// The following is adapted from fdlibm (http://www.netlib.org/fdlibm). // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. #include "src/v8.h" #include "src/double.h" #include "third_party/fdlibm/fdlibm.h" namespace v8 { namespace fdlibm { #ifdef _MSC_VER inline double scalbn(double x, int y) { return _scalb(x, y); } #endif // _MSC_VER const double MathConstants::constants[] = { 6.36619772367581382433e-01, // invpio2 0 1.57079632673412561417e+00, // pio2_1 1 6.07710050650619224932e-11, // pio2_1t 2 6.07710050630396597660e-11, // pio2_2 3 2.02226624879595063154e-21, // pio2_2t 4 2.02226624871116645580e-21, // pio2_3 5 8.47842766036889956997e-32, // pio2_3t 6 -1.66666666666666324348e-01, // S1 7 coefficients for sin 8.33333333332248946124e-03, // 8 -1.98412698298579493134e-04, // 9 2.75573137070700676789e-06, // 10 -2.50507602534068634195e-08, // 11 1.58969099521155010221e-10, // S6 12 4.16666666666666019037e-02, // C1 13 coefficients for cos -1.38888888888741095749e-03, // 14 2.48015872894767294178e-05, // 15 -2.75573143513906633035e-07, // 16 2.08757232129817482790e-09, // 17 -1.13596475577881948265e-11, // C6 18 3.33333333333334091986e-01, // T0 19 coefficients for tan 1.33333333333201242699e-01, // 20 5.39682539762260521377e-02, // 21 2.18694882948595424599e-02, // 22 8.86323982359930005737e-03, // 23 3.59207910759131235356e-03, // 24 1.45620945432529025516e-03, // 25 5.88041240820264096874e-04, // 26 2.46463134818469906812e-04, // 27 7.81794442939557092300e-05, // 28 7.14072491382608190305e-05, // 29 -1.85586374855275456654e-05, // 30 2.59073051863633712884e-05, // T12 31 7.85398163397448278999e-01, // pio4 32 3.06161699786838301793e-17, // pio4lo 33 6.93147180369123816490e-01, // ln2_hi 34 1.90821492927058770002e-10, // ln2_lo 35 1.80143985094819840000e+16, // 2^54 36 6.666666666666666666e-01, // 2/3 37 6.666666666666735130e-01, // LP1 38 coefficients for log1p 3.999999999940941908e-01, // 39 2.857142874366239149e-01, // 40 2.222219843214978396e-01, // 41 1.818357216161805012e-01, // 42 1.531383769920937332e-01, // 43 1.479819860511658591e-01, // LP7 44 7.09782712893383973096e+02, // 45 overflow threshold for expm1 1.44269504088896338700e+00, // 1/ln2 46 -3.33333333333331316428e-02, // Q1 47 coefficients for expm1 1.58730158725481460165e-03, // 48 -7.93650757867487942473e-05, // 49 4.00821782732936239552e-06, // 50 -2.01099218183624371326e-07, // Q5 51 710.4758600739439 // 52 overflow threshold sinh, cosh }; // Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi static const int two_over_pi[] = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B}; static const double zero = 0.0; static const double two24 = 1.6777216e+07; static const double one = 1.0; static const double twon24 = 5.9604644775390625e-08; static const double PIo2[] = { 1.57079625129699707031e+00, // 0x3FF921FB, 0x40000000 7.54978941586159635335e-08, // 0x3E74442D, 0x00000000 5.39030252995776476554e-15, // 0x3CF84698, 0x80000000 3.28200341580791294123e-22, // 0x3B78CC51, 0x60000000 1.27065575308067607349e-29, // 0x39F01B83, 0x80000000 1.22933308981111328932e-36, // 0x387A2520, 0x40000000 2.73370053816464559624e-44, // 0x36E38222, 0x80000000 2.16741683877804819444e-51 // 0x3569F31D, 0x00000000 }; int __kernel_rem_pio2(double* x, double* y, int e0, int nx) { static const int32_t jk = 3; double fw; int32_t jx = nx - 1; int32_t jv = (e0 - 3) / 24; if (jv < 0) jv = 0; int32_t q0 = e0 - 24 * (jv + 1); int32_t m = jx + jk; double f[10]; for (int i = 0, j = jv - jx; i <= m; i++, j++) { f[i] = (j < 0) ? zero : static_cast<double>(two_over_pi[j]); } double q[10]; for (int i = 0; i <= jk; i++) { fw = 0.0; for (int j = 0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } int32_t jz = jk; recompute: int32_t iq[10]; double z = q[jz]; for (int i = 0, j = jz; j > 0; i++, j--) { fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); iq[i] = static_cast<int32_t>(z - two24 * fw); z = q[j - 1] + fw; } z = scalbn(z, q0); z -= 8.0 * std::floor(z * 0.125); int32_t n = static_cast<int32_t>(z); z -= static_cast<double>(n); int32_t ih = 0; if (q0 > 0) { int32_t i = (iq[jz - 1] >> (24 - q0)); n += i; iq[jz - 1] -= i << (24 - q0); ih = iq[jz - 1] >> (23 - q0); } else if (q0 == 0) { ih = iq[jz - 1] >> 23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { n += 1; int32_t carry = 0; for (int i = 0; i < jz; i++) { int32_t j = iq[i]; if (carry == 0) { if (j != 0) { carry = 1; iq[i] = 0x1000000 - j; } } else { iq[i] = 0xffffff - j; } } if (q0 == 1) { iq[jz - 1] &= 0x7fffff; } else if (q0 == 2) { iq[jz - 1] &= 0x3fffff; } if (ih == 2) { z = one - z; if (carry != 0) z -= scalbn(one, q0); } } if (z == zero) { int32_t j = 0; for (int i = jz - 1; i >= jk; i--) j |= iq[i]; if (j == 0) { int32_t k = 1; while (iq[jk - k] == 0) k++; for (int i = jz + 1; i <= jz + k; i++) { f[jx + i] = static_cast<double>(two_over_pi[jv + i]); for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz += k; goto recompute; } } if (z == 0.0) { jz -= 1; q0 -= 24; while (iq[jz] == 0) { jz--; q0 -= 24; } } else { z = scalbn(z, -q0); if (z >= two24) { fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); iq[jz] = static_cast<int32_t>(z - two24 * fw); jz += 1; q0 += 24; iq[jz] = static_cast<int32_t>(fw); } else { iq[jz] = static_cast<int32_t>(z); } } fw = scalbn(one, q0); for (int i = jz; i >= 0; i--) { q[i] = fw * static_cast<double>(iq[i]); fw *= twon24; } double fq[10]; for (int i = jz; i >= 0; i--) { fw = 0.0; for (int k = 0; k <= jk && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; fq[jz - i] = fw; } fw = 0.0; for (int i = jz; i >= 0; i--) fw += fq[i]; y[0] = (ih == 0) ? fw : -fw; fw = fq[0] - fw; for (int i = 1; i <= jz; i++) fw += fq[i]; y[1] = (ih == 0) ? fw : -fw; return n & 7; } int rempio2(double x, double* y) { int32_t hx = static_cast<int32_t>(internal::double_to_uint64(x) >> 32); int32_t ix = hx & 0x7fffffff; if (ix >= 0x7ff00000) { *y = base::OS::nan_value(); return 0; } int32_t e0 = (ix >> 20) - 1046; uint64_t zi = internal::double_to_uint64(x) & 0xFFFFFFFFu; zi |= static_cast<uint64_t>(ix - (e0 << 20)) << 32; double z = internal::uint64_to_double(zi); double tx[3]; for (int i = 0; i < 2; i++) { tx[i] = static_cast<double>(static_cast<int32_t>(z)); z = (z - tx[i]) * two24; } tx[2] = z; int nx = 3; while (tx[nx - 1] == zero) nx--; int n = __kernel_rem_pio2(tx, y, e0, nx); if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } return n; } } } // namespace v8::internal