/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "delay_estimator.h" #include <assert.h> #include <stdlib.h> #include <string.h> // Number of right shifts for scaling is linearly depending on number of bits in // the far-end binary spectrum. static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. static const int kShiftsLinearSlope = 3; static const int32_t kProbabilityOffset = 1024; // 2 in Q9. static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. // Counts and returns number of bits of a 32-bit word. static int BitCount(uint32_t u32) { uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - ((u32 >> 2) & 011111111111); tmp = ((tmp + (tmp >> 3)) & 030707070707); tmp = (tmp + (tmp >> 6)); tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; return ((int) tmp); } // Compares the |binary_vector| with all rows of the |binary_matrix| and counts // per row the number of times they have the same value. // // Inputs: // - binary_vector : binary "vector" stored in a long // - binary_matrix : binary "matrix" stored as a vector of long // - matrix_size : size of binary "matrix" // // Output: // - bit_counts : "Vector" stored as a long, containing for each // row the number of times the matrix row and the // input vector have the same value // static void BitCountComparison(uint32_t binary_vector, const uint32_t* binary_matrix, int matrix_size, int32_t* bit_counts) { int n = 0; // Compare |binary_vector| with all rows of the |binary_matrix| for (; n < matrix_size; n++) { bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]); } } int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* handle) { assert(handle != NULL); if (handle->mean_bit_counts != NULL) { free(handle->mean_bit_counts); handle->mean_bit_counts = NULL; } if (handle->bit_counts != NULL) { free(handle->bit_counts); handle->bit_counts = NULL; } if (handle->binary_far_history != NULL) { free(handle->binary_far_history); handle->binary_far_history = NULL; } if (handle->binary_near_history != NULL) { free(handle->binary_near_history); handle->binary_near_history = NULL; } if (handle->far_bit_counts != NULL) { free(handle->far_bit_counts); handle->far_bit_counts = NULL; } free(handle); return 0; } int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator** handle, int max_delay, int lookahead) { BinaryDelayEstimator* self = NULL; int history_size = max_delay + lookahead; if (handle == NULL) { return -1; } if (max_delay < 0) { return -1; } if (lookahead < 0) { return -1; } if (history_size < 2) { // Must be this large for buffer shifting. return -1; } self = malloc(sizeof(BinaryDelayEstimator)); *handle = self; if (self == NULL) { return -1; } self->mean_bit_counts = NULL; self->bit_counts = NULL; self->binary_far_history = NULL; self->far_bit_counts = NULL; self->history_size = history_size; self->near_history_size = lookahead + 1; // Allocate memory for spectrum buffers. self->mean_bit_counts = malloc(history_size * sizeof(int32_t)); if (self->mean_bit_counts == NULL) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; return -1; } self->bit_counts = malloc(history_size * sizeof(int32_t)); if (self->bit_counts == NULL) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; return -1; } // Allocate memory for history buffers. self->binary_far_history = malloc(history_size * sizeof(uint32_t)); if (self->binary_far_history == NULL) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; return -1; } self->binary_near_history = malloc(self->near_history_size * sizeof(uint32_t)); if (self->binary_near_history == NULL) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; return -1; } self->far_bit_counts = malloc(history_size * sizeof(int)); if (self->far_bit_counts == NULL) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; return -1; } return 0; } int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* handle) { int i = 0; assert(handle != NULL); memset(handle->bit_counts, 0, sizeof(int32_t) * handle->history_size); memset(handle->binary_far_history, 0, sizeof(uint32_t) * handle->history_size); memset(handle->binary_near_history, 0, sizeof(uint32_t) * handle->near_history_size); memset(handle->far_bit_counts, 0, sizeof(int) * handle->history_size); for (i = 0; i < handle->history_size; ++i) { handle->mean_bit_counts[i] = (20 << 9); // 20 in Q9. } handle->minimum_probability = (32 << 9); // 32 in Q9. handle->last_delay_probability = (32 << 9); // 32 in Q9. // Default return value if we're unable to estimate. -1 is used for errors. handle->last_delay = -2; return 0; } int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* handle, uint32_t binary_far_spectrum, uint32_t binary_near_spectrum) { int i = 0; int candidate_delay = -1; int32_t value_best_candidate = 16384; // 32 in Q9, (max |mean_bit_counts|). int32_t value_worst_candidate = 0; assert(handle != NULL); // Shift binary spectrum history and insert current |binary_far_spectrum|. memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), (handle->history_size - 1) * sizeof(uint32_t)); handle->binary_far_history[0] = binary_far_spectrum; // Shift history of far-end binary spectrum bit counts and insert bit count // of current |binary_far_spectrum|. memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), (handle->history_size - 1) * sizeof(int)); handle->far_bit_counts[0] = BitCount(binary_far_spectrum); if (handle->near_history_size > 1) { // If we apply lookahead, shift near-end binary spectrum history. Insert // current |binary_near_spectrum| and pull out the delayed one. memmove(&(handle->binary_near_history[1]), &(handle->binary_near_history[0]), (handle->near_history_size - 1) * sizeof(uint32_t)); handle->binary_near_history[0] = binary_near_spectrum; binary_near_spectrum = handle->binary_near_history[handle->near_history_size - 1]; } // Compare with delayed spectra and store the |bit_counts| for each delay. BitCountComparison(binary_near_spectrum, handle->binary_far_history, handle->history_size, handle->bit_counts); // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. for (i = 0; i < handle->history_size; i++) { // |bit_counts| is constrained to [0, 32], meaning we can smooth with a // factor up to 2^26. We use Q9. int32_t bit_count = (handle->bit_counts[i] << 9); // Q9. // Update |mean_bit_counts| only when far-end signal has something to // contribute. If |far_bit_counts| is zero the far-end signal is weak and // we likely have a poor echo condition, hence don't update. if (handle->far_bit_counts[i] > 0) { // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. int shifts = kShiftsAtZero; shifts -= (kShiftsLinearSlope * handle->far_bit_counts[i]) >> 4; WebRtc_MeanEstimatorFix(bit_count, shifts, &(handle->mean_bit_counts[i])); } } // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| // of |mean_bit_counts|. for (i = 0; i < handle->history_size; i++) { if (handle->mean_bit_counts[i] < value_best_candidate) { value_best_candidate = handle->mean_bit_counts[i]; candidate_delay = i; } if (handle->mean_bit_counts[i] > value_worst_candidate) { value_worst_candidate = handle->mean_bit_counts[i]; } } // The |value_best_candidate| is a good indicator on the probability of // |candidate_delay| being an accurate delay (a small |value_best_candidate| // means a good binary match). In the following sections we make a decision // whether to update |last_delay| or not. // 1) If the difference bit counts between the best and the worst delay // candidates is too small we consider the situation to be unreliable and // don't update |last_delay|. // 2) If the situation is reliable we update |last_delay| if the value of the // best candidate delay has a value less than // i) an adaptive threshold |minimum_probability|, or // ii) this corresponding value |last_delay_probability|, but updated at // this time instant. // Update |minimum_probability|. if ((handle->minimum_probability > kProbabilityLowerLimit) && (value_worst_candidate - value_best_candidate > kProbabilityMinSpread)) { // The "hard" threshold can't be lower than 17 (in Q9). // The valley in the curve also has to be distinct, i.e., the // difference between |value_worst_candidate| and |value_best_candidate| has // to be large enough. int32_t threshold = value_best_candidate + kProbabilityOffset; if (threshold < kProbabilityLowerLimit) { threshold = kProbabilityLowerLimit; } if (handle->minimum_probability > threshold) { handle->minimum_probability = threshold; } } // Update |last_delay_probability|. // We use a Markov type model, i.e., a slowly increasing level over time. handle->last_delay_probability++; if (value_worst_candidate > value_best_candidate + kProbabilityOffset) { // Reliable delay value for usage. if (value_best_candidate < handle->minimum_probability) { handle->last_delay = candidate_delay; } if (value_best_candidate < handle->last_delay_probability) { handle->last_delay = candidate_delay; // Reset |last_delay_probability|. handle->last_delay_probability = value_best_candidate; } } return handle->last_delay; } int WebRtc_binary_last_delay(BinaryDelayEstimator* handle) { assert(handle != NULL); return handle->last_delay; } int WebRtc_history_size(BinaryDelayEstimator* handle) { assert(handle != NULL); return handle->history_size; } void WebRtc_MeanEstimatorFix(int32_t new_value, int factor, int32_t* mean_value) { int32_t diff = new_value - *mean_value; // mean_new = mean_value + ((new_value - mean_value) >> factor); if (diff < 0) { diff = -((-diff) >> factor); } else { diff = (diff >> factor); } *mean_value += diff; }