/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsCpuCore.h" #include "rsCpuScript.h" #include "rsCpuScriptGroup.h" #include "rsCpuScriptGroup2.h" #include <malloc.h> #include "rsContext.h" #include <sys/types.h> #include <sys/resource.h> #include <sched.h> #include <sys/syscall.h> #include <stdio.h> #include <string.h> #include <unistd.h> #if !defined(RS_SERVER) && !defined(RS_COMPATIBILITY_LIB) #include <cutils/properties.h> #include "utils/StopWatch.h" #endif #ifdef RS_SERVER // Android exposes gettid(), standard Linux does not static pid_t gettid() { return syscall(SYS_gettid); } #endif using namespace android; using namespace android::renderscript; typedef void (*outer_foreach_t)( const RsExpandKernelDriverInfo *, uint32_t x1, uint32_t x2, uint32_t outstep); static pthread_key_t gThreadTLSKey = 0; static uint32_t gThreadTLSKeyCount = 0; static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER; bool android::renderscript::gArchUseSIMD = false; RsdCpuReference::~RsdCpuReference() { } RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major, uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn , bcc::RSLinkRuntimeCallback pLinkRuntimeCallback, RSSelectRTCallback pSelectRTCallback, const char *pBccPluginName ) { RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc); if (!cpu) { return nullptr; } if (!cpu->init(version_major, version_minor, lfn, slfn)) { delete cpu; return nullptr; } cpu->setLinkRuntimeCallback(pLinkRuntimeCallback); cpu->setSelectRTCallback(pSelectRTCallback); if (pBccPluginName) { cpu->setBccPluginName(pBccPluginName); } return cpu; } Context * RsdCpuReference::getTlsContext() { ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); return tls->mContext; } const Script * RsdCpuReference::getTlsScript() { ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); return tls->mScript; } pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; } //////////////////////////////////////////////////////////// /// RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) { mRSC = rsc; version_major = 0; version_minor = 0; mInForEach = false; memset(&mWorkers, 0, sizeof(mWorkers)); memset(&mTlsStruct, 0, sizeof(mTlsStruct)); mExit = false; mLinkRuntimeCallback = nullptr; mSelectRTCallback = nullptr; mSetupCompilerCallback = nullptr; mEmbedGlobalInfo = true; mEmbedGlobalInfoSkipConstant = true; } void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) { RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc; uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1); //ALOGV("RS helperThread starting %p idx=%i", dc, idx); dc->mWorkers.mLaunchSignals[idx].init(); dc->mWorkers.mNativeThreadId[idx] = gettid(); memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct)); int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct); if (status) { ALOGE("pthread_setspecific %i", status); } #if 0 typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t; cpu_set_t cpuset; memset(&cpuset, 0, sizeof(cpuset)); cpuset.bits[idx / 64] |= 1ULL << (idx % 64); int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx], sizeof(cpuset), &cpuset); ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret)); #endif while (!dc->mExit) { dc->mWorkers.mLaunchSignals[idx].wait(); if (dc->mWorkers.mLaunchCallback) { // idx +1 is used because the calling thread is always worker 0. dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1); } __sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1); dc->mWorkers.mCompleteSignal.set(); } //ALOGV("RS helperThread exited %p idx=%i", dc, idx); return nullptr; } void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) { mWorkers.mLaunchData = data; mWorkers.mLaunchCallback = cbk; // fast path for very small launches MTLaunchStruct *mtls = (MTLaunchStruct *)data; if (mtls && mtls->fep.dim.y <= 1 && mtls->end.x <= mtls->start.x + mtls->mSliceSize) { if (mWorkers.mLaunchCallback) { mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0); } return; } mWorkers.mRunningCount = mWorkers.mCount; __sync_synchronize(); for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { mWorkers.mLaunchSignals[ct].set(); } // We use the calling thread as one of the workers so we can start without // the delay of the thread wakeup. if (mWorkers.mLaunchCallback) { mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0); } while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) { mWorkers.mCompleteSignal.wait(); } } void RsdCpuReferenceImpl::lockMutex() { pthread_mutex_lock(&gInitMutex); } void RsdCpuReferenceImpl::unlockMutex() { pthread_mutex_unlock(&gInitMutex); } // Determine if the CPU we're running on supports SIMD instructions. static void GetCpuInfo() { // Read the CPU flags from /proc/cpuinfo. FILE *cpuinfo = fopen("/proc/cpuinfo", "r"); if (!cpuinfo) { return; } char cpuinfostr[4096]; // fgets() ends with newline or EOF, need to check the whole // "cpuinfo" file to make sure we can use SIMD or not. while (fgets(cpuinfostr, sizeof(cpuinfostr), cpuinfo)) { #if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS) gArchUseSIMD = strstr(cpuinfostr, " neon") || strstr(cpuinfostr, " asimd"); #elif defined(ARCH_X86_HAVE_SSSE3) gArchUseSIMD = strstr(cpuinfostr, " ssse3"); #endif if (gArchUseSIMD) { break; } } fclose(cpuinfo); } bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn) { mSymLookupFn = lfn; mScriptLookupFn = slfn; lockMutex(); if (!gThreadTLSKeyCount) { int status = pthread_key_create(&gThreadTLSKey, nullptr); if (status) { ALOGE("Failed to init thread tls key."); unlockMutex(); return false; } } gThreadTLSKeyCount++; unlockMutex(); mTlsStruct.mContext = mRSC; mTlsStruct.mScript = nullptr; int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct); if (status) { ALOGE("pthread_setspecific %i", status); } GetCpuInfo(); int cpu = sysconf(_SC_NPROCESSORS_CONF); if(mRSC->props.mDebugMaxThreads) { cpu = mRSC->props.mDebugMaxThreads; } if (cpu < 2) { mWorkers.mCount = 0; return true; } // Subtract one from the cpu count because we also use the command thread as a worker. mWorkers.mCount = (uint32_t)(cpu - 1); ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1); mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t)); mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t)); mWorkers.mLaunchSignals = new Signal[mWorkers.mCount]; mWorkers.mLaunchCallback = nullptr; mWorkers.mCompleteSignal.init(); mWorkers.mRunningCount = mWorkers.mCount; mWorkers.mLaunchCount = 0; __sync_synchronize(); pthread_attr_t threadAttr; status = pthread_attr_init(&threadAttr); if (status) { ALOGE("Failed to init thread attribute."); return false; } for (uint32_t ct=0; ct < mWorkers.mCount; ct++) { status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this); if (status) { mWorkers.mCount = ct; ALOGE("Created fewer than expected number of RS threads."); break; } } while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) { usleep(100); } pthread_attr_destroy(&threadAttr); return true; } void RsdCpuReferenceImpl::setPriority(int32_t priority) { for (uint32_t ct=0; ct < mWorkers.mCount; ct++) { setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority); } } RsdCpuReferenceImpl::~RsdCpuReferenceImpl() { mExit = true; mWorkers.mLaunchData = nullptr; mWorkers.mLaunchCallback = nullptr; mWorkers.mRunningCount = mWorkers.mCount; __sync_synchronize(); for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { mWorkers.mLaunchSignals[ct].set(); } void *res; for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { pthread_join(mWorkers.mThreadId[ct], &res); } rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0); free(mWorkers.mThreadId); free(mWorkers.mNativeThreadId); delete[] mWorkers.mLaunchSignals; // Global structure cleanup. lockMutex(); --gThreadTLSKeyCount; if (!gThreadTLSKeyCount) { pthread_key_delete(gThreadTLSKey); } unlockMutex(); } static inline void FepPtrSetup(const MTLaunchStruct *mtls, RsExpandKernelDriverInfo *fep, uint32_t x, uint32_t y, uint32_t z = 0, uint32_t lod = 0, RsAllocationCubemapFace face = RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, uint32_t a1 = 0, uint32_t a2 = 0, uint32_t a3 = 0, uint32_t a4 = 0) { for (uint32_t i = 0; i < fep->inLen; i++) { fep->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4); } if (mtls->aout[0] != nullptr) { fep->outPtr[0] = (uint8_t *)mtls->aout[0]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4); } } static uint32_t sliceInt(uint32_t *p, uint32_t val, uint32_t start, uint32_t end) { if (start >= end) { *p = start; return val; } uint32_t div = end - start; uint32_t n = val / div; *p = (val - (n * div)) + start; return n; } static bool SelectOuterSlice(const MTLaunchStruct *mtls, RsExpandKernelDriverInfo* fep, uint32_t sliceNum) { uint32_t r = sliceNum; r = sliceInt(&fep->current.z, r, mtls->start.z, mtls->end.z); r = sliceInt(&fep->current.lod, r, mtls->start.lod, mtls->end.lod); r = sliceInt(&fep->current.face, r, mtls->start.face, mtls->end.face); r = sliceInt(&fep->current.array[0], r, mtls->start.array[0], mtls->end.array[0]); r = sliceInt(&fep->current.array[1], r, mtls->start.array[1], mtls->end.array[1]); r = sliceInt(&fep->current.array[2], r, mtls->start.array[2], mtls->end.array[2]); r = sliceInt(&fep->current.array[3], r, mtls->start.array[3], mtls->end.array[3]); return r == 0; } static void walk_general(void *usr, uint32_t idx) { MTLaunchStruct *mtls = (MTLaunchStruct *)usr; RsExpandKernelDriverInfo fep = mtls->fep; fep.lid = idx; outer_foreach_t fn = (outer_foreach_t) mtls->kernel; while(1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); if (!SelectOuterSlice(mtls, &fep, slice)) { return; } for (fep.current.y = mtls->start.y; fep.current.y < mtls->end.y; fep.current.y++) { FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y, fep.current.z, fep.current.lod, (RsAllocationCubemapFace)fep.current.face, fep.current.array[0], fep.current.array[1], fep.current.array[2], fep.current.array[3]); fn(&fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]); } } } static void walk_2d(void *usr, uint32_t idx) { MTLaunchStruct *mtls = (MTLaunchStruct *)usr; RsExpandKernelDriverInfo fep = mtls->fep; fep.lid = idx; outer_foreach_t fn = (outer_foreach_t) mtls->kernel; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize; uint32_t yEnd = yStart + mtls->mSliceSize; yEnd = rsMin(yEnd, mtls->end.y); if (yEnd <= yStart) { return; } for (fep.current.y = yStart; fep.current.y < yEnd; fep.current.y++) { FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y); fn(&fep, mtls->start.x, mtls->end.x, fep.outStride[0]); } } } static void walk_1d(void *usr, uint32_t idx) { MTLaunchStruct *mtls = (MTLaunchStruct *)usr; RsExpandKernelDriverInfo fep = mtls->fep; fep.lid = idx; outer_foreach_t fn = (outer_foreach_t) mtls->kernel; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize; uint32_t xEnd = xStart + mtls->mSliceSize; xEnd = rsMin(xEnd, mtls->end.x); if (xEnd <= xStart) { return; } FepPtrSetup(mtls, &fep, xStart, 0); fn(&fep, xStart, xEnd, fep.outStride[0]); } } void RsdCpuReferenceImpl::launchThreads(const Allocation ** ains, uint32_t inLen, Allocation* aout, const RsScriptCall* sc, MTLaunchStruct* mtls) { //android::StopWatch kernel_time("kernel time"); bool outerDims = (mtls->start.z != mtls->end.z) || (mtls->start.face != mtls->end.face) || (mtls->start.lod != mtls->end.lod) || (mtls->start.array[0] != mtls->end.array[0]) || (mtls->start.array[1] != mtls->end.array[1]) || (mtls->start.array[2] != mtls->end.array[2]) || (mtls->start.array[3] != mtls->end.array[3]); if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInForEach) { const size_t targetByteChunk = 16 * 1024; mInForEach = true; if (outerDims) { // No fancy logic for chunk size mtls->mSliceSize = 1; launchThreads(walk_general, mtls); } else if (mtls->fep.dim.y > 1) { uint32_t s1 = mtls->fep.dim.y / ((mWorkers.mCount + 1) * 4); uint32_t s2 = 0; // This chooses our slice size to rate limit atomic ops to // one per 16k bytes of reads/writes. if ((mtls->aout[0] != nullptr) && mtls->aout[0]->mHal.drvState.lod[0].stride) { s2 = targetByteChunk / mtls->aout[0]->mHal.drvState.lod[0].stride; } else if (mtls->ains[0]) { s2 = targetByteChunk / mtls->ains[0]->mHal.drvState.lod[0].stride; } else { // Launch option only case // Use s1 based only on the dimensions s2 = s1; } mtls->mSliceSize = rsMin(s1, s2); if(mtls->mSliceSize < 1) { mtls->mSliceSize = 1; } launchThreads(walk_2d, mtls); } else { uint32_t s1 = mtls->fep.dim.x / ((mWorkers.mCount + 1) * 4); uint32_t s2 = 0; // This chooses our slice size to rate limit atomic ops to // one per 16k bytes of reads/writes. if ((mtls->aout[0] != nullptr) && mtls->aout[0]->getType()->getElementSizeBytes()) { s2 = targetByteChunk / mtls->aout[0]->getType()->getElementSizeBytes(); } else if (mtls->ains[0]) { s2 = targetByteChunk / mtls->ains[0]->getType()->getElementSizeBytes(); } else { // Launch option only case // Use s1 based only on the dimensions s2 = s1; } mtls->mSliceSize = rsMin(s1, s2); if (mtls->mSliceSize < 1) { mtls->mSliceSize = 1; } launchThreads(walk_1d, mtls); } mInForEach = false; } else { outer_foreach_t fn = (outer_foreach_t) mtls->kernel; uint32_t slice = 0; while(SelectOuterSlice(mtls, &mtls->fep, slice++)) { for (mtls->fep.current.y = mtls->start.y; mtls->fep.current.y < mtls->end.y; mtls->fep.current.y++) { FepPtrSetup(mtls, &mtls->fep, mtls->start.x, mtls->fep.current.y, mtls->fep.current.z, mtls->fep.current.lod, (RsAllocationCubemapFace) mtls->fep.current.face, mtls->fep.current.array[0], mtls->fep.current.array[1], mtls->fep.current.array[2], mtls->fep.current.array[3]); fn(&mtls->fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]); } } } } RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) { //ALOGE("setTls %p", sc); ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); rsAssert(tls); RsdCpuScriptImpl *old = tls->mImpl; tls->mImpl = sc; tls->mContext = mRSC; if (sc) { tls->mScript = sc->getScript(); } else { tls->mScript = nullptr; } return old; } const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) { return mSymLookupFn(mRSC, name); } RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s, char const *resName, char const *cacheDir, uint8_t const *bitcode, size_t bitcodeSize, uint32_t flags) { RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s); if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags , getBccPluginName() )) { delete i; return nullptr; } return i; } extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_BLAS(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s, RsScriptIntrinsicID iid, Element *e) { RsdCpuScriptImpl *i = nullptr; switch (iid) { case RS_SCRIPT_INTRINSIC_ID_3DLUT: i = rsdIntrinsic_3DLUT(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3: i = rsdIntrinsic_Convolve3x3(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX: i = rsdIntrinsic_ColorMatrix(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_LUT: i = rsdIntrinsic_LUT(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5: i = rsdIntrinsic_Convolve5x5(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_BLUR: i = rsdIntrinsic_Blur(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB: i = rsdIntrinsic_YuvToRGB(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_BLEND: i = rsdIntrinsic_Blend(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM: i = rsdIntrinsic_Histogram(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_RESIZE: i = rsdIntrinsic_Resize(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_BLAS: i = rsdIntrinsic_BLAS(this, s, e); break; default: rsAssert(0); } return i; } void* RsdCpuReferenceImpl::createScriptGroup(const ScriptGroupBase *sg) { switch (sg->getApiVersion()) { case ScriptGroupBase::SG_V1: { CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg); if (!sgi->init()) { delete sgi; return nullptr; } return sgi; } case ScriptGroupBase::SG_V2: { return new CpuScriptGroup2Impl(this, sg); } } return nullptr; }