v; return v; } extern uint8_t __attribute__((overloadable)) abs(int8_t v) { if (v < 0) return -v; return v; } /** * clz * __builtin_clz only accepts a 32-bit unsigned int, so every input will be * expanded to 32 bits. For our smaller data types, we need to subtract off * these unused top bits (that will be always be composed of zeros). */ extern uint32_t __attribute__((overloadable)) clz(uint32_t v) { return __builtin_clz(v); } extern uint16_t __attribute__((overloadable)) clz(uint16_t v) { return __builtin_clz(v) - 16; } extern uint8_t __attribute__((overloadable)) clz(uint8_t v) { return __builtin_clz(v) - 24; } extern int32_t __attribute__((overloadable)) clz(int32_t v) { return __builtin_clz(v); } extern int16_t __attribute__((overloadable)) clz(int16_t v) { return __builtin_clz(((uint32_t)v) & 0x0000ffff) - 16; } extern int8_t __attribute__((overloadable)) clz(int8_t v) { return __builtin_clz(((uint32_t)v) & 0x000000ff) - 24; } UIN_FUNC_IN(abs) IN_FUNC_IN(clz) // 6.11.4 extern float __attribute__((overloadable)) degrees(float radians) { return radians * (180.f / M_PI); } extern float2 __attribute__((overloadable)) degrees(float2 radians) { return radians * (180.f / M_PI); } extern float3 __attribute__((overloadable)) degrees(float3 radians) { return radians * (180.f / M_PI); } extern float4 __attribute__((overloadable)) degrees(float4 radians) { return radians * (180.f / M_PI); } extern float __attribute__((overloadable)) mix(float start, float stop, float amount) { return start + (stop - start) * amount; } extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float2 amount) { return start + (stop - start) * amount; } extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float3 amount) { return start + (stop - start) * amount; } extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float4 amount) { return start + (stop - start) * amount; } extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float amount) { return start + (stop - start) * amount; } extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float amount) { return start + (stop - start) * amount; } extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float amount) { return start + (stop - start) * amount; } extern float __attribute__((overloadable)) radians(float degrees) { return degrees * (M_PI / 180.f); } extern float2 __attribute__((overloadable)) radians(float2 degrees) { return degrees * (M_PI / 180.f); } extern float3 __attribute__((overloadable)) radians(float3 degrees) { return degrees * (M_PI / 180.f); } extern float4 __attribute__((overloadable)) radians(float4 degrees) { return degrees * (M_PI / 180.f); } extern float __attribute__((overloadable)) step(float edge, float v) { return (v < edge) ? 0.f : 1.f; } extern float2 __attribute__((overloadable)) step(float2 edge, float2 v) { float2 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; return r; } extern float3 __attribute__((overloadable)) step(float3 edge, float3 v) { float3 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; r.z = (v.z < edge.z) ? 0.f : 1.f; return r; } extern float4 __attribute__((overloadable)) step(float4 edge, float4 v) { float4 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; r.z = (v.z < edge.z) ? 0.f : 1.f; r.w = (v.w < edge.w) ? 0.f : 1.f; return r; } extern float2 __attribute__((overloadable)) step(float2 edge, float v) { float2 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; return r; } extern float3 __attribute__((overloadable)) step(float3 edge, float v) { float3 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; r.z = (v < edge.z) ? 0.f : 1.f; return r; } extern float4 __attribute__((overloadable)) step(float4 edge, float v) { float4 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; r.z = (v < edge.z) ? 0.f : 1.f; r.w = (v < edge.w) ? 0.f : 1.f; return r; } extern float2 __attribute__((overloadable)) step(float edge, float2 v) { float2 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; return r; } extern float3 __attribute__((overloadable)) step(float edge, float3 v) { float3 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; r.z = (v.z < edge) ? 0.f : 1.f; return r; } extern float4 __attribute__((overloadable)) step(float edge, float4 v) { float4 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; r.z = (v.z < edge) ? 0.f : 1.f; r.w = (v.w < edge) ? 0.f : 1.f; return r; } extern float __attribute__((overloadable)) smoothstep(float, float, float); extern float2 __attribute__((overloadable)) smoothstep(float2, float2, float2); extern float3 __attribute__((overloadable)) smoothstep(float3, float3, float3); extern float4 __attribute__((overloadable)) smoothstep(float4, float4, float4); extern float2 __attribute__((overloadable)) smoothstep(float, float, float2); extern float3 __attribute__((overloadable)) smoothstep(float, float, float3); extern float4 __attribute__((overloadable)) smoothstep(float, float, float4); extern float __attribute__((overloadable)) sign(float v) { if (v > 0) return 1.f; if (v < 0) return -1.f; return v; } FN_FUNC_FN(sign) // 6.11.5 extern float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs) { float3 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; return r; } extern float4 __attribute__((overloadable)) cross(float4 lhs, float4 rhs) { float4 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; r.w = 0.f; return r; } #if (!defined(__i386__) && !defined(__x86_64__)) || defined(RS_DEBUG_RUNTIME) // These functions must be defined here if we are not using the SSE // implementation, which includes when we are built as part of the // debug runtime (libclcore_debug.bc). extern float __attribute__((overloadable)) dot(float lhs, float rhs) { return lhs * rhs; } extern float __attribute__((overloadable)) dot(float2 lhs, float2 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y; } extern float __attribute__((overloadable)) dot(float3 lhs, float3 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z; } extern float __attribute__((overloadable)) dot(float4 lhs, float4 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z + lhs.w*rhs.w; } extern float __attribute__((overloadable)) length(float v) { return fabs(v); } extern float __attribute__((overloadable)) length(float2 v) { return sqrt(v.x*v.x + v.y*v.y); } extern float __attribute__((overloadable)) length(float3 v) { return sqrt(v.x*v.x + v.y*v.y + v.z*v.z); } extern float __attribute__((overloadable)) length(float4 v) { return sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); } #else extern float __attribute__((overloadable)) length(float v); extern float __attribute__((overloadable)) length(float2 v); extern float __attribute__((overloadable)) length(float3 v); extern float __attribute__((overloadable)) length(float4 v); #endif // (!defined(__i386__) && !defined(__x86_64__)) || defined(RS_DEBUG_RUNTIME) extern float __attribute__((overloadable)) distance(float lhs, float rhs) { return length(lhs - rhs); } extern float __attribute__((overloadable)) distance(float2 lhs, float2 rhs) { return length(lhs - rhs); } extern float __attribute__((overloadable)) distance(float3 lhs, float3 rhs) { return length(lhs - rhs); } extern float __attribute__((overloadable)) distance(float4 lhs, float4 rhs) { return length(lhs - rhs); } /* For the normalization functions, vectors of length 0 should simply be * returned (i.e. all the components of that vector are 0). */ extern float __attribute__((overloadable)) normalize(float v) { if (v == 0.0f) { return 0.0f; } else if (v < 0.0f) { return -1.0f; } else { return 1.0f; } } extern float2 __attribute__((overloadable)) normalize(float2 v) { float l = length(v); return l == 0.0f ? v : v / l; } extern float3 __attribute__((overloadable)) normalize(float3 v) { float l = length(v); return l == 0.0f ? v : v / l; } extern float4 __attribute__((overloadable)) normalize(float4 v) { float l = length(v); return l == 0.0f ? v : v / l; } extern float __attribute__((overloadable)) half_sqrt(float v) { return sqrt(v); } FN_FUNC_FN(half_sqrt) extern float __attribute__((overloadable)) fast_length(float v) { return fabs(v); } extern float __attribute__((overloadable)) fast_length(float2 v) { return half_sqrt(v.x*v.x + v.y*v.y); } extern float __attribute__((overloadable)) fast_length(float3 v) { return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z); } extern float __attribute__((overloadable)) fast_length(float4 v) { return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); } extern float __attribute__((overloadable)) fast_distance(float lhs, float rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) fast_distance(float2 lhs, float2 rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) fast_distance(float3 lhs, float3 rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) fast_distance(float4 lhs, float4 rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) half_rsqrt(float); /* For the normalization functions, vectors of length 0 should simply be * returned (i.e. all the components of that vector are 0). */ extern float __attribute__((overloadable)) fast_normalize(float v) { if (v == 0.0f) { return 0.0f; } else if (v < 0.0f) { return -1.0f; } else { return 1.0f; } } // If the length is 0, then rlength should be NaN. extern float2 __attribute__((overloadable)) fast_normalize(float2 v) { float rlength = half_rsqrt(v.x*v.x + v.y*v.y); return (rlength == rlength) ? v * rlength : v; } extern float3 __attribute__((overloadable)) fast_normalize(float3 v) { float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z); return (rlength == rlength) ? v * rlength : v; } extern float4 __attribute__((overloadable)) fast_normalize(float4 v) { float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); return (rlength == rlength) ? v * rlength : v; } extern float __attribute__((overloadable)) half_recip(float v) { return 1.f / v; } /* extern float __attribute__((overloadable)) approx_atan(float x) { if (x == 0.f) return 0.f; if (x < 0.f) return -1.f * approx_atan(-1.f * x); if (x > 1.f) return M_PI_2 - approx_atan(approx_recip(x)); return x * approx_recip(1.f + 0.28f * x*x); } FN_FUNC_FN(approx_atan) */ typedef union { float fv; int32_t iv; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.fv = (d); \ (i) = gf_u.iv; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.iv = (i); \ (d) = sf_u.fv; \ } while (0) // Valid -125 to 125 extern float __attribute__((overloadable)) native_exp2(float v) { int32_t iv = (int)v; int32_t x = iv + (iv >> 31); // ~floor(v) float r = (v - x); float fo; SET_FLOAT_WORD(fo, (x + 127) << 23); r *= 0.694f; // ~ log(e) / log(2) float r2 = r*r; float adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); return fo * adj; } extern float2 __attribute__((overloadable)) native_exp2(float2 v) { int2 iv = convert_int2(v); int2 x = iv + (iv >> (int2)31);//floor(v); float2 r = (v - convert_float2(x)); x += 127; float2 fo = (float2)(x << (int2)23); r *= 0.694f; // ~ log(e) / log(2) float2 r2 = r*r; float2 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); return fo * adj; } extern float4 __attribute__((overloadable)) native_exp2(float4 v) { int4 iv = convert_int4(v); int4 x = iv + (iv >> (int4)31);//floor(v); float4 r = (v - convert_float4(x)); x += 127; float4 fo = (float4)(x << (int4)23); r *= 0.694f; // ~ log(e) / log(2) float4 r2 = r*r; float4 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); return fo * adj; } extern float3 __attribute__((overloadable)) native_exp2(float3 v) { float4 t = 1.f; t.xyz = v; return native_exp2(t).xyz; } extern float __attribute__((overloadable)) native_exp(float v) { return native_exp2(v * 1.442695041f); } extern float2 __attribute__((overloadable)) native_exp(float2 v) { return native_exp2(v * 1.442695041f); } extern float3 __attribute__((overloadable)) native_exp(float3 v) { return native_exp2(v * 1.442695041f); } extern float4 __attribute__((overloadable)) native_exp(float4 v) { return native_exp2(v * 1.442695041f); } extern float __attribute__((overloadable)) native_exp10(float v) { return native_exp2(v * 3.321928095f); } extern float2 __attribute__((overloadable)) native_exp10(float2 v) { return native_exp2(v * 3.321928095f); } extern float3 __attribute__((overloadable)) native_exp10(float3 v) { return native_exp2(v * 3.321928095f); } extern float4 __attribute__((overloadable)) native_exp10(float4 v) { return native_exp2(v * 3.321928095f); } extern float __attribute__((overloadable)) native_log2(float v) { int32_t ibits; GET_FLOAT_WORD(ibits, v); int32_t e = (ibits >> 23) & 0xff; ibits &= 0x7fffff; ibits |= 127 << 23; float ir; SET_FLOAT_WORD(ir, ibits); ir -= 1.5f; float ir2 = ir*ir; float adj2 = (0.405465108f / 0.693147181f) + ((0.666666667f / 0.693147181f) * ir) - ((0.222222222f / 0.693147181f) * ir2) + ((0.098765432f / 0.693147181f) * ir*ir2) - ((0.049382716f / 0.693147181f) * ir2*ir2) + ((0.026337449f / 0.693147181f) * ir*ir2*ir2) - ((0.014631916f / 0.693147181f) * ir2*ir2*ir2); return (float)(e - 127) + adj2; } extern float2 __attribute__((overloadable)) native_log2(float2 v) { float2 v2 = {native_log2(v.x), native_log2(v.y)}; return v2; } extern float3 __attribute__((overloadable)) native_log2(float3 v) { float3 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z)}; return v2; } extern float4 __attribute__((overloadable)) native_log2(float4 v) { float4 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z), native_log2(v.w)}; return v2; } extern float __attribute__((overloadable)) native_log(float v) { return native_log2(v) * (1.f / 1.442695041f); } extern float2 __attribute__((overloadable)) native_log(float2 v) { return native_log2(v) * (1.f / 1.442695041f); } extern float3 __attribute__((overloadable)) native_log(float3 v) { return native_log2(v) * (1.f / 1.442695041f); } extern float4 __attribute__((overloadable)) native_log(float4 v) { return native_log2(v) * (1.f / 1.442695041f); } extern float __attribute__((overloadable)) native_log10(float v) { return native_log2(v) * (1.f / 3.321928095f); } extern float2 __attribute__((overloadable)) native_log10(float2 v) { return native_log2(v) * (1.f / 3.321928095f); } extern float3 __attribute__((overloadable)) native_log10(float3 v) { return native_log2(v) * (1.f / 3.321928095f); } extern float4 __attribute__((overloadable)) native_log10(float4 v) { return native_log2(v) * (1.f / 3.321928095f); } extern float __attribute__((overloadable)) native_powr(float v, float y) { float v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern float2 __attribute__((overloadable)) native_powr(float2 v, float2 y) { float2 v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern float3 __attribute__((overloadable)) native_powr(float3 v, float3 y) { float3 v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern float4 __attribute__((overloadable)) native_powr(float4 v, float4 y) { float4 v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern double __attribute__((overloadable)) min(double v1, double v2) { return v1 < v2 ? v1 : v2; } extern double2 __attribute__((overloadable)) min(double2 v1, double2 v2) { double2 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; return r; } extern double3 __attribute__((overloadable)) min(double3 v1, double3 v2) { double3 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; return r; } extern double4 __attribute__((overloadable)) min(double4 v1, double4 v2) { double4 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; r.w = v1.w < v2.w ? v1.w : v2.w; return r; } extern long __attribute__((overloadable)) min(long v1, long v2) { return v1 < v2 ? v1 : v2; } extern long2 __attribute__((overloadable)) min(long2 v1, long2 v2) { long2 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; return r; } extern long3 __attribute__((overloadable)) min(long3 v1, long3 v2) { long3 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; return r; } extern long4 __attribute__((overloadable)) min(long4 v1, long4 v2) { long4 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; r.w = v1.w < v2.w ? v1.w : v2.w; return r; } extern ulong __attribute__((overloadable)) min(ulong v1, ulong v2) { return v1 < v2 ? v1 : v2; } extern ulong2 __attribute__((overloadable)) min(ulong2 v1, ulong2 v2) { ulong2 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; return r; } extern ulong3 __attribute__((overloadable)) min(ulong3 v1, ulong3 v2) { ulong3 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; return r; } extern ulong4 __attribute__((overloadable)) min(ulong4 v1, ulong4 v2) { ulong4 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; r.w = v1.w < v2.w ? v1.w : v2.w; return r; } extern double __attribute__((overloadable)) max(double v1, double v2) { return v1 > v2 ? v1 : v2; } extern double2 __attribute__((overloadable)) max(double2 v1, double2 v2) { double2 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; return r; } extern double3 __attribute__((overloadable)) max(double3 v1, double3 v2) { double3 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; return r; } extern double4 __attribute__((overloadable)) max(double4 v1, double4 v2) { double4 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; r.w = v1.w > v2.w ? v1.w : v2.w; return r; } extern long __attribute__((overloadable)) max(long v1, long v2) { return v1 > v2 ? v1 : v2; } extern long2 __attribute__((overloadable)) max(long2 v1, long2 v2) { long2 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; return r; } extern long3 __attribute__((overloadable)) max(long3 v1, long3 v2) { long3 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; return r; } extern long4 __attribute__((overloadable)) max(long4 v1, long4 v2) { long4 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; r.w = v1.w > v2.w ? v1.w : v2.w; return r; } extern ulong __attribute__((overloadable)) max(ulong v1, ulong v2) { return v1 > v2 ? v1 : v2; } extern ulong2 __attribute__((overloadable)) max(ulong2 v1, ulong2 v2) { ulong2 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; return r; } extern ulong3 __attribute__((overloadable)) max(ulong3 v1, ulong3 v2) { ulong3 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; return r; } extern ulong4 __attribute__((overloadable)) max(ulong4 v1, ulong4 v2) { ulong4 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; r.w = v1.w > v2.w ? v1.w : v2.w; return r; } #define THUNK_NATIVE_F(fn) \ float __attribute__((overloadable)) native_##fn(float v) { return fn(v);} \ float2 __attribute__((overloadable)) native_##fn(float2 v) { return fn(v);} \ float3 __attribute__((overloadable)) native_##fn(float3 v) { return fn(v);} \ float4 __attribute__((overloadable)) native_##fn(float4 v) { return fn(v);} #define THUNK_NATIVE_F_F(fn) \ float __attribute__((overloadable)) native_##fn(float v1, float v2) { return fn(v1, v2);} \ float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 v2) { return fn(v1, v2);} \ float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 v2) { return fn(v1, v2);} \ float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 v2) { return fn(v1, v2);} #define THUNK_NATIVE_F_FP(fn) \ float __attribute__((overloadable)) native_##fn(float v1, float *v2) { return fn(v1, v2);} \ float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 *v2) { return fn(v1, v2);} \ float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 *v2) { return fn(v1, v2);} \ float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 *v2) { return fn(v1, v2);} #define THUNK_NATIVE_F_I(fn) \ float __attribute__((overloadable)) native_##fn(float v1, int v2) { return fn(v1, v2);} \ float2 __attribute__((overloadable)) native_##fn(float2 v1, int2 v2) { return fn(v1, v2);} \ float3 __attribute__((overloadable)) native_##fn(float3 v1, int3 v2) { return fn(v1, v2);} \ float4 __attribute__((overloadable)) native_##fn(float4 v1, int4 v2) { return fn(v1, v2);} THUNK_NATIVE_F(acos) THUNK_NATIVE_F(acosh) THUNK_NATIVE_F(acospi) THUNK_NATIVE_F(asin) THUNK_NATIVE_F(asinh) THUNK_NATIVE_F(asinpi) THUNK_NATIVE_F(atan) THUNK_NATIVE_F_F(atan2) THUNK_NATIVE_F(atanh) THUNK_NATIVE_F(atanpi) THUNK_NATIVE_F_F(atan2pi) THUNK_NATIVE_F(cbrt) THUNK_NATIVE_F(cos) THUNK_NATIVE_F(cosh) THUNK_NATIVE_F(cospi) THUNK_NATIVE_F(expm1) THUNK_NATIVE_F_F(hypot) THUNK_NATIVE_F(log1p) THUNK_NATIVE_F_I(rootn) THUNK_NATIVE_F(rsqrt) THUNK_NATIVE_F(sqrt) THUNK_NATIVE_F(sin) THUNK_NATIVE_F_FP(sincos) THUNK_NATIVE_F(sinh) THUNK_NATIVE_F(sinpi) THUNK_NATIVE_F(tan) THUNK_NATIVE_F(tanh) THUNK_NATIVE_F(tanpi) #undef THUNK_NATIVE_F #undef THUNK_NATIVE_F_F #undef THUNK_NATIVE_F_I #undef THUNK_NATIVE_F_FP float __attribute__((overloadable)) native_normalize(float v) { return fast_normalize(v);} float2 __attribute__((overloadable)) native_normalize(float2 v) { return fast_normalize(v);} float3 __attribute__((overloadable)) native_normalize(float3 v) { return fast_normalize(v);} float4 __attribute__((overloadable)) native_normalize(float4 v) { return fast_normalize(v);} float __attribute__((overloadable)) native_distance(float v1, float v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_distance(float2 v1, float2 v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_distance(float3 v1, float3 v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_distance(float4 v1, float4 v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_length(float v) { return fast_length(v);} float __attribute__((overloadable)) native_length(float2 v) { return fast_length(v);} float __attribute__((overloadable)) native_length(float3 v) { return fast_length(v);} float __attribute__((overloadable)) native_length(float4 v) { return fast_length(v);} float __attribute__((overloadable)) native_divide(float v1, float v2) { return v1 / v2;} float2 __attribute__((overloadable)) native_divide(float2 v1, float2 v2) { return v1 / v2;} float3 __attribute__((overloadable)) native_divide(float3 v1, float3 v2) { return v1 / v2;} float4 __attribute__((overloadable)) native_divide(float4 v1, float4 v2) { return v1 / v2;} float __attribute__((overloadable)) native_recip(float v) { return 1.f / v;} float2 __attribute__((overloadable)) native_recip(float2 v) { return ((float2)1.f) / v;} float3 __attribute__((overloadable)) native_recip(float3 v) { return ((float3)1.f) / v;} float4 __attribute__((overloadable)) native_recip(float4 v) { return ((float4)1.f) / v;} #undef FN_FUNC_FN #undef IN_FUNC_FN #undef FN_FUNC_FN_FN #undef FN_FUNC_FN_F #undef FN_FUNC_FN_IN #undef FN_FUNC_FN_I #undef FN_FUNC_FN_PFN #undef FN_FUNC_FN_PIN #undef FN_FUNC_FN_FN_FN #undef FN_FUNC_FN_FN_PIN #undef XN_FUNC_YN #undef UIN_FUNC_IN #undef IN_FUNC_IN #undef XN_FUNC_XN_XN_BODY #undef IN_FUNC_IN_IN_BODY