// // Copyright 2006 The Android Open Source Project // // Build resource files from raw assets. // #define PNG_INTERNAL #include "Images.h" #include <androidfw/ResourceTypes.h> #include <utils/ByteOrder.h> #include <png.h> #include <zlib.h> // Change this to true for noisy debug output. static const bool kIsDebug = false; static void png_write_aapt_file(png_structp png_ptr, png_bytep data, png_size_t length) { AaptFile* aaptfile = (AaptFile*) png_get_io_ptr(png_ptr); status_t err = aaptfile->writeData(data, length); if (err != NO_ERROR) { png_error(png_ptr, "Write Error"); } } static void png_flush_aapt_file(png_structp /* png_ptr */) { } // This holds an image as 8bpp RGBA. struct image_info { image_info() : rows(NULL), is9Patch(false), xDivs(NULL), yDivs(NULL), colors(NULL), allocRows(NULL) { } ~image_info() { if (rows && rows != allocRows) { free(rows); } if (allocRows) { for (int i=0; i<(int)allocHeight; i++) { free(allocRows[i]); } free(allocRows); } free(xDivs); free(yDivs); free(colors); } void* serialize9patch() { void* serialized = Res_png_9patch::serialize(info9Patch, xDivs, yDivs, colors); reinterpret_cast<Res_png_9patch*>(serialized)->deviceToFile(); return serialized; } png_uint_32 width; png_uint_32 height; png_bytepp rows; // 9-patch info. bool is9Patch; Res_png_9patch info9Patch; int32_t* xDivs; int32_t* yDivs; uint32_t* colors; // Layout padding, if relevant bool haveLayoutBounds; int32_t layoutBoundsLeft; int32_t layoutBoundsTop; int32_t layoutBoundsRight; int32_t layoutBoundsBottom; // Round rect outline description int32_t outlineInsetsLeft; int32_t outlineInsetsTop; int32_t outlineInsetsRight; int32_t outlineInsetsBottom; float outlineRadius; uint8_t outlineAlpha; png_uint_32 allocHeight; png_bytepp allocRows; }; static void log_warning(png_structp png_ptr, png_const_charp warning_message) { const char* imageName = (const char*) png_get_error_ptr(png_ptr); fprintf(stderr, "%s: libpng warning: %s\n", imageName, warning_message); } static void read_png(const char* imageName, png_structp read_ptr, png_infop read_info, image_info* outImageInfo) { int color_type; int bit_depth, interlace_type, compression_type; int i; png_set_error_fn(read_ptr, const_cast<char*>(imageName), NULL /* use default errorfn */, log_warning); png_read_info(read_ptr, read_info); png_get_IHDR(read_ptr, read_info, &outImageInfo->width, &outImageInfo->height, &bit_depth, &color_type, &interlace_type, &compression_type, NULL); //printf("Image %s:\n", imageName); //printf("color_type=%d, bit_depth=%d, interlace_type=%d, compression_type=%d\n", // color_type, bit_depth, interlace_type, compression_type); if (color_type == PNG_COLOR_TYPE_PALETTE) png_set_palette_to_rgb(read_ptr); if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) png_set_expand_gray_1_2_4_to_8(read_ptr); if (png_get_valid(read_ptr, read_info, PNG_INFO_tRNS)) { //printf("Has PNG_INFO_tRNS!\n"); png_set_tRNS_to_alpha(read_ptr); } if (bit_depth == 16) png_set_strip_16(read_ptr); if ((color_type&PNG_COLOR_MASK_ALPHA) == 0) png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) png_set_gray_to_rgb(read_ptr); png_set_interlace_handling(read_ptr); png_read_update_info(read_ptr, read_info); outImageInfo->rows = (png_bytepp)malloc( outImageInfo->height * sizeof(png_bytep)); outImageInfo->allocHeight = outImageInfo->height; outImageInfo->allocRows = outImageInfo->rows; png_set_rows(read_ptr, read_info, outImageInfo->rows); for (i = 0; i < (int)outImageInfo->height; i++) { outImageInfo->rows[i] = (png_bytep) malloc(png_get_rowbytes(read_ptr, read_info)); } png_read_image(read_ptr, outImageInfo->rows); png_read_end(read_ptr, read_info); if (kIsDebug) { printf("Image %s: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", imageName, (int)outImageInfo->width, (int)outImageInfo->height, bit_depth, color_type, interlace_type, compression_type); } png_get_IHDR(read_ptr, read_info, &outImageInfo->width, &outImageInfo->height, &bit_depth, &color_type, &interlace_type, &compression_type, NULL); } #define COLOR_TRANSPARENT 0 #define COLOR_WHITE 0xFFFFFFFF #define COLOR_TICK 0xFF000000 #define COLOR_LAYOUT_BOUNDS_TICK 0xFF0000FF enum { TICK_TYPE_NONE, TICK_TYPE_TICK, TICK_TYPE_LAYOUT_BOUNDS, TICK_TYPE_BOTH }; static int tick_type(png_bytep p, bool transparent, const char** outError) { png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); if (transparent) { if (p[3] == 0) { return TICK_TYPE_NONE; } if (color == COLOR_LAYOUT_BOUNDS_TICK) { return TICK_TYPE_LAYOUT_BOUNDS; } if (color == COLOR_TICK) { return TICK_TYPE_TICK; } // Error cases if (p[3] != 0xff) { *outError = "Frame pixels must be either solid or transparent (not intermediate alphas)"; return TICK_TYPE_NONE; } if (p[0] != 0 || p[1] != 0 || p[2] != 0) { *outError = "Ticks in transparent frame must be black or red"; } return TICK_TYPE_TICK; } if (p[3] != 0xFF) { *outError = "White frame must be a solid color (no alpha)"; } if (color == COLOR_WHITE) { return TICK_TYPE_NONE; } if (color == COLOR_TICK) { return TICK_TYPE_TICK; } if (color == COLOR_LAYOUT_BOUNDS_TICK) { return TICK_TYPE_LAYOUT_BOUNDS; } if (p[0] != 0 || p[1] != 0 || p[2] != 0) { *outError = "Ticks in white frame must be black or red"; return TICK_TYPE_NONE; } return TICK_TYPE_TICK; } enum { TICK_START, TICK_INSIDE_1, TICK_OUTSIDE_1 }; static status_t get_horizontal_ticks( png_bytep row, int width, bool transparent, bool required, int32_t* outLeft, int32_t* outRight, const char** outError, uint8_t* outDivs, bool multipleAllowed) { int i; *outLeft = *outRight = -1; int state = TICK_START; bool found = false; for (i=1; i<width-1; i++) { if (TICK_TYPE_TICK == tick_type(row+i*4, transparent, outError)) { if (state == TICK_START || (state == TICK_OUTSIDE_1 && multipleAllowed)) { *outLeft = i-1; *outRight = width-2; found = true; if (outDivs != NULL) { *outDivs += 2; } state = TICK_INSIDE_1; } else if (state == TICK_OUTSIDE_1) { *outError = "Can't have more than one marked region along edge"; *outLeft = i; return UNKNOWN_ERROR; } } else if (*outError == NULL) { if (state == TICK_INSIDE_1) { // We're done with this div. Move on to the next. *outRight = i-1; outRight += 2; outLeft += 2; state = TICK_OUTSIDE_1; } } else { *outLeft = i; return UNKNOWN_ERROR; } } if (required && !found) { *outError = "No marked region found along edge"; *outLeft = -1; return UNKNOWN_ERROR; } return NO_ERROR; } static status_t get_vertical_ticks( png_bytepp rows, int offset, int height, bool transparent, bool required, int32_t* outTop, int32_t* outBottom, const char** outError, uint8_t* outDivs, bool multipleAllowed) { int i; *outTop = *outBottom = -1; int state = TICK_START; bool found = false; for (i=1; i<height-1; i++) { if (TICK_TYPE_TICK == tick_type(rows[i]+offset, transparent, outError)) { if (state == TICK_START || (state == TICK_OUTSIDE_1 && multipleAllowed)) { *outTop = i-1; *outBottom = height-2; found = true; if (outDivs != NULL) { *outDivs += 2; } state = TICK_INSIDE_1; } else if (state == TICK_OUTSIDE_1) { *outError = "Can't have more than one marked region along edge"; *outTop = i; return UNKNOWN_ERROR; } } else if (*outError == NULL) { if (state == TICK_INSIDE_1) { // We're done with this div. Move on to the next. *outBottom = i-1; outTop += 2; outBottom += 2; state = TICK_OUTSIDE_1; } } else { *outTop = i; return UNKNOWN_ERROR; } } if (required && !found) { *outError = "No marked region found along edge"; *outTop = -1; return UNKNOWN_ERROR; } return NO_ERROR; } static status_t get_horizontal_layout_bounds_ticks( png_bytep row, int width, bool transparent, bool /* required */, int32_t* outLeft, int32_t* outRight, const char** outError) { int i; *outLeft = *outRight = 0; // Look for left tick if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + 4, transparent, outError)) { // Starting with a layout padding tick i = 1; while (i < width - 1) { (*outLeft)++; i++; int tick = tick_type(row + i * 4, transparent, outError); if (tick != TICK_TYPE_LAYOUT_BOUNDS) { break; } } } // Look for right tick if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + (width - 2) * 4, transparent, outError)) { // Ending with a layout padding tick i = width - 2; while (i > 1) { (*outRight)++; i--; int tick = tick_type(row+i*4, transparent, outError); if (tick != TICK_TYPE_LAYOUT_BOUNDS) { break; } } } return NO_ERROR; } static status_t get_vertical_layout_bounds_ticks( png_bytepp rows, int offset, int height, bool transparent, bool /* required */, int32_t* outTop, int32_t* outBottom, const char** outError) { int i; *outTop = *outBottom = 0; // Look for top tick if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[1] + offset, transparent, outError)) { // Starting with a layout padding tick i = 1; while (i < height - 1) { (*outTop)++; i++; int tick = tick_type(rows[i] + offset, transparent, outError); if (tick != TICK_TYPE_LAYOUT_BOUNDS) { break; } } } // Look for bottom tick if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[height - 2] + offset, transparent, outError)) { // Ending with a layout padding tick i = height - 2; while (i > 1) { (*outBottom)++; i--; int tick = tick_type(rows[i] + offset, transparent, outError); if (tick != TICK_TYPE_LAYOUT_BOUNDS) { break; } } } return NO_ERROR; } static void find_max_opacity(png_byte** rows, int startX, int startY, int endX, int endY, int dX, int dY, int* out_inset) { uint8_t max_opacity = 0; int inset = 0; *out_inset = 0; for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) { png_byte* color = rows[y] + x * 4; uint8_t opacity = color[3]; if (opacity > max_opacity) { max_opacity = opacity; *out_inset = inset; } if (opacity == 0xff) return; } } static uint8_t max_alpha_over_row(png_byte* row, int startX, int endX) { uint8_t max_alpha = 0; for (int x = startX; x < endX; x++) { uint8_t alpha = (row + x * 4)[3]; if (alpha > max_alpha) max_alpha = alpha; } return max_alpha; } static uint8_t max_alpha_over_col(png_byte** rows, int offsetX, int startY, int endY) { uint8_t max_alpha = 0; for (int y = startY; y < endY; y++) { uint8_t alpha = (rows[y] + offsetX * 4)[3]; if (alpha > max_alpha) max_alpha = alpha; } return max_alpha; } static void get_outline(image_info* image) { int midX = image->width / 2; int midY = image->height / 2; int endX = image->width - 2; int endY = image->height - 2; // find left and right extent of nine patch content on center row if (image->width > 4) { find_max_opacity(image->rows, 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft); find_max_opacity(image->rows, endX, midY, midX, -1, -1, 0, &image->outlineInsetsRight); } else { image->outlineInsetsLeft = 0; image->outlineInsetsRight = 0; } // find top and bottom extent of nine patch content on center column if (image->height > 4) { find_max_opacity(image->rows, midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop); find_max_opacity(image->rows, midX, endY, -1, midY, 0, -1, &image->outlineInsetsBottom); } else { image->outlineInsetsTop = 0; image->outlineInsetsBottom = 0; } int innerStartX = 1 + image->outlineInsetsLeft; int innerStartY = 1 + image->outlineInsetsTop; int innerEndX = endX - image->outlineInsetsRight; int innerEndY = endY - image->outlineInsetsBottom; int innerMidX = (innerEndX + innerStartX) / 2; int innerMidY = (innerEndY + innerStartY) / 2; // assuming the image is a round rect, compute the radius by marching // diagonally from the top left corner towards the center image->outlineAlpha = std::max( max_alpha_over_row(image->rows[innerMidY], innerStartX, innerEndX), max_alpha_over_col(image->rows, innerMidX, innerStartY, innerStartY)); int diagonalInset = 0; find_max_opacity(image->rows, innerStartX, innerStartY, innerMidX, innerMidY, 1, 1, &diagonalInset); /* Determine source radius based upon inset: * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r * sqrt(2) * r = sqrt(2) * i + r * (sqrt(2) - 1) * r = sqrt(2) * i * r = sqrt(2) / (sqrt(2) - 1) * i */ image->outlineRadius = 3.4142f * diagonalInset; if (kIsDebug) { printf("outline insets %d %d %d %d, rad %f, alpha %x\n", image->outlineInsetsLeft, image->outlineInsetsTop, image->outlineInsetsRight, image->outlineInsetsBottom, image->outlineRadius, image->outlineAlpha); } } static uint32_t get_color( png_bytepp rows, int left, int top, int right, int bottom) { png_bytep color = rows[top] + left*4; if (left > right || top > bottom) { return Res_png_9patch::TRANSPARENT_COLOR; } while (top <= bottom) { for (int i = left; i <= right; i++) { png_bytep p = rows[top]+i*4; if (color[3] == 0) { if (p[3] != 0) { return Res_png_9patch::NO_COLOR; } } else if (p[0] != color[0] || p[1] != color[1] || p[2] != color[2] || p[3] != color[3]) { return Res_png_9patch::NO_COLOR; } } top++; } if (color[3] == 0) { return Res_png_9patch::TRANSPARENT_COLOR; } return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2]; } static status_t do_9patch(const char* imageName, image_info* image) { image->is9Patch = true; int W = image->width; int H = image->height; int i, j; int maxSizeXDivs = W * sizeof(int32_t); int maxSizeYDivs = H * sizeof(int32_t); int32_t* xDivs = image->xDivs = (int32_t*) malloc(maxSizeXDivs); int32_t* yDivs = image->yDivs = (int32_t*) malloc(maxSizeYDivs); uint8_t numXDivs = 0; uint8_t numYDivs = 0; int8_t numColors; int numRows; int numCols; int top; int left; int right; int bottom; memset(xDivs, -1, maxSizeXDivs); memset(yDivs, -1, maxSizeYDivs); image->info9Patch.paddingLeft = image->info9Patch.paddingRight = image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; image->layoutBoundsLeft = image->layoutBoundsRight = image->layoutBoundsTop = image->layoutBoundsBottom = 0; png_bytep p = image->rows[0]; bool transparent = p[3] == 0; bool hasColor = false; const char* errorMsg = NULL; int errorPixel = -1; const char* errorEdge = NULL; int colorIndex = 0; // Validate size... if (W < 3 || H < 3) { errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; goto getout; } // Validate frame... if (!transparent && (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { errorMsg = "Must have one-pixel frame that is either transparent or white"; goto getout; } // Find left and right of sizing areas... if (get_horizontal_ticks(p, W, transparent, true, &xDivs[0], &xDivs[1], &errorMsg, &numXDivs, true) != NO_ERROR) { errorPixel = xDivs[0]; errorEdge = "top"; goto getout; } // Find top and bottom of sizing areas... if (get_vertical_ticks(image->rows, 0, H, transparent, true, &yDivs[0], &yDivs[1], &errorMsg, &numYDivs, true) != NO_ERROR) { errorPixel = yDivs[0]; errorEdge = "left"; goto getout; } // Copy patch size data into image... image->info9Patch.numXDivs = numXDivs; image->info9Patch.numYDivs = numYDivs; // Find left and right of padding area... if (get_horizontal_ticks(image->rows[H-1], W, transparent, false, &image->info9Patch.paddingLeft, &image->info9Patch.paddingRight, &errorMsg, NULL, false) != NO_ERROR) { errorPixel = image->info9Patch.paddingLeft; errorEdge = "bottom"; goto getout; } // Find top and bottom of padding area... if (get_vertical_ticks(image->rows, (W-1)*4, H, transparent, false, &image->info9Patch.paddingTop, &image->info9Patch.paddingBottom, &errorMsg, NULL, false) != NO_ERROR) { errorPixel = image->info9Patch.paddingTop; errorEdge = "right"; goto getout; } // Find left and right of layout padding... get_horizontal_layout_bounds_ticks(image->rows[H-1], W, transparent, false, &image->layoutBoundsLeft, &image->layoutBoundsRight, &errorMsg); get_vertical_layout_bounds_ticks(image->rows, (W-1)*4, H, transparent, false, &image->layoutBoundsTop, &image->layoutBoundsBottom, &errorMsg); image->haveLayoutBounds = image->layoutBoundsLeft != 0 || image->layoutBoundsRight != 0 || image->layoutBoundsTop != 0 || image->layoutBoundsBottom != 0; if (image->haveLayoutBounds) { if (kIsDebug) { printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop, image->layoutBoundsRight, image->layoutBoundsBottom); } } // use opacity of pixels to estimate the round rect outline get_outline(image); // If padding is not yet specified, take values from size. if (image->info9Patch.paddingLeft < 0) { image->info9Patch.paddingLeft = xDivs[0]; image->info9Patch.paddingRight = W - 2 - xDivs[1]; } else { // Adjust value to be correct! image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; } if (image->info9Patch.paddingTop < 0) { image->info9Patch.paddingTop = yDivs[0]; image->info9Patch.paddingBottom = H - 2 - yDivs[1]; } else { // Adjust value to be correct! image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; } if (kIsDebug) { printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, xDivs[0], xDivs[1], yDivs[0], yDivs[1]); printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, image->info9Patch.paddingLeft, image->info9Patch.paddingRight, image->info9Patch.paddingTop, image->info9Patch.paddingBottom); } // Remove frame from image. image->rows = (png_bytepp)malloc((H-2) * sizeof(png_bytep)); for (i=0; i<(H-2); i++) { image->rows[i] = image->allocRows[i+1]; memmove(image->rows[i], image->rows[i]+4, (W-2)*4); } image->width -= 2; W = image->width; image->height -= 2; H = image->height; // Figure out the number of rows and columns in the N-patch numCols = numXDivs + 1; if (xDivs[0] == 0) { // Column 1 is strechable numCols--; } if (xDivs[numXDivs - 1] == W) { numCols--; } numRows = numYDivs + 1; if (yDivs[0] == 0) { // Row 1 is strechable numRows--; } if (yDivs[numYDivs - 1] == H) { numRows--; } // Make sure the amount of rows and columns will fit in the number of // colors we can use in the 9-patch format. if (numRows * numCols > 0x7F) { errorMsg = "Too many rows and columns in 9-patch perimeter"; goto getout; } numColors = numRows * numCols; image->info9Patch.numColors = numColors; image->colors = (uint32_t*)malloc(numColors * sizeof(uint32_t)); // Fill in color information for each patch. uint32_t c; top = 0; // The first row always starts with the top being at y=0 and the bottom // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case // the first row is stretchable along the Y axis, otherwise it is fixed. // The last row always ends with the bottom being bitmap.height and the top // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or // yDivs[numYDivs-1]. In the former case the last row is stretchable along // the Y axis, otherwise it is fixed. // // The first and last columns are similarly treated with respect to the X // axis. // // The above is to help explain some of the special casing that goes on the // code below. // The initial yDiv and whether the first row is considered stretchable or // not depends on whether yDiv[0] was zero or not. for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) { if (j == numYDivs) { bottom = H; } else { bottom = yDivs[j]; } left = 0; // The initial xDiv and whether the first column is considered // stretchable or not depends on whether xDiv[0] was zero or not. for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) { if (i == numXDivs) { right = W; } else { right = xDivs[i]; } c = get_color(image->rows, left, top, right - 1, bottom - 1); image->colors[colorIndex++] = c; if (kIsDebug) { if (c != Res_png_9patch::NO_COLOR) hasColor = true; } left = right; } top = bottom; } assert(colorIndex == numColors); for (i=0; i<numColors; i++) { if (hasColor) { if (i == 0) printf("Colors in %s:\n ", imageName); printf(" #%08x", image->colors[i]); if (i == numColors - 1) printf("\n"); } } getout: if (errorMsg) { fprintf(stderr, "ERROR: 9-patch image %s malformed.\n" " %s.\n", imageName, errorMsg); if (errorEdge != NULL) { if (errorPixel >= 0) { fprintf(stderr, " Found at pixel #%d along %s edge.\n", errorPixel, errorEdge); } else { fprintf(stderr, " Found along %s edge.\n", errorEdge); } } return UNKNOWN_ERROR; } return NO_ERROR; } static void checkNinePatchSerialization(Res_png_9patch* inPatch, void* data) { size_t patchSize = inPatch->serializedSize(); void* newData = malloc(patchSize); memcpy(newData, data, patchSize); Res_png_9patch* outPatch = inPatch->deserialize(newData); // deserialization is done in place, so outPatch == newData assert(outPatch == newData); assert(outPatch->numXDivs == inPatch->numXDivs); assert(outPatch->numYDivs == inPatch->numYDivs); assert(outPatch->paddingLeft == inPatch->paddingLeft); assert(outPatch->paddingRight == inPatch->paddingRight); assert(outPatch->paddingTop == inPatch->paddingTop); assert(outPatch->paddingBottom == inPatch->paddingBottom); for (int i = 0; i < outPatch->numXDivs; i++) { assert(outPatch->xDivs[i] == inPatch->xDivs[i]); } for (int i = 0; i < outPatch->numYDivs; i++) { assert(outPatch->yDivs[i] == inPatch->yDivs[i]); } for (int i = 0; i < outPatch->numColors; i++) { assert(outPatch->colors[i] == inPatch->colors[i]); } free(newData); } static void dump_image(int w, int h, png_bytepp rows, int color_type) { int i, j, rr, gg, bb, aa; int bpp; if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { bpp = 1; } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { bpp = 2; } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { // We use a padding byte even when there is no alpha bpp = 4; } else { printf("Unknown color type %d.\n", color_type); } for (j = 0; j < h; j++) { png_bytep row = rows[j]; for (i = 0; i < w; i++) { rr = row[0]; gg = row[1]; bb = row[2]; aa = row[3]; row += bpp; if (i == 0) { printf("Row %d:", j); } switch (bpp) { case 1: printf(" (%d)", rr); break; case 2: printf(" (%d %d", rr, gg); break; case 3: printf(" (%d %d %d)", rr, gg, bb); break; case 4: printf(" (%d %d %d %d)", rr, gg, bb, aa); break; } if (i == (w - 1)) { printf("\n"); } } } } #define MAX(a,b) ((a)>(b)?(a):(b)) #define ABS(a) ((a)<0?-(a):(a)) static void analyze_image(const char *imageName, image_info &imageInfo, int grayscaleTolerance, png_colorp rgbPalette, png_bytep alphaPalette, int *paletteEntries, bool *hasTransparency, int *colorType, png_bytepp outRows) { int w = imageInfo.width; int h = imageInfo.height; int i, j, rr, gg, bb, aa, idx; uint32_t colors[256], col; int num_colors = 0; int maxGrayDeviation = 0; bool isOpaque = true; bool isPalette = true; bool isGrayscale = true; // Scan the entire image and determine if: // 1. Every pixel has R == G == B (grayscale) // 2. Every pixel has A == 255 (opaque) // 3. There are no more than 256 distinct RGBA colors if (kIsDebug) { printf("Initial image data:\n"); dump_image(w, h, imageInfo.rows, PNG_COLOR_TYPE_RGB_ALPHA); } for (j = 0; j < h; j++) { png_bytep row = imageInfo.rows[j]; png_bytep out = outRows[j]; for (i = 0; i < w; i++) { rr = *row++; gg = *row++; bb = *row++; aa = *row++; int odev = maxGrayDeviation; maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); if (maxGrayDeviation > odev) { if (kIsDebug) { printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", maxGrayDeviation, i, j, rr, gg, bb, aa); } } // Check if image is really grayscale if (isGrayscale) { if (rr != gg || rr != bb) { if (kIsDebug) { printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", i, j, rr, gg, bb, aa); } isGrayscale = false; } } // Check if image is really opaque if (isOpaque) { if (aa != 0xff) { if (kIsDebug) { printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", i, j, rr, gg, bb, aa); } isOpaque = false; } } // Check if image is really <= 256 colors if (isPalette) { col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa); bool match = false; for (idx = 0; idx < num_colors; idx++) { if (colors[idx] == col) { match = true; break; } } // Write the palette index for the pixel to outRows optimistically // We might overwrite it later if we decide to encode as gray or // gray + alpha *out++ = idx; if (!match) { if (num_colors == 256) { if (kIsDebug) { printf("Found 257th color at %d, %d\n", i, j); } isPalette = false; } else { colors[num_colors++] = col; } } } } } *paletteEntries = 0; *hasTransparency = !isOpaque; int bpp = isOpaque ? 3 : 4; int paletteSize = w * h + bpp * num_colors; if (kIsDebug) { printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); printf("isOpaque = %s\n", isOpaque ? "true" : "false"); printf("isPalette = %s\n", isPalette ? "true" : "false"); printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", paletteSize, 2 * w * h, bpp * w * h); printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance); } // Choose the best color type for the image. // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently // small, otherwise use COLOR_TYPE_RGB{_ALPHA} if (isGrayscale) { if (isOpaque) { *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel } else { // Use a simple heuristic to determine whether using a palette will // save space versus using gray + alpha for each pixel. // This doesn't take into account chunk overhead, filtering, LZ // compression, etc. if (isPalette && (paletteSize < 2 * w * h)) { *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color } else { *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel } } } else if (isPalette && (paletteSize < bpp * w * h)) { *colorType = PNG_COLOR_TYPE_PALETTE; } else { if (maxGrayDeviation <= grayscaleTolerance) { printf("%s: forcing image to gray (max deviation = %d)\n", imageName, maxGrayDeviation); *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; } else { *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; } } // Perform postprocessing of the image or palette data based on the final // color type chosen if (*colorType == PNG_COLOR_TYPE_PALETTE) { // Create separate RGB and Alpha palettes and set the number of colors *paletteEntries = num_colors; // Create the RGB and alpha palettes for (int idx = 0; idx < num_colors; idx++) { col = colors[idx]; rgbPalette[idx].red = (png_byte) ((col >> 24) & 0xff); rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff); rgbPalette[idx].blue = (png_byte) ((col >> 8) & 0xff); alphaPalette[idx] = (png_byte) (col & 0xff); } } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { // If the image is gray or gray + alpha, compact the pixels into outRows for (j = 0; j < h; j++) { png_bytep row = imageInfo.rows[j]; png_bytep out = outRows[j]; for (i = 0; i < w; i++) { rr = *row++; gg = *row++; bb = *row++; aa = *row++; if (isGrayscale) { *out++ = rr; } else { *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); } if (!isOpaque) { *out++ = aa; } } } } } static void write_png(const char* imageName, png_structp write_ptr, png_infop write_info, image_info& imageInfo, int grayscaleTolerance) { png_uint_32 width, height; int color_type; int bit_depth, interlace_type, compression_type; int i; png_unknown_chunk unknowns[3]; unknowns[0].data = NULL; unknowns[1].data = NULL; unknowns[2].data = NULL; png_bytepp outRows = (png_bytepp) malloc((int) imageInfo.height * sizeof(png_bytep)); if (outRows == (png_bytepp) 0) { printf("Can't allocate output buffer!\n"); exit(1); } for (i = 0; i < (int) imageInfo.height; i++) { outRows[i] = (png_bytep) malloc(2 * (int) imageInfo.width); if (outRows[i] == (png_bytep) 0) { printf("Can't allocate output buffer!\n"); exit(1); } } png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); if (kIsDebug) { printf("Writing image %s: w = %d, h = %d\n", imageName, (int) imageInfo.width, (int) imageInfo.height); } png_color rgbPalette[256]; png_byte alphaPalette[256]; bool hasTransparency; int paletteEntries; analyze_image(imageName, imageInfo, grayscaleTolerance, rgbPalette, alphaPalette, &paletteEntries, &hasTransparency, &color_type, outRows); // If the image is a 9-patch, we need to preserve it as a ARGB file to make // sure the pixels will not be pre-dithered/clamped until we decide they are if (imageInfo.is9Patch && (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_PALETTE)) { color_type = PNG_COLOR_TYPE_RGB_ALPHA; } if (kIsDebug) { switch (color_type) { case PNG_COLOR_TYPE_PALETTE: printf("Image %s has %d colors%s, using PNG_COLOR_TYPE_PALETTE\n", imageName, paletteEntries, hasTransparency ? " (with alpha)" : ""); break; case PNG_COLOR_TYPE_GRAY: printf("Image %s is opaque gray, using PNG_COLOR_TYPE_GRAY\n", imageName); break; case PNG_COLOR_TYPE_GRAY_ALPHA: printf("Image %s is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA\n", imageName); break; case PNG_COLOR_TYPE_RGB: printf("Image %s is opaque RGB, using PNG_COLOR_TYPE_RGB\n", imageName); break; case PNG_COLOR_TYPE_RGB_ALPHA: printf("Image %s is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA\n", imageName); break; } } png_set_IHDR(write_ptr, write_info, imageInfo.width, imageInfo.height, 8, color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); if (color_type == PNG_COLOR_TYPE_PALETTE) { png_set_PLTE(write_ptr, write_info, rgbPalette, paletteEntries); if (hasTransparency) { png_set_tRNS(write_ptr, write_info, alphaPalette, paletteEntries, (png_color_16p) 0); } png_set_filter(write_ptr, 0, PNG_NO_FILTERS); } else { png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); } if (imageInfo.is9Patch) { int chunk_count = 2 + (imageInfo.haveLayoutBounds ? 1 : 0); int p_index = imageInfo.haveLayoutBounds ? 2 : 1; int b_index = 1; int o_index = 0; // Chunks ordered thusly because older platforms depend on the base 9 patch data being last png_byte *chunk_names = imageInfo.haveLayoutBounds ? (png_byte*)"npOl\0npLb\0npTc\0" : (png_byte*)"npOl\0npTc"; // base 9 patch data if (kIsDebug) { printf("Adding 9-patch info...\n"); } strcpy((char*)unknowns[p_index].name, "npTc"); unknowns[p_index].data = (png_byte*)imageInfo.serialize9patch(); unknowns[p_index].size = imageInfo.info9Patch.serializedSize(); // TODO: remove the check below when everything works checkNinePatchSerialization(&imageInfo.info9Patch, unknowns[p_index].data); // automatically generated 9 patch outline data int chunk_size = sizeof(png_uint_32) * 6; strcpy((char*)unknowns[o_index].name, "npOl"); unknowns[o_index].data = (png_byte*) calloc(chunk_size, 1); png_byte outputData[chunk_size]; memcpy(&outputData, &imageInfo.outlineInsetsLeft, 4 * sizeof(png_uint_32)); ((float*) outputData)[4] = imageInfo.outlineRadius; ((png_uint_32*) outputData)[5] = imageInfo.outlineAlpha; memcpy(unknowns[o_index].data, &outputData, chunk_size); unknowns[o_index].size = chunk_size; // optional optical inset / layout bounds data if (imageInfo.haveLayoutBounds) { int chunk_size = sizeof(png_uint_32) * 4; strcpy((char*)unknowns[b_index].name, "npLb"); unknowns[b_index].data = (png_byte*) calloc(chunk_size, 1); memcpy(unknowns[b_index].data, &imageInfo.layoutBoundsLeft, chunk_size); unknowns[b_index].size = chunk_size; } for (int i = 0; i < chunk_count; i++) { unknowns[i].location = PNG_HAVE_PLTE; } png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, chunk_names, chunk_count); png_set_unknown_chunks(write_ptr, write_info, unknowns, chunk_count); #if PNG_LIBPNG_VER < 10600 /* Deal with unknown chunk location bug in 1.5.x and earlier */ png_set_unknown_chunk_location(write_ptr, write_info, 0, PNG_HAVE_PLTE); if (imageInfo.haveLayoutBounds) { png_set_unknown_chunk_location(write_ptr, write_info, 1, PNG_HAVE_PLTE); } #endif } png_write_info(write_ptr, write_info); png_bytepp rows; if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { if (color_type == PNG_COLOR_TYPE_RGB) { png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); } rows = imageInfo.rows; } else { rows = outRows; } png_write_image(write_ptr, rows); if (kIsDebug) { printf("Final image data:\n"); dump_image(imageInfo.width, imageInfo.height, rows, color_type); } png_write_end(write_ptr, write_info); for (i = 0; i < (int) imageInfo.height; i++) { free(outRows[i]); } free(outRows); free(unknowns[0].data); free(unknowns[1].data); free(unknowns[2].data); png_get_IHDR(write_ptr, write_info, &width, &height, &bit_depth, &color_type, &interlace_type, &compression_type, NULL); if (kIsDebug) { printf("Image written: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", (int)width, (int)height, bit_depth, color_type, interlace_type, compression_type); } } static bool read_png_protected(png_structp read_ptr, String8& printableName, png_infop read_info, const sp<AaptFile>& file, FILE* fp, image_info* imageInfo) { if (setjmp(png_jmpbuf(read_ptr))) { return false; } png_init_io(read_ptr, fp); read_png(printableName.string(), read_ptr, read_info, imageInfo); const size_t nameLen = file->getPath().length(); if (nameLen > 6) { const char* name = file->getPath().string(); if (name[nameLen-5] == '9' && name[nameLen-6] == '.') { if (do_9patch(printableName.string(), imageInfo) != NO_ERROR) { return false; } } } return true; } static bool write_png_protected(png_structp write_ptr, String8& printableName, png_infop write_info, image_info* imageInfo, const Bundle* bundle) { if (setjmp(png_jmpbuf(write_ptr))) { return false; } write_png(printableName.string(), write_ptr, write_info, *imageInfo, bundle->getGrayscaleTolerance()); return true; } status_t preProcessImage(const Bundle* bundle, const sp<AaptAssets>& /* assets */, const sp<AaptFile>& file, String8* /* outNewLeafName */) { String8 ext(file->getPath().getPathExtension()); // We currently only process PNG images. if (strcmp(ext.string(), ".png") != 0) { return NO_ERROR; } // Example of renaming a file: //*outNewLeafName = file->getPath().getBasePath().getFileName(); //outNewLeafName->append(".nupng"); String8 printableName(file->getPrintableSource()); if (bundle->getVerbose()) { printf("Processing image: %s\n", printableName.string()); } png_structp read_ptr = NULL; png_infop read_info = NULL; FILE* fp; image_info imageInfo; png_structp write_ptr = NULL; png_infop write_info = NULL; status_t error = UNKNOWN_ERROR; fp = fopen(file->getSourceFile().string(), "rb"); if (fp == NULL) { fprintf(stderr, "%s: ERROR: Unable to open PNG file\n", printableName.string()); goto bail; } read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, (png_error_ptr)NULL); if (!read_ptr) { goto bail; } read_info = png_create_info_struct(read_ptr); if (!read_info) { goto bail; } if (!read_png_protected(read_ptr, printableName, read_info, file, fp, &imageInfo)) { goto bail; } write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, (png_error_ptr)NULL); if (!write_ptr) { goto bail; } write_info = png_create_info_struct(write_ptr); if (!write_info) { goto bail; } png_set_write_fn(write_ptr, (void*)file.get(), png_write_aapt_file, png_flush_aapt_file); if (!write_png_protected(write_ptr, printableName, write_info, &imageInfo, bundle)) { goto bail; } error = NO_ERROR; if (bundle->getVerbose()) { fseek(fp, 0, SEEK_END); size_t oldSize = (size_t)ftell(fp); size_t newSize = file->getSize(); float factor = ((float)newSize)/oldSize; int percent = (int)(factor*100); printf(" (processed image %s: %d%% size of source)\n", printableName.string(), percent); } bail: if (read_ptr) { png_destroy_read_struct(&read_ptr, &read_info, (png_infopp)NULL); } if (fp) { fclose(fp); } if (write_ptr) { png_destroy_write_struct(&write_ptr, &write_info); } if (error != NO_ERROR) { fprintf(stderr, "ERROR: Failure processing PNG image %s\n", file->getPrintableSource().string()); } return error; } status_t preProcessImageToCache(const Bundle* bundle, const String8& source, const String8& dest) { png_structp read_ptr = NULL; png_infop read_info = NULL; FILE* fp; image_info imageInfo; png_structp write_ptr = NULL; png_infop write_info = NULL; status_t error = UNKNOWN_ERROR; if (bundle->getVerbose()) { printf("Processing image to cache: %s => %s\n", source.string(), dest.string()); } // Get a file handler to read from fp = fopen(source.string(),"rb"); if (fp == NULL) { fprintf(stderr, "%s ERROR: Unable to open PNG file\n", source.string()); return error; } // Call libpng to get a struct to read image data into read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!read_ptr) { fclose(fp); png_destroy_read_struct(&read_ptr, &read_info,NULL); return error; } // Call libpng to get a struct to read image info into read_info = png_create_info_struct(read_ptr); if (!read_info) { fclose(fp); png_destroy_read_struct(&read_ptr, &read_info,NULL); return error; } // Set a jump point for libpng to long jump back to on error if (setjmp(png_jmpbuf(read_ptr))) { fclose(fp); png_destroy_read_struct(&read_ptr, &read_info,NULL); return error; } // Set up libpng to read from our file. png_init_io(read_ptr,fp); // Actually read data from the file read_png(source.string(), read_ptr, read_info, &imageInfo); // We're done reading so we can clean up // Find old file size before releasing handle fseek(fp, 0, SEEK_END); size_t oldSize = (size_t)ftell(fp); fclose(fp); png_destroy_read_struct(&read_ptr, &read_info,NULL); // Check to see if we're dealing with a 9-patch // If we are, process appropriately if (source.getBasePath().getPathExtension() == ".9") { if (do_9patch(source.string(), &imageInfo) != NO_ERROR) { return error; } } // Call libpng to create a structure to hold the processed image data // that can be written to disk write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!write_ptr) { png_destroy_write_struct(&write_ptr, &write_info); return error; } // Call libpng to create a structure to hold processed image info that can // be written to disk write_info = png_create_info_struct(write_ptr); if (!write_info) { png_destroy_write_struct(&write_ptr, &write_info); return error; } // Open up our destination file for writing fp = fopen(dest.string(), "wb"); if (!fp) { fprintf(stderr, "%s ERROR: Unable to open PNG file\n", dest.string()); png_destroy_write_struct(&write_ptr, &write_info); return error; } // Set up libpng to write to our file png_init_io(write_ptr, fp); // Set up a jump for libpng to long jump back on on errors if (setjmp(png_jmpbuf(write_ptr))) { fclose(fp); png_destroy_write_struct(&write_ptr, &write_info); return error; } // Actually write out to the new png write_png(dest.string(), write_ptr, write_info, imageInfo, bundle->getGrayscaleTolerance()); if (bundle->getVerbose()) { // Find the size of our new file FILE* reader = fopen(dest.string(), "rb"); fseek(reader, 0, SEEK_END); size_t newSize = (size_t)ftell(reader); fclose(reader); float factor = ((float)newSize)/oldSize; int percent = (int)(factor*100); printf(" (processed image to cache entry %s: %d%% size of source)\n", dest.string(), percent); } //Clean up fclose(fp); png_destroy_write_struct(&write_ptr, &write_info); return NO_ERROR; } status_t postProcessImage(const Bundle* bundle, const sp<AaptAssets>& assets, ResourceTable* table, const sp<AaptFile>& file) { String8 ext(file->getPath().getPathExtension()); // At this point, now that we have all the resource data, all we need to // do is compile XML files. if (strcmp(ext.string(), ".xml") == 0) { String16 resourceName(parseResourceName(file->getSourceFile().getPathLeaf())); return compileXmlFile(bundle, assets, resourceName, file, table); } return NO_ERROR; }