/* * Copyright (C) 2011-2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <GLES2/gl2.h> #include <GLES2/gl2ext.h> #include <rs_hal.h> #include <rsContext.h> #include <rsProgram.h> #include "rsdCore.h" #include "rsdAllocation.h" #include "rsdShader.h" #include "rsdShaderCache.h" using namespace android; using namespace android::renderscript; RsdShader::RsdShader(const Program *p, uint32_t type, const char * shaderText, size_t shaderLength, const char** textureNames, size_t textureNamesCount, const size_t *textureNamesLength) { mUserShader.replace(0, shaderLength, shaderText); mRSProgram = p; mType = type; initMemberVars(); initAttribAndUniformArray(); init(textureNames, textureNamesCount, textureNamesLength); for(size_t i=0; i < textureNamesCount; i++) { mTextureNames.push(String8(textureNames[i], textureNamesLength[i])); } } RsdShader::~RsdShader() { for (uint32_t i = 0; i < mStateBasedShaders.size(); i ++) { StateBasedKey *state = mStateBasedShaders.itemAt(i); if (state->mShaderID) { glDeleteShader(state->mShaderID); } delete state; } delete[] mAttribNames; delete[] mUniformNames; delete[] mUniformArraySizes; } void RsdShader::initMemberVars() { mDirty = true; mAttribCount = 0; mUniformCount = 0; mAttribNames = nullptr; mUniformNames = nullptr; mUniformArraySizes = nullptr; mCurrentState = nullptr; mIsValid = false; } RsdShader::StateBasedKey *RsdShader::getExistingState() { RsdShader::StateBasedKey *returnKey = nullptr; for (uint32_t i = 0; i < mStateBasedShaders.size(); i ++) { returnKey = mStateBasedShaders.itemAt(i); for (uint32_t ct = 0; ct < mRSProgram->mHal.state.texturesCount; ct ++) { uint32_t texType = 0; if (mRSProgram->mHal.state.textureTargets[ct] == RS_TEXTURE_2D) { Allocation *a = mRSProgram->mHal.state.textures[ct]; if (a && a->mHal.state.surfaceTextureID) { texType = GL_TEXTURE_EXTERNAL_OES; } else { texType = GL_TEXTURE_2D; } } else { texType = GL_TEXTURE_CUBE_MAP; } if (texType != returnKey->mTextureTargets[ct]) { returnKey = nullptr; break; } } } return returnKey; } uint32_t RsdShader::getStateBasedShaderID(const Context *rsc) { StateBasedKey *state = getExistingState(); if (state != nullptr) { mCurrentState = state; return mCurrentState->mShaderID; } // We have not created a shader for this particular state yet state = new StateBasedKey(mTextureCount); mCurrentState = state; mStateBasedShaders.add(state); createShader(); loadShader(rsc); return mCurrentState->mShaderID; } void RsdShader::init(const char** textureNames, size_t textureNamesCount, const size_t *textureNamesLength) { uint32_t attribCount = 0; uint32_t uniformCount = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { initAddUserElement(mRSProgram->mHal.state.inputElements[ct], mAttribNames, nullptr, &attribCount, RS_SHADER_ATTR); } for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { initAddUserElement(mRSProgram->mHal.state.constantTypes[ct]->getElement(), mUniformNames, mUniformArraySizes, &uniformCount, RS_SHADER_UNI); } mTextureUniformIndexStart = uniformCount; for (uint32_t ct=0; ct < mRSProgram->mHal.state.texturesCount; ct++) { mUniformNames[uniformCount] = "UNI_"; mUniformNames[uniformCount].append(textureNames[ct], textureNamesLength[ct]); mUniformArraySizes[uniformCount] = 1; uniformCount++; } } std::string RsdShader::getGLSLInputString() const { std::string s; for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { const Element *e = mRSProgram->mHal.state.inputElements[ct]; for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) { const Element *f = e->mHal.state.fields[field]; // Cannot be complex rsAssert(!f->mHal.state.fieldsCount); switch (f->mHal.state.vectorSize) { case 1: s.append("attribute float ATTRIB_"); break; case 2: s.append("attribute vec2 ATTRIB_"); break; case 3: s.append("attribute vec3 ATTRIB_"); break; case 4: s.append("attribute vec4 ATTRIB_"); break; default: rsAssert(0); } s.append(e->mHal.state.fieldNames[field]); s.append(";\n"); } } return s; } void RsdShader::appendAttributes() { for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { const Element *e = mRSProgram->mHal.state.inputElements[ct]; for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) { const Element *f = e->mHal.state.fields[field]; const char *fn = e->mHal.state.fieldNames[field]; // Cannot be complex rsAssert(!f->mHal.state.fieldsCount); switch (f->mHal.state.vectorSize) { case 1: mShader.append("attribute float ATTRIB_"); break; case 2: mShader.append("attribute vec2 ATTRIB_"); break; case 3: mShader.append("attribute vec3 ATTRIB_"); break; case 4: mShader.append("attribute vec4 ATTRIB_"); break; default: rsAssert(0); } mShader.append(fn); mShader.append(";\n"); } } } void RsdShader::appendTextures() { // TODO: this does not yet handle cases where the texture changes between IO // input and local bool appendUsing = true; for (uint32_t ct = 0; ct < mRSProgram->mHal.state.texturesCount; ct ++) { if (mRSProgram->mHal.state.textureTargets[ct] == RS_TEXTURE_2D) { Allocation *a = mRSProgram->mHal.state.textures[ct]; if (a && a->mHal.state.surfaceTextureID) { if(appendUsing) { mShader.append("#extension GL_OES_EGL_image_external : require\n"); appendUsing = false; } mShader.append("uniform samplerExternalOES UNI_"); mCurrentState->mTextureTargets[ct] = GL_TEXTURE_EXTERNAL_OES; } else { mShader.append("uniform sampler2D UNI_"); mCurrentState->mTextureTargets[ct] = GL_TEXTURE_2D; } } else { mShader.append("uniform samplerCube UNI_"); mCurrentState->mTextureTargets[ct] = GL_TEXTURE_CUBE_MAP; } mShader.append(mTextureNames[ct]); mShader.append(";\n"); } } bool RsdShader::createShader() { mShader.clear(); if (mType == GL_FRAGMENT_SHADER) { mShader.append("precision mediump float;\n"); } appendUserConstants(); appendAttributes(); appendTextures(); mShader.append(mUserShader); return true; } bool RsdShader::loadShader(const Context *rsc) { mCurrentState->mShaderID = glCreateShader(mType); rsAssert(mCurrentState->mShaderID); if(!mShader.length()) { createShader(); } if (rsc->props.mLogShaders) { ALOGV("Loading shader type %x, ID %i", mType, mCurrentState->mShaderID); ALOGV("%s", mShader.c_str()); } if (mCurrentState->mShaderID) { const char * ss = mShader.c_str(); RSD_CALL_GL(glShaderSource, mCurrentState->mShaderID, 1, &ss, nullptr); RSD_CALL_GL(glCompileShader, mCurrentState->mShaderID); GLint compiled = 0; RSD_CALL_GL(glGetShaderiv, mCurrentState->mShaderID, GL_COMPILE_STATUS, &compiled); if (!compiled) { GLint infoLen = 0; RSD_CALL_GL(glGetShaderiv, mCurrentState->mShaderID, GL_INFO_LOG_LENGTH, &infoLen); if (infoLen) { char* buf = (char*) malloc(infoLen); if (buf) { RSD_CALL_GL(glGetShaderInfoLog, mCurrentState->mShaderID, infoLen, nullptr, buf); rsc->setError(RS_ERROR_FATAL_PROGRAM_LINK, buf); free(buf); } RSD_CALL_GL(glDeleteShader, mCurrentState->mShaderID); mCurrentState->mShaderID = 0; return false; } } } if (rsc->props.mLogShaders) { ALOGV("--Shader load result %x ", glGetError()); } mIsValid = true; return true; } void RsdShader::appendUserConstants() { for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement(); for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) { const Element *f = e->mHal.state.fields[field]; const char *fn = e->mHal.state.fieldNames[field]; // Cannot be complex rsAssert(!f->mHal.state.fieldsCount); if (f->mHal.state.dataType == RS_TYPE_MATRIX_4X4) { mShader.append("uniform mat4 UNI_"); } else if (f->mHal.state.dataType == RS_TYPE_MATRIX_3X3) { mShader.append("uniform mat3 UNI_"); } else if (f->mHal.state.dataType == RS_TYPE_MATRIX_2X2) { mShader.append("uniform mat2 UNI_"); } else { switch (f->mHal.state.vectorSize) { case 1: mShader.append("uniform float UNI_"); break; case 2: mShader.append("uniform vec2 UNI_"); break; case 3: mShader.append("uniform vec3 UNI_"); break; case 4: mShader.append("uniform vec4 UNI_"); break; default: rsAssert(0); } } mShader.append(fn); if (e->mHal.state.fieldArraySizes[field] > 1) { mShader += "["; mShader += std::to_string(e->mHal.state.fieldArraySizes[field]); mShader += "]"; } mShader.append(";\n"); } } } void RsdShader::logUniform(const Element *field, const float *fd, uint32_t arraySize ) { RsDataType dataType = field->mHal.state.dataType; uint32_t elementSize = field->mHal.state.elementSizeBytes / sizeof(float); for (uint32_t i = 0; i < arraySize; i ++) { if (arraySize > 1) { ALOGV("Array Element [%u]", i); } if (dataType == RS_TYPE_MATRIX_4X4) { ALOGV("Matrix4x4"); ALOGV("{%f, %f, %f, %f", fd[0], fd[4], fd[8], fd[12]); ALOGV(" %f, %f, %f, %f", fd[1], fd[5], fd[9], fd[13]); ALOGV(" %f, %f, %f, %f", fd[2], fd[6], fd[10], fd[14]); ALOGV(" %f, %f, %f, %f}", fd[3], fd[7], fd[11], fd[15]); } else if (dataType == RS_TYPE_MATRIX_3X3) { ALOGV("Matrix3x3"); ALOGV("{%f, %f, %f", fd[0], fd[3], fd[6]); ALOGV(" %f, %f, %f", fd[1], fd[4], fd[7]); ALOGV(" %f, %f, %f}", fd[2], fd[5], fd[8]); } else if (dataType == RS_TYPE_MATRIX_2X2) { ALOGV("Matrix2x2"); ALOGV("{%f, %f", fd[0], fd[2]); ALOGV(" %f, %f}", fd[1], fd[3]); } else { switch (field->mHal.state.vectorSize) { case 1: ALOGV("Uniform 1 = %f", fd[0]); break; case 2: ALOGV("Uniform 2 = %f %f", fd[0], fd[1]); break; case 3: ALOGV("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]); break; case 4: ALOGV("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]); break; default: rsAssert(0); } } ALOGV("Element size %u data=%p", elementSize, fd); fd += elementSize; ALOGV("New data=%p", fd); } } void RsdShader::setUniform(const Context *rsc, const Element *field, const float *fd, int32_t slot, uint32_t arraySize ) { RsDataType dataType = field->mHal.state.dataType; if (dataType == RS_TYPE_MATRIX_4X4) { RSD_CALL_GL(glUniformMatrix4fv, slot, arraySize, GL_FALSE, fd); } else if (dataType == RS_TYPE_MATRIX_3X3) { RSD_CALL_GL(glUniformMatrix3fv, slot, arraySize, GL_FALSE, fd); } else if (dataType == RS_TYPE_MATRIX_2X2) { RSD_CALL_GL(glUniformMatrix2fv, slot, arraySize, GL_FALSE, fd); } else { switch (field->mHal.state.vectorSize) { case 1: RSD_CALL_GL(glUniform1fv, slot, arraySize, fd); break; case 2: RSD_CALL_GL(glUniform2fv, slot, arraySize, fd); break; case 3: RSD_CALL_GL(glUniform3fv, slot, arraySize, fd); break; case 4: RSD_CALL_GL(glUniform4fv, slot, arraySize, fd); break; default: rsAssert(0); } } } void RsdShader::setupSampler(const Context *rsc, const Sampler *s, const Allocation *tex) { RsdHal *dc = (RsdHal *)rsc->mHal.drv; GLenum trans[] = { GL_NEAREST, //RS_SAMPLER_NEAREST, GL_LINEAR, //RS_SAMPLER_LINEAR, GL_LINEAR_MIPMAP_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR, GL_REPEAT, //RS_SAMPLER_WRAP, GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP GL_LINEAR_MIPMAP_NEAREST, //RS_SAMPLER_LINEAR_MIP_NEAREST }; GLenum transNP[] = { GL_NEAREST, //RS_SAMPLER_NEAREST, GL_LINEAR, //RS_SAMPLER_LINEAR, GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR, GL_CLAMP_TO_EDGE, //RS_SAMPLER_WRAP, GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_NEAREST, }; // This tells us the correct texture type DrvAllocation *drvTex = (DrvAllocation *)tex->mHal.drv; const GLenum target = drvTex->glTarget; if (!target) { // this can happen if the user set the wrong allocation flags. rsc->setError(RS_ERROR_BAD_VALUE, "Allocation not compatible with sampler"); return; } if (!dc->gl.gl.OES_texture_npot && tex->getType()->getIsNp2()) { if (tex->getHasGraphicsMipmaps() && (dc->gl.gl.NV_texture_npot_2D_mipmap || dc->gl.gl.IMG_texture_npot)) { if (dc->gl.gl.NV_texture_npot_2D_mipmap) { RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER, trans[s->mHal.state.minFilter]); } else { switch (trans[s->mHal.state.minFilter]) { case GL_LINEAR_MIPMAP_LINEAR: RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); break; default: RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER, trans[s->mHal.state.minFilter]); break; } } } else { RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER, transNP[s->mHal.state.minFilter]); } RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MAG_FILTER, transNP[s->mHal.state.magFilter]); RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_S, transNP[s->mHal.state.wrapS]); RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_T, transNP[s->mHal.state.wrapT]); } else { if (tex->getHasGraphicsMipmaps()) { RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER, trans[s->mHal.state.minFilter]); } else { RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER, transNP[s->mHal.state.minFilter]); } RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MAG_FILTER, trans[s->mHal.state.magFilter]); RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_S, trans[s->mHal.state.wrapS]); RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_T, trans[s->mHal.state.wrapT]); } float anisoValue = rsMin(dc->gl.gl.EXT_texture_max_aniso, s->mHal.state.aniso); if (dc->gl.gl.EXT_texture_max_aniso > 1.0f) { RSD_CALL_GL(glTexParameterf, target, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisoValue); } rsdGLCheckError(rsc, "Sampler::setup tex env"); } void RsdShader::setupTextures(const Context *rsc, RsdShaderCache *sc) { if (mRSProgram->mHal.state.texturesCount == 0) { return; } RsdHal *dc = (RsdHal *)rsc->mHal.drv; uint32_t numTexturesToBind = mRSProgram->mHal.state.texturesCount; uint32_t numTexturesAvailable = dc->gl.gl.maxFragmentTextureImageUnits; if (numTexturesToBind >= numTexturesAvailable) { ALOGE("Attempting to bind %u textures on shader id %p, but only %u are available", mRSProgram->mHal.state.texturesCount, this, numTexturesAvailable); rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind more textuers than available"); numTexturesToBind = numTexturesAvailable; } for (uint32_t ct=0; ct < numTexturesToBind; ct++) { RSD_CALL_GL(glActiveTexture, GL_TEXTURE0 + ct); RSD_CALL_GL(glUniform1i, sc->fragUniformSlot(mTextureUniformIndexStart + ct), ct); if (!mRSProgram->mHal.state.textures[ct]) { // if nothing is bound, reset to default GL texture RSD_CALL_GL(glBindTexture, mCurrentState->mTextureTargets[ct], 0); continue; } DrvAllocation *drvTex = (DrvAllocation *)mRSProgram->mHal.state.textures[ct]->mHal.drv; if (mCurrentState->mTextureTargets[ct] != GL_TEXTURE_2D && mCurrentState->mTextureTargets[ct] != GL_TEXTURE_CUBE_MAP && mCurrentState->mTextureTargets[ct] != GL_TEXTURE_EXTERNAL_OES) { ALOGE("Attempting to bind unknown texture to shader id %p, texture unit %u", this, ct); rsc->setError(RS_ERROR_BAD_SHADER, "Non-texture allocation bound to a shader"); } RSD_CALL_GL(glBindTexture, mCurrentState->mTextureTargets[ct], drvTex->textureID); rsdGLCheckError(rsc, "ProgramFragment::setup tex bind"); if (mRSProgram->mHal.state.samplers[ct]) { setupSampler(rsc, mRSProgram->mHal.state.samplers[ct], mRSProgram->mHal.state.textures[ct]); } else { RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct], GL_TEXTURE_MIN_FILTER, GL_NEAREST); RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct], GL_TEXTURE_MAG_FILTER, GL_NEAREST); RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct], GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct], GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); rsdGLCheckError(rsc, "ProgramFragment::setup basic tex env"); } rsdGLCheckError(rsc, "ProgramFragment::setup uniforms"); } RSD_CALL_GL(glActiveTexture, GL_TEXTURE0); mDirty = false; rsdGLCheckError(rsc, "ProgramFragment::setup"); } void RsdShader::setupUserConstants(const Context *rsc, RsdShaderCache *sc, bool isFragment) { uint32_t uidx = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { Allocation *alloc = mRSProgram->mHal.state.constants[ct]; if (!alloc) { ALOGE("Attempting to set constants on shader id %p, but alloc at slot %u is not set", this, ct); rsc->setError(RS_ERROR_BAD_SHADER, "No constant allocation bound"); continue; } const uint8_t *data = static_cast<const uint8_t *>(alloc->mHal.drvState.lod[0].mallocPtr); const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement(); for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) { const Element *f = e->mHal.state.fields[field]; const char *fieldName = e->mHal.state.fieldNames[field]; uint32_t offset = e->mHal.state.fieldOffsetBytes[field]; const float *fd = reinterpret_cast<const float *>(&data[offset]); int32_t slot = -1; uint32_t arraySize = 1; if (!isFragment) { slot = sc->vtxUniformSlot(uidx); arraySize = sc->vtxUniformSize(uidx); } else { slot = sc->fragUniformSlot(uidx); arraySize = sc->fragUniformSize(uidx); } if (rsc->props.mLogShadersUniforms) { ALOGV("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s", slot, offset, ct, field, uidx, fieldName); } uidx ++; if (slot < 0) { continue; } if (rsc->props.mLogShadersUniforms) { logUniform(f, fd, arraySize); } setUniform(rsc, f, fd, slot, arraySize); } } } void RsdShader::setup(const android::renderscript::Context *rsc, RsdShaderCache *sc) { setupUserConstants(rsc, sc, mType == GL_FRAGMENT_SHADER); setupTextures(rsc, sc); } void RsdShader::initAttribAndUniformArray() { mAttribCount = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { const Element *elem = mRSProgram->mHal.state.inputElements[ct]; mAttribCount += elem->mHal.state.fieldsCount; } mUniformCount = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { const Element *elem = mRSProgram->mHal.state.constantTypes[ct]->getElement(); mUniformCount += elem->mHal.state.fieldsCount; } mUniformCount += mRSProgram->mHal.state.texturesCount; if (mAttribCount) { mAttribNames = new std::string[mAttribCount]; } if (mUniformCount) { mUniformNames = new std::string[mUniformCount]; mUniformArraySizes = new uint32_t[mUniformCount]; } mTextureCount = mRSProgram->mHal.state.texturesCount; } void RsdShader::initAddUserElement(const Element *e, std::string *names, uint32_t *arrayLengths, uint32_t *count, const char *prefix) { rsAssert(e->mHal.state.fieldsCount); for (uint32_t ct=0; ct < e->mHal.state.fieldsCount; ct++) { const Element *ce = e->mHal.state.fields[ct]; if (ce->mHal.state.fieldsCount) { initAddUserElement(ce, names, arrayLengths, count, prefix); } else { std::string tmp(prefix); tmp.append(e->mHal.state.fieldNames[ct]); names[*count] = tmp; if (arrayLengths) { arrayLengths[*count] = e->mHal.state.fieldArraySizes[ct]; } (*count)++; } } }