// Copyright 2012 the V8 project authors. All rights reserved.7 // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/v8.h" #include "src/base/bits.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/hydrogen-osr.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/mips/lithium-codegen-mips.h" #include "src/mips/lithium-gap-resolver-mips.h" namespace v8 { namespace internal { class SafepointGenerator FINAL : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() {} virtual void BeforeCall(int call_size) const OVERRIDE {} virtual void AfterCall() const OVERRIDE { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); DCHECK(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // NONE indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::NONE); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle<Code> code) { DCHECK(is_done()); code->set_stack_slots(GetStackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code); PopulateDeoptimizationData(code); } void LCodeGen::SaveCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Save clobbered callee double registers"); int count = 0; BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); while (!save_iterator.Done()) { __ sdc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } void LCodeGen::RestoreCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Restore clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); int count = 0; while (!save_iterator.Done()) { __ ldc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } bool LCodeGen::GeneratePrologue() { DCHECK(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { __ stop("stop_at"); } #endif // a1: Callee's JS function. // cp: Callee's context. // fp: Caller's frame pointer. // lr: Caller's pc. // Sloppy mode functions and builtins need to replace the receiver with the // global proxy when called as functions (without an explicit receiver // object). if (info_->this_has_uses() && info_->strict_mode() == SLOPPY && !info_->is_native()) { Label ok; int receiver_offset = info_->scope()->num_parameters() * kPointerSize; __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ lw(a2, MemOperand(sp, receiver_offset)); __ Branch(&ok, ne, a2, Operand(at)); __ lw(a2, GlobalObjectOperand()); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset)); __ sw(a2, MemOperand(sp, receiver_offset)); __ bind(&ok); } } info()->set_prologue_offset(masm_->pc_offset()); if (NeedsEagerFrame()) { if (info()->IsStub()) { __ StubPrologue(); } else { __ Prologue(info()->IsCodePreAgingActive()); } frame_is_built_ = true; info_->AddNoFrameRange(0, masm_->pc_offset()); } // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ Subu(sp, sp, Operand(slots * kPointerSize)); __ Push(a0, a1); __ Addu(a0, sp, Operand(slots * kPointerSize)); __ li(a1, Operand(kSlotsZapValue)); Label loop; __ bind(&loop); __ Subu(a0, a0, Operand(kPointerSize)); __ sw(a1, MemOperand(a0, 2 * kPointerSize)); __ Branch(&loop, ne, a0, Operand(sp)); __ Pop(a0, a1); } else { __ Subu(sp, sp, Operand(slots * kPointerSize)); } } if (info()->saves_caller_doubles()) { SaveCallerDoubles(); } // Possibly allocate a local context. int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is in a1. if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(isolate(), heap_slots); __ CallStub(&stub); // Result of FastNewContextStub is always in new space. need_write_barrier = false; } else { __ push(a1); __ CallRuntime(Runtime::kNewFunctionContext, 1); } RecordSafepoint(Safepoint::kNoLazyDeopt); // Context is returned in both v0. It replaces the context passed to us. // It's saved in the stack and kept live in cp. __ mov(cp, v0); __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ lw(a0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextOperand(cp, var->index()); __ sw(a0, target); // Update the write barrier. This clobbers a3 and a0. if (need_write_barrier) { __ RecordWriteContextSlot( cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, a0, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace && info()->IsOptimizing()) { // We have not executed any compiled code yet, so cp still holds the // incoming context. __ CallRuntime(Runtime::kTraceEnter, 0); } return !is_aborted(); } void LCodeGen::GenerateOsrPrologue() { // Generate the OSR entry prologue at the first unknown OSR value, or if there // are none, at the OSR entrypoint instruction. if (osr_pc_offset_ >= 0) return; osr_pc_offset_ = masm()->pc_offset(); // Adjust the frame size, subsuming the unoptimized frame into the // optimized frame. int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); DCHECK(slots >= 0); __ Subu(sp, sp, Operand(slots * kPointerSize)); } void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { if (instr->IsCall()) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); } if (!instr->IsLazyBailout() && !instr->IsGap()) { safepoints_.BumpLastLazySafepointIndex(); } } bool LCodeGen::GenerateDeferredCode() { DCHECK(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; HValue* value = instructions_->at(code->instruction_index())->hydrogen_value(); RecordAndWritePosition( chunk()->graph()->SourcePositionToScriptPosition(value->position())); Comment(";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); DCHECK(!frame_is_built_); DCHECK(info()->IsStub()); frame_is_built_ = true; __ MultiPush(cp.bit() | fp.bit() | ra.bit()); __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); __ push(scratch0()); __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { Comment(";;; Destroy frame"); DCHECK(frame_is_built_); __ pop(at); __ MultiPop(cp.bit() | fp.bit() | ra.bit()); frame_is_built_ = false; } __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateJumpTable() { if (jump_table_.length() > 0) { Label needs_frame, call_deopt_entry; Comment(";;; -------------------- Jump table --------------------"); Address base = jump_table_[0].address; Register entry_offset = t9; int length = jump_table_.length(); for (int i = 0; i < length; i++) { Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; __ bind(&table_entry->label); DCHECK(table_entry->bailout_type == jump_table_[0].bailout_type); Address entry = table_entry->address; DeoptComment(table_entry->reason); // Second-level deopt table entries are contiguous and small, so instead // of loading the full, absolute address of each one, load an immediate // offset which will be added to the base address later. __ li(entry_offset, Operand(entry - base)); if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); if (needs_frame.is_bound()) { __ Branch(&needs_frame); } else { __ bind(&needs_frame); Comment(";;; call deopt with frame"); __ MultiPush(cp.bit() | fp.bit() | ra.bit()); // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. DCHECK(info()->IsStub()); __ li(at, Operand(Smi::FromInt(StackFrame::STUB))); __ push(at); __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); __ bind(&call_deopt_entry); // Add the base address to the offset previously loaded in // entry_offset. __ Addu(entry_offset, entry_offset, Operand(ExternalReference::ForDeoptEntry(base))); __ Call(entry_offset); } } else { // The last entry can fall through into `call_deopt_entry`, avoiding a // branch. bool need_branch = ((i + 1) != length) || call_deopt_entry.is_bound(); if (need_branch) __ Branch(&call_deopt_entry); } } if (!call_deopt_entry.is_bound()) { Comment(";;; call deopt"); __ bind(&call_deopt_entry); if (info()->saves_caller_doubles()) { DCHECK(info()->IsStub()); RestoreCallerDoubles(); } // Add the base address to the offset previously loaded in entry_offset. __ Addu(entry_offset, entry_offset, Operand(ExternalReference::ForDeoptEntry(base))); __ Call(entry_offset); } } __ RecordComment("]"); // The deoptimization jump table is the last part of the instruction // sequence. Mark the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { DCHECK(is_done()); safepoints_.Emit(masm(), GetStackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } DoubleRegister LCodeGen::ToDoubleRegister(int index) const { return DoubleRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { DCHECK(op->IsRegister()); return ToRegister(op->index()); } Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { if (op->IsRegister()) { return ToRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle<Object> literal = constant->handle(isolate()); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { DCHECK(literal->IsNumber()); __ li(scratch, Operand(static_cast<int32_t>(literal->Number()))); } else if (r.IsSmi()) { DCHECK(constant->HasSmiValue()); __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value()))); } else if (r.IsDouble()) { Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); } else { DCHECK(r.IsSmiOrTagged()); __ li(scratch, literal); } return scratch; } else if (op->IsStackSlot()) { __ lw(scratch, ToMemOperand(op)); return scratch; } UNREACHABLE(); return scratch; } DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { DCHECK(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, FloatRegister flt_scratch, DoubleRegister dbl_scratch) { if (op->IsDoubleRegister()) { return ToDoubleRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle<Object> literal = constant->handle(isolate()); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { DCHECK(literal->IsNumber()); __ li(at, Operand(static_cast<int32_t>(literal->Number()))); __ mtc1(at, flt_scratch); __ cvt_d_w(dbl_scratch, flt_scratch); return dbl_scratch; } else if (r.IsDouble()) { Abort(kUnsupportedDoubleImmediate); } else if (r.IsTagged()) { Abort(kUnsupportedTaggedImmediate); } } else if (op->IsStackSlot()) { MemOperand mem_op = ToMemOperand(op); __ ldc1(dbl_scratch, mem_op); return dbl_scratch; } UNREACHABLE(); return dbl_scratch; } Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(isolate()); } bool LCodeGen::IsInteger32(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } bool LCodeGen::IsSmi(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { return ToRepresentation(op, Representation::Integer32()); } int32_t LCodeGen::ToRepresentation(LConstantOperand* op, const Representation& r) const { HConstant* constant = chunk_->LookupConstant(op); int32_t value = constant->Integer32Value(); if (r.IsInteger32()) return value; DCHECK(r.IsSmiOrTagged()); return reinterpret_cast<int32_t>(Smi::FromInt(value)); } Smi* LCodeGen::ToSmi(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return Smi::FromInt(constant->Integer32Value()); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasDoubleValue()); return constant->DoubleValue(); } Operand LCodeGen::ToOperand(LOperand* op) { if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk()->LookupConstant(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsSmi()) { DCHECK(constant->HasSmiValue()); return Operand(Smi::FromInt(constant->Integer32Value())); } else if (r.IsInteger32()) { DCHECK(constant->HasInteger32Value()); return Operand(constant->Integer32Value()); } else if (r.IsDouble()) { Abort(kToOperandUnsupportedDoubleImmediate); } DCHECK(r.IsTagged()); return Operand(constant->handle(isolate())); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort(kToOperandIsDoubleRegisterUnimplemented); return Operand(0); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand(0); } static int ArgumentsOffsetWithoutFrame(int index) { DCHECK(index < 0); return -(index + 1) * kPointerSize; } MemOperand LCodeGen::ToMemOperand(LOperand* op) const { DCHECK(!op->IsRegister()); DCHECK(!op->IsDoubleRegister()); DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return MemOperand(fp, StackSlotOffset(op->index())); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index())); } } MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { DCHECK(op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return MemOperand( sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); WriteTranslation(environment->outer(), translation); bool has_closure_id = !info()->closure().is_null() && !info()->closure().is_identical_to(environment->closure()); int closure_id = has_closure_id ? DefineDeoptimizationLiteral(environment->closure()) : Translation::kSelfLiteralId; switch (environment->frame_type()) { case JS_FUNCTION: translation->BeginJSFrame(environment->ast_id(), closure_id, height); break; case JS_CONSTRUCT: translation->BeginConstructStubFrame(closure_id, translation_size); break; case JS_GETTER: DCHECK(translation_size == 1); DCHECK(height == 0); translation->BeginGetterStubFrame(closure_id); break; case JS_SETTER: DCHECK(translation_size == 2); DCHECK(height == 0); translation->BeginSetterStubFrame(closure_id); break; case STUB: translation->BeginCompiledStubFrame(); break; case ARGUMENTS_ADAPTOR: translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); break; } int object_index = 0; int dematerialized_index = 0; for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); } } void LCodeGen::AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer) { if (op == LEnvironment::materialization_marker()) { int object_index = (*object_index_pointer)++; if (environment->ObjectIsDuplicateAt(object_index)) { int dupe_of = environment->ObjectDuplicateOfAt(object_index); translation->DuplicateObject(dupe_of); return; } int object_length = environment->ObjectLengthAt(object_index); if (environment->ObjectIsArgumentsAt(object_index)) { translation->BeginArgumentsObject(object_length); } else { translation->BeginCapturedObject(object_length); } int dematerialized_index = *dematerialized_index_pointer; int env_offset = environment->translation_size() + dematerialized_index; *dematerialized_index_pointer += object_length; for (int i = 0; i < object_length; ++i) { LOperand* value = environment->values()->at(env_offset + i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(env_offset + i), environment->HasUint32ValueAt(env_offset + i), object_index_pointer, dematerialized_index_pointer); } return; } if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else if (is_uint32) { translation->StoreUint32StackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { DCHECK(instr != NULL); __ Call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles) { DCHECK(instr != NULL); __ CallRuntime(function, num_arguments, save_doubles); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::LoadContextFromDeferred(LOperand* context) { if (context->IsRegister()) { __ Move(cp, ToRegister(context)); } else if (context->IsStackSlot()) { __ lw(cp, ToMemOperand(context)); } else if (context->IsConstantOperand()) { HConstant* constant = chunk_->LookupConstant(LConstantOperand::cast(context)); __ li(cp, Handle<Object>::cast(constant->handle(isolate()))); } else { UNREACHABLE(); } } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { LoadContextFromDeferred(context); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { environment->set_has_been_used(); if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, zone()); } } void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr, Deoptimizer::BailoutType bailout_type, Register src1, const Operand& src2, const char* detail) { LEnvironment* environment = instr->environment(); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); DCHECK(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); DCHECK(info()->IsOptimizing() || info()->IsStub()); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort(kBailoutWasNotPrepared); return; } if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { Register scratch = scratch0(); ExternalReference count = ExternalReference::stress_deopt_count(isolate()); Label no_deopt; __ Push(a1, scratch); __ li(scratch, Operand(count)); __ lw(a1, MemOperand(scratch)); __ Subu(a1, a1, Operand(1)); __ Branch(&no_deopt, ne, a1, Operand(zero_reg)); __ li(a1, Operand(FLAG_deopt_every_n_times)); __ sw(a1, MemOperand(scratch)); __ Pop(a1, scratch); __ Call(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&no_deopt); __ sw(a1, MemOperand(scratch)); __ Pop(a1, scratch); } if (info()->ShouldTrapOnDeopt()) { Label skip; if (condition != al) { __ Branch(&skip, NegateCondition(condition), src1, src2); } __ stop("trap_on_deopt"); __ bind(&skip); } Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(), instr->Mnemonic(), detail); DCHECK(info()->IsStub() || frame_is_built_); // Go through jump table if we need to handle condition, build frame, or // restore caller doubles. if (condition == al && frame_is_built_ && !info()->saves_caller_doubles()) { DeoptComment(reason); __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2); } else { Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type, !frame_is_built_); // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (jump_table_.is_empty() || !table_entry.IsEquivalentTo(jump_table_.last())) { jump_table_.Add(table_entry, zone()); } __ Branch(&jump_table_.last().label, condition, src1, src2); } } void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr, Register src1, const Operand& src2, const char* detail) { Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; DeoptimizeIf(condition, instr, bailout_type, src1, src2, detail); } void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { int length = deoptimizations_.length(); if (length == 0) return; Handle<DeoptimizationInputData> data = DeoptimizationInputData::New(isolate(), length, TENURED); Handle<ByteArray> translations = translations_.CreateByteArray(isolate()->factory()); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); if (info_->IsOptimizing()) { // Reference to shared function info does not change between phases. AllowDeferredHandleDereference allow_handle_dereference; data->SetSharedFunctionInfo(*info_->shared_info()); } else { data->SetSharedFunctionInfo(Smi::FromInt(0)); } Handle<FixedArray> literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); { AllowDeferredHandleDereference copy_handles; for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); } data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, env->ast_id()); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); data->SetPc(i, Smi::FromInt(env->pc_offset())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal, zone()); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { DCHECK(deoptimization_literals_.length() == 0); const ZoneList<Handle<JSFunction> >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK(expected_safepoint_kind_ == kind); const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint( pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } void LCodeGen::RecordAndWritePosition(int position) { if (position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); masm()->positions_recorder()->WriteRecordedPositions(); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->result()).is(v0)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpExec: { RegExpExecStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { GenerateOsrPrologue(); } void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // Theoretically, a variation of the branch-free code for integer division by // a power of 2 (calculating the remainder via an additional multiplication // (which gets simplified to an 'and') and subtraction) should be faster, and // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to // indicate that positive dividends are heavily favored, so the branching // version performs better. HMod* hmod = instr->hydrogen(); int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); Label dividend_is_not_negative, done; if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { __ Branch(÷nd_is_not_negative, ge, dividend, Operand(zero_reg)); // Note: The code below even works when right contains kMinInt. __ subu(dividend, zero_reg, dividend); __ And(dividend, dividend, Operand(mask)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, dividend, Operand(zero_reg)); } __ Branch(USE_DELAY_SLOT, &done); __ subu(dividend, zero_reg, dividend); } __ bind(÷nd_is_not_negative); __ And(dividend, dividend, Operand(mask)); __ bind(&done); } void LCodeGen::DoModByConstI(LModByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr); return; } __ TruncatingDiv(result, dividend, Abs(divisor)); __ Mul(result, result, Operand(Abs(divisor))); __ Subu(result, dividend, Operand(result)); // Check for negative zero. HMod* hmod = instr->hydrogen(); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label remainder_not_zero; __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg)); DeoptimizeIf(lt, instr, dividend, Operand(zero_reg)); __ bind(&remainder_not_zero); } } void LCodeGen::DoModI(LModI* instr) { HMod* hmod = instr->hydrogen(); const Register left_reg = ToRegister(instr->left()); const Register right_reg = ToRegister(instr->right()); const Register result_reg = ToRegister(instr->result()); // div runs in the background while we check for special cases. __ Mod(result_reg, left_reg, right_reg); Label done; // Check for x % 0, we have to deopt in this case because we can't return a // NaN. if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr, right_reg, Operand(zero_reg)); } // Check for kMinInt % -1, div will return kMinInt, which is not what we // want. We have to deopt if we care about -0, because we can't return that. if (hmod->CheckFlag(HValue::kCanOverflow)) { Label no_overflow_possible; __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, right_reg, Operand(-1)); } else { __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1)); __ Branch(USE_DELAY_SLOT, &done); __ mov(result_reg, zero_reg); } __ bind(&no_overflow_possible); } // If we care about -0, test if the dividend is <0 and the result is 0. __ Branch(&done, ge, left_reg, Operand(zero_reg)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, result_reg, Operand(zero_reg)); } __ bind(&done); } void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); DCHECK(!result.is(dividend)); // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIf(eq, instr, dividend, Operand(zero_reg)); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { DeoptimizeIf(eq, instr, dividend, Operand(kMinInt)); } // Deoptimize if remainder will not be 0. if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && divisor != 1 && divisor != -1) { int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); __ And(at, dividend, Operand(mask)); DeoptimizeIf(ne, instr, at, Operand(zero_reg)); } if (divisor == -1) { // Nice shortcut, not needed for correctness. __ Subu(result, zero_reg, dividend); return; } uint16_t shift = WhichPowerOf2Abs(divisor); if (shift == 0) { __ Move(result, dividend); } else if (shift == 1) { __ srl(result, dividend, 31); __ Addu(result, dividend, Operand(result)); } else { __ sra(result, dividend, 31); __ srl(result, result, 32 - shift); __ Addu(result, dividend, Operand(result)); } if (shift > 0) __ sra(result, result, shift); if (divisor < 0) __ Subu(result, zero_reg, result); } void LCodeGen::DoDivByConstI(LDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr); return; } // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIf(eq, instr, dividend, Operand(zero_reg)); } __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Subu(result, zero_reg, result); if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { __ Mul(scratch0(), result, Operand(divisor)); __ Subu(scratch0(), scratch0(), dividend); DeoptimizeIf(ne, instr, scratch0(), Operand(zero_reg)); } } // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. void LCodeGen::DoDivI(LDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); const Register result = ToRegister(instr->result()); Register remainder = ToRegister(instr->temp()); // On MIPS div is asynchronous - it will run in the background while we // check for special cases. __ Div(remainder, result, dividend, divisor); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr, divisor, Operand(zero_reg)); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg)); DeoptimizeIf(lt, instr, divisor, Operand(zero_reg)); __ bind(&left_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { Label left_not_min_int; __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt)); DeoptimizeIf(eq, instr, divisor, Operand(-1)); __ bind(&left_not_min_int); } if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { DeoptimizeIf(ne, instr, remainder, Operand(zero_reg)); } } void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { DoubleRegister addend = ToDoubleRegister(instr->addend()); DoubleRegister multiplier = ToDoubleRegister(instr->multiplier()); DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand()); // This is computed in-place. DCHECK(addend.is(ToDoubleRegister(instr->result()))); __ madd_d(addend, addend, multiplier, multiplicand); } void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); Register result = ToRegister(instr->result()); int32_t divisor = instr->divisor(); Register scratch = result.is(dividend) ? scratch0() : dividend; DCHECK(!result.is(dividend) || !scratch.is(dividend)); // If the divisor is 1, return the dividend. if (divisor == 1) { __ Move(result, dividend); return; } // If the divisor is positive, things are easy: There can be no deopts and we // can simply do an arithmetic right shift. uint16_t shift = WhichPowerOf2Abs(divisor); if (divisor > 1) { __ sra(result, dividend, shift); return; } // If the divisor is negative, we have to negate and handle edge cases. // dividend can be the same register as result so save the value of it // for checking overflow. __ Move(scratch, dividend); __ Subu(result, zero_reg, dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, result, Operand(zero_reg)); } // Dividing by -1 is basically negation, unless we overflow. __ Xor(scratch, scratch, result); if (divisor == -1) { if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { DeoptimizeIf(ge, instr, scratch, Operand(zero_reg)); } return; } // If the negation could not overflow, simply shifting is OK. if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { __ sra(result, result, shift); return; } Label no_overflow, done; __ Branch(&no_overflow, lt, scratch, Operand(zero_reg)); __ li(result, Operand(kMinInt / divisor)); __ Branch(&done); __ bind(&no_overflow); __ sra(result, result, shift); __ bind(&done); } void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr); return; } // Check for (0 / -x) that will produce negative zero. HMathFloorOfDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIf(eq, instr, dividend, Operand(zero_reg)); } // Easy case: We need no dynamic check for the dividend and the flooring // division is the same as the truncating division. if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Subu(result, zero_reg, result); return; } // In the general case we may need to adjust before and after the truncating // division to get a flooring division. Register temp = ToRegister(instr->temp()); DCHECK(!temp.is(dividend) && !temp.is(result)); Label needs_adjustment, done; __ Branch(&needs_adjustment, divisor > 0 ? lt : gt, dividend, Operand(zero_reg)); __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Subu(result, zero_reg, result); __ jmp(&done); __ bind(&needs_adjustment); __ Addu(temp, dividend, Operand(divisor > 0 ? 1 : -1)); __ TruncatingDiv(result, temp, Abs(divisor)); if (divisor < 0) __ Subu(result, zero_reg, result); __ Subu(result, result, Operand(1)); __ bind(&done); } // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); const Register result = ToRegister(instr->result()); Register remainder = scratch0(); // On MIPS div is asynchronous - it will run in the background while we // check for special cases. __ Div(remainder, result, dividend, divisor); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr, divisor, Operand(zero_reg)); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg)); DeoptimizeIf(lt, instr, divisor, Operand(zero_reg)); __ bind(&left_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { Label left_not_min_int; __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt)); DeoptimizeIf(eq, instr, divisor, Operand(-1)); __ bind(&left_not_min_int); } // We performed a truncating division. Correct the result if necessary. Label done; __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT); __ Xor(remainder, remainder, Operand(divisor)); __ Branch(&done, ge, remainder, Operand(zero_reg)); __ Subu(result, result, Operand(1)); __ bind(&done); } void LCodeGen::DoMulI(LMulI* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Note that result may alias left. Register left = ToRegister(instr->left()); LOperand* right_op = instr->right(); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right_op->IsConstantOperand()) { int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); if (bailout_on_minus_zero && (constant < 0)) { // The case of a null constant will be handled separately. // If constant is negative and left is null, the result should be -0. DeoptimizeIf(eq, instr, left, Operand(zero_reg)); } switch (constant) { case -1: if (overflow) { __ SubuAndCheckForOverflow(result, zero_reg, left, scratch); DeoptimizeIf(lt, instr, scratch, Operand(zero_reg)); } else { __ Subu(result, zero_reg, left); } break; case 0: if (bailout_on_minus_zero) { // If left is strictly negative and the constant is null, the // result is -0. Deoptimize if required, otherwise return 0. DeoptimizeIf(lt, instr, left, Operand(zero_reg)); } __ mov(result, zero_reg); break; case 1: // Nothing to do. __ Move(result, left); break; default: // Multiplying by powers of two and powers of two plus or minus // one can be done faster with shifted operands. // For other constants we emit standard code. int32_t mask = constant >> 31; uint32_t constant_abs = (constant + mask) ^ mask; if (base::bits::IsPowerOfTwo32(constant_abs)) { int32_t shift = WhichPowerOf2(constant_abs); __ sll(result, left, shift); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Subu(result, zero_reg, result); } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) { int32_t shift = WhichPowerOf2(constant_abs - 1); __ sll(scratch, left, shift); __ Addu(result, scratch, left); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Subu(result, zero_reg, result); } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) { int32_t shift = WhichPowerOf2(constant_abs + 1); __ sll(scratch, left, shift); __ Subu(result, scratch, left); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Subu(result, zero_reg, result); } else { // Generate standard code. __ li(at, constant); __ Mul(result, left, at); } } } else { DCHECK(right_op->IsRegister()); Register right = ToRegister(right_op); if (overflow) { // hi:lo = left * right. if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(result, left); __ Mul(scratch, result, result, right); } else { __ Mul(scratch, result, left, right); } __ sra(at, result, 31); DeoptimizeIf(ne, instr, scratch, Operand(at)); } else { if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(result, left); __ Mul(result, result, right); } else { __ Mul(result, left, right); } } if (bailout_on_minus_zero) { Label done; __ Xor(at, left, right); __ Branch(&done, ge, at, Operand(zero_reg)); // Bail out if the result is minus zero. DeoptimizeIf(eq, instr, result, Operand(zero_reg)); __ bind(&done); } } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left_op = instr->left(); LOperand* right_op = instr->right(); DCHECK(left_op->IsRegister()); Register left = ToRegister(left_op); Register result = ToRegister(instr->result()); Operand right(no_reg); if (right_op->IsStackSlot()) { right = Operand(EmitLoadRegister(right_op, at)); } else { DCHECK(right_op->IsRegister() || right_op->IsConstantOperand()); right = ToOperand(right_op); } switch (instr->op()) { case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_OR: __ Or(result, left, right); break; case Token::BIT_XOR: if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) { __ Nor(result, zero_reg, left); } else { __ Xor(result, left, right); } break; default: UNREACHABLE(); break; } } void LCodeGen::DoShiftI(LShiftI* instr) { // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so // result may alias either of them. LOperand* right_op = instr->right(); Register left = ToRegister(instr->left()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); if (right_op->IsRegister()) { // No need to mask the right operand on MIPS, it is built into the variable // shift instructions. switch (instr->op()) { case Token::ROR: __ Ror(result, left, Operand(ToRegister(right_op))); break; case Token::SAR: __ srav(result, left, ToRegister(right_op)); break; case Token::SHR: __ srlv(result, left, ToRegister(right_op)); if (instr->can_deopt()) { DeoptimizeIf(lt, instr, result, Operand(zero_reg)); } break; case Token::SHL: __ sllv(result, left, ToRegister(right_op)); break; default: UNREACHABLE(); break; } } else { // Mask the right_op operand. int value = ToInteger32(LConstantOperand::cast(right_op)); uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); switch (instr->op()) { case Token::ROR: if (shift_count != 0) { __ Ror(result, left, Operand(shift_count)); } else { __ Move(result, left); } break; case Token::SAR: if (shift_count != 0) { __ sra(result, left, shift_count); } else { __ Move(result, left); } break; case Token::SHR: if (shift_count != 0) { __ srl(result, left, shift_count); } else { if (instr->can_deopt()) { __ And(at, left, Operand(0x80000000)); DeoptimizeIf(ne, instr, at, Operand(zero_reg)); } __ Move(result, left); } break; case Token::SHL: if (shift_count != 0) { if (instr->hydrogen_value()->representation().IsSmi() && instr->can_deopt()) { if (shift_count != 1) { __ sll(result, left, shift_count - 1); __ SmiTagCheckOverflow(result, result, scratch); } else { __ SmiTagCheckOverflow(result, left, scratch); } DeoptimizeIf(lt, instr, scratch, Operand(zero_reg)); } else { __ sll(result, left, shift_count); } } else { __ Move(result, left); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { if (right->IsStackSlot()) { Register right_reg = EmitLoadRegister(right, at); __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg)); } else { DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Subu(ToRegister(result), ToRegister(left), ToOperand(right)); } } else { // can_overflow. Register overflow = scratch0(); Register scratch = scratch1(); if (right->IsStackSlot() || right->IsConstantOperand()) { Register right_reg = EmitLoadRegister(right, scratch); __ SubuAndCheckForOverflow(ToRegister(result), ToRegister(left), right_reg, overflow); // Reg at also used as scratch. } else { DCHECK(right->IsRegister()); // Due to overflow check macros not supporting constant operands, // handling the IsConstantOperand case was moved to prev if clause. __ SubuAndCheckForOverflow(ToRegister(result), ToRegister(left), ToRegister(right), overflow); // Reg at also used as scratch. } DeoptimizeIf(lt, instr, overflow, Operand(zero_reg)); } } void LCodeGen::DoConstantI(LConstantI* instr) { __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantS(LConstantS* instr) { __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { DCHECK(instr->result()->IsDoubleRegister()); DoubleRegister result = ToDoubleRegister(instr->result()); double v = instr->value(); __ Move(result, v); } void LCodeGen::DoConstantE(LConstantE* instr) { __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle<Object> object = instr->value(isolate()); AllowDeferredHandleDereference smi_check; __ li(ToRegister(instr->result()), object); } void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { Register result = ToRegister(instr->result()); Register map = ToRegister(instr->value()); __ EnumLength(result, map); } void LCodeGen::DoDateField(LDateField* instr) { Register object = ToRegister(instr->date()); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp()); Smi* index = instr->index(); Label runtime, done; DCHECK(object.is(a0)); DCHECK(result.is(v0)); DCHECK(!scratch.is(scratch0())); DCHECK(!scratch.is(object)); __ SmiTst(object, at); DeoptimizeIf(eq, instr, at, Operand(zero_reg)); __ GetObjectType(object, scratch, scratch); DeoptimizeIf(ne, instr, scratch, Operand(JS_DATE_TYPE)); if (index->value() == 0) { __ lw(result, FieldMemOperand(object, JSDate::kValueOffset)); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ li(scratch, Operand(stamp)); __ lw(scratch, MemOperand(scratch)); __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); __ Branch(&runtime, ne, scratch, Operand(scratch0())); __ lw(result, FieldMemOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2, scratch); __ li(a1, Operand(index)); __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ bind(&done); } } MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index, String::Encoding encoding) { if (index->IsConstantOperand()) { int offset = ToInteger32(LConstantOperand::cast(index)); if (encoding == String::TWO_BYTE_ENCODING) { offset *= kUC16Size; } STATIC_ASSERT(kCharSize == 1); return FieldMemOperand(string, SeqString::kHeaderSize + offset); } Register scratch = scratch0(); DCHECK(!scratch.is(string)); DCHECK(!scratch.is(ToRegister(index))); if (encoding == String::ONE_BYTE_ENCODING) { __ Addu(scratch, string, ToRegister(index)); } else { STATIC_ASSERT(kUC16Size == 2); __ sll(scratch, ToRegister(index), 1); __ Addu(scratch, string, scratch); } return FieldMemOperand(scratch, SeqString::kHeaderSize); } void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { Register scratch = scratch0(); __ lw(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ And(scratch, scratch, Operand(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ Subu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg)); } MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ lbu(result, operand); } else { __ lhu(result, operand); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register value = ToRegister(instr->value()); if (FLAG_debug_code) { Register scratch = scratch0(); Register index = ToRegister(instr->index()); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; int encoding_mask = instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type; __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask); } MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ sb(value, operand); } else { __ sh(value, operand); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { if (right->IsStackSlot()) { Register right_reg = EmitLoadRegister(right, at); __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg)); } else { DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Addu(ToRegister(result), ToRegister(left), ToOperand(right)); } } else { // can_overflow. Register overflow = scratch0(); Register scratch = scratch1(); if (right->IsStackSlot() || right->IsConstantOperand()) { Register right_reg = EmitLoadRegister(right, scratch); __ AdduAndCheckForOverflow(ToRegister(result), ToRegister(left), right_reg, overflow); // Reg at also used as scratch. } else { DCHECK(right->IsRegister()); // Due to overflow check macros not supporting constant operands, // handling the IsConstantOperand case was moved to prev if clause. __ AdduAndCheckForOverflow(ToRegister(result), ToRegister(left), ToRegister(right), overflow); // Reg at also used as scratch. } DeoptimizeIf(lt, instr, overflow, Operand(zero_reg)); } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); HMathMinMax::Operation operation = instr->hydrogen()->operation(); Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge; if (instr->hydrogen()->representation().IsSmiOrInteger32()) { Register left_reg = ToRegister(left); Register right_reg = EmitLoadRegister(right, scratch0()); Register result_reg = ToRegister(instr->result()); Label return_right, done; Register scratch = scratch1(); __ Slt(scratch, left_reg, Operand(right_reg)); if (condition == ge) { __ Movz(result_reg, left_reg, scratch); __ Movn(result_reg, right_reg, scratch); } else { DCHECK(condition == le); __ Movn(result_reg, left_reg, scratch); __ Movz(result_reg, right_reg, scratch); } } else { DCHECK(instr->hydrogen()->representation().IsDouble()); FPURegister left_reg = ToDoubleRegister(left); FPURegister right_reg = ToDoubleRegister(right); FPURegister result_reg = ToDoubleRegister(instr->result()); Label check_nan_left, check_zero, return_left, return_right, done; __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg); __ BranchF(&return_left, NULL, condition, left_reg, right_reg); __ Branch(&return_right); __ bind(&check_zero); // left == right != 0. __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero); // At this point, both left and right are either 0 or -0. if (operation == HMathMinMax::kMathMin) { __ neg_d(left_reg, left_reg); __ sub_d(result_reg, left_reg, right_reg); __ neg_d(result_reg, result_reg); } else { __ add_d(result_reg, left_reg, right_reg); } __ Branch(&done); __ bind(&check_nan_left); // left == NaN. __ BranchF(NULL, &return_left, eq, left_reg, left_reg); __ bind(&return_right); if (!right_reg.is(result_reg)) { __ mov_d(result_reg, right_reg); } __ Branch(&done); __ bind(&return_left); if (!left_reg.is(result_reg)) { __ mov_d(result_reg, left_reg); } __ bind(&done); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DoubleRegister left = ToDoubleRegister(instr->left()); DoubleRegister right = ToDoubleRegister(instr->right()); DoubleRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: __ add_d(result, left, right); break; case Token::SUB: __ sub_d(result, left, right); break; case Token::MUL: __ mul_d(result, left, right); break; case Token::DIV: __ div_d(result, left, right); break; case Token::MOD: { // Save a0-a3 on the stack. RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit(); __ MultiPush(saved_regs); __ PrepareCallCFunction(0, 2, scratch0()); __ MovToFloatParameters(left, right); __ CallCFunction( ExternalReference::mod_two_doubles_operation(isolate()), 0, 2); // Move the result in the double result register. __ MovFromFloatResult(result); // Restore saved register. __ MultiPop(saved_regs); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(a1)); DCHECK(ToRegister(instr->right()).is(a0)); DCHECK(ToRegister(instr->result()).is(v0)); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); // Other arch use a nop here, to signal that there is no inlined // patchable code. Mips does not need the nop, since our marker // instruction (andi zero_reg) will never be used in normal code. } template<class InstrType> void LCodeGen::EmitBranch(InstrType instr, Condition condition, Register src1, const Operand& src2) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block || condition == al) { EmitGoto(left_block); } else if (left_block == next_block) { __ Branch(chunk_->GetAssemblyLabel(right_block), NegateCondition(condition), src1, src2); } else if (right_block == next_block) { __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2); } else { __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2); __ Branch(chunk_->GetAssemblyLabel(right_block)); } } template<class InstrType> void LCodeGen::EmitBranchF(InstrType instr, Condition condition, FPURegister src1, FPURegister src2) { int right_block = instr->FalseDestination(chunk_); int left_block = instr->TrueDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL, NegateCondition(condition), src1, src2); } else if (right_block == next_block) { __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, condition, src1, src2); } else { __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, condition, src1, src2); __ Branch(chunk_->GetAssemblyLabel(right_block)); } } template<class InstrType> void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition, Register src1, const Operand& src2) { int false_block = instr->FalseDestination(chunk_); __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2); } template<class InstrType> void LCodeGen::EmitFalseBranchF(InstrType instr, Condition condition, FPURegister src1, FPURegister src2) { int false_block = instr->FalseDestination(chunk_); __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL, condition, src1, src2); } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LDebugBreak"); } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32() || r.IsSmi()) { DCHECK(!info()->IsStub()); Register reg = ToRegister(instr->value()); EmitBranch(instr, ne, reg, Operand(zero_reg)); } else if (r.IsDouble()) { DCHECK(!info()->IsStub()); DoubleRegister reg = ToDoubleRegister(instr->value()); // Test the double value. Zero and NaN are false. EmitBranchF(instr, nue, reg, kDoubleRegZero); } else { DCHECK(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { DCHECK(!info()->IsStub()); __ LoadRoot(at, Heap::kTrueValueRootIndex); EmitBranch(instr, eq, reg, Operand(at)); } else if (type.IsSmi()) { DCHECK(!info()->IsStub()); EmitBranch(instr, ne, reg, Operand(zero_reg)); } else if (type.IsJSArray()) { DCHECK(!info()->IsStub()); EmitBranch(instr, al, zero_reg, Operand(zero_reg)); } else if (type.IsHeapNumber()) { DCHECK(!info()->IsStub()); DoubleRegister dbl_scratch = double_scratch0(); __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); // Test the double value. Zero and NaN are false. EmitBranchF(instr, nue, dbl_scratch, kDoubleRegZero); } else if (type.IsString()) { DCHECK(!info()->IsStub()); __ lw(at, FieldMemOperand(reg, String::kLengthOffset)); EmitBranch(instr, ne, at, Operand(zero_reg)); } else { ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); if (expected.Contains(ToBooleanStub::UNDEFINED)) { // undefined -> false. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at)); } if (expected.Contains(ToBooleanStub::BOOLEAN)) { // Boolean -> its value. __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at)); __ LoadRoot(at, Heap::kFalseValueRootIndex); __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at)); } if (expected.Contains(ToBooleanStub::NULL_TYPE)) { // 'null' -> false. __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at)); } if (expected.Contains(ToBooleanStub::SMI)) { // Smis: 0 -> false, all other -> true. __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg)); __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); } else if (expected.NeedsMap()) { // If we need a map later and have a Smi -> deopt. __ SmiTst(reg, at); DeoptimizeIf(eq, instr, at, Operand(zero_reg)); } const Register map = scratch0(); if (expected.NeedsMap()) { __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset)); if (expected.CanBeUndetectable()) { // Undetectable -> false. __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, at, Operand(1 << Map::kIsUndetectable)); __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg)); } } if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { // spec object -> true. __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(instr->TrueLabel(chunk_), ge, at, Operand(FIRST_SPEC_OBJECT_TYPE)); } if (expected.Contains(ToBooleanStub::STRING)) { // String value -> false iff empty. Label not_string; __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE)); __ lw(at, FieldMemOperand(reg, String::kLengthOffset)); __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg)); __ Branch(instr->FalseLabel(chunk_)); __ bind(¬_string); } if (expected.Contains(ToBooleanStub::SYMBOL)) { // Symbol value -> true. const Register scratch = scratch1(); __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE)); } if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. DoubleRegister dbl_scratch = double_scratch0(); Label not_heap_number; __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); __ Branch(¬_heap_number, ne, map, Operand(at)); __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), ne, dbl_scratch, kDoubleRegZero); // Falls through if dbl_scratch == 0. __ Branch(instr->FalseLabel(chunk_)); __ bind(¬_heap_number); } if (!expected.IsGeneric()) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. DeoptimizeIf(al, instr, zero_reg, Operand(zero_reg)); } } } } void LCodeGen::EmitGoto(int block) { if (!IsNextEmittedBlock(block)) { __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = kNoCondition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::NE: case Token::NE_STRICT: cond = ne; break; case Token::LT: cond = is_unsigned ? lo : lt; break; case Token::GT: cond = is_unsigned ? hi : gt; break; case Token::LTE: cond = is_unsigned ? ls : le; break; case Token::GTE: cond = is_unsigned ? hs : ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); bool is_unsigned = instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); Condition cond = TokenToCondition(instr->op(), is_unsigned); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { // Compare left and right as doubles and load the // resulting flags into the normal status register. FPURegister left_reg = ToDoubleRegister(left); FPURegister right_reg = ToDoubleRegister(right); // If a NaN is involved, i.e. the result is unordered, // jump to false block label. __ BranchF(NULL, instr->FalseLabel(chunk_), eq, left_reg, right_reg); EmitBranchF(instr, cond, left_reg, right_reg); } else { Register cmp_left; Operand cmp_right = Operand(0); if (right->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(right)); if (instr->hydrogen_value()->representation().IsSmi()) { cmp_left = ToRegister(left); cmp_right = Operand(Smi::FromInt(value)); } else { cmp_left = ToRegister(left); cmp_right = Operand(value); } } else if (left->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(left)); if (instr->hydrogen_value()->representation().IsSmi()) { cmp_left = ToRegister(right); cmp_right = Operand(Smi::FromInt(value)); } else { cmp_left = ToRegister(right); cmp_right = Operand(value); } // We commuted the operands, so commute the condition. cond = CommuteCondition(cond); } else { cmp_left = ToRegister(left); cmp_right = Operand(ToRegister(right)); } EmitBranch(instr, cond, cmp_left, cmp_right); } } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); EmitBranch(instr, eq, left, Operand(right)); } void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { if (instr->hydrogen()->representation().IsTagged()) { Register input_reg = ToRegister(instr->object()); __ li(at, Operand(factory()->the_hole_value())); EmitBranch(instr, eq, input_reg, Operand(at)); return; } DoubleRegister input_reg = ToDoubleRegister(instr->object()); EmitFalseBranchF(instr, eq, input_reg, input_reg); Register scratch = scratch0(); __ FmoveHigh(scratch, input_reg); EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32)); } void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { Representation rep = instr->hydrogen()->value()->representation(); DCHECK(!rep.IsInteger32()); Register scratch = ToRegister(instr->temp()); if (rep.IsDouble()) { DoubleRegister value = ToDoubleRegister(instr->value()); EmitFalseBranchF(instr, ne, value, kDoubleRegZero); __ FmoveHigh(scratch, value); __ li(at, 0x80000000); } else { Register value = ToRegister(instr->value()); __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex, instr->FalseLabel(chunk()), DO_SMI_CHECK); __ lw(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset)); EmitFalseBranch(instr, ne, scratch, Operand(0x80000000)); __ lw(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset)); __ mov(at, zero_reg); } EmitBranch(instr, eq, scratch, Operand(at)); } Condition LCodeGen::EmitIsObject(Register input, Register temp1, Register temp2, Label* is_not_object, Label* is_object) { __ JumpIfSmi(input, is_not_object); __ LoadRoot(temp2, Heap::kNullValueRootIndex); __ Branch(is_object, eq, input, Operand(temp2)); // Load map. __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable)); __ Branch(is_not_object, ne, temp2, Operand(zero_reg)); // Load instance type and check that it is in object type range. __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); __ Branch(is_not_object, lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); return le; } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp()); Register temp2 = scratch0(); Condition true_cond = EmitIsObject(reg, temp1, temp2, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_)); EmitBranch(instr, true_cond, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } __ GetObjectType(input, temp1, temp1); return lt; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond, temp1, Operand(FIRST_NONSTRING_TYPE)); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Register input_reg = EmitLoadRegister(instr->value(), at); __ And(at, input_reg, kSmiTagMask); EmitBranch(instr, eq, at, Operand(zero_reg)); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); __ And(at, temp, Operand(1 << Map::kIsUndetectable)); EmitBranch(instr, ne, at, Operand(zero_reg)); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Token::Value op = instr->op(); Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = ComputeCompareCondition(op); EmitBranch(instr, condition, v0, Operand(zero_reg)); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; DCHECK(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return hs; if (from == FIRST_TYPE) return ls; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->value()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ GetObjectType(input, scratch, scratch); EmitBranch(instr, BranchCondition(instr->hydrogen()), scratch, Operand(TestType(instr->hydrogen()))); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ AssertString(input); __ lw(result, FieldMemOperand(input, String::kHashFieldOffset)); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->value()); Register scratch = scratch0(); __ lw(scratch, FieldMemOperand(input, String::kHashFieldOffset)); __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask)); EmitBranch(instr, eq, at, Operand(zero_reg)); } // Branches to a label or falls through with the answer in flags. Trashes // the temp registers, but not the input. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle<String>class_name, Register input, Register temp, Register temp2) { DCHECK(!input.is(temp)); DCHECK(!input.is(temp2)); DCHECK(!temp.is(temp2)); __ JumpIfSmi(input, is_false); if (String::Equals(isolate()->factory()->Function_string(), class_name)) { // Assuming the following assertions, we can use the same compares to test // for both being a function type and being in the object type range. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(input, temp, temp2); __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE)); } else { // Faster code path to avoid two compares: subtract lower bound from the // actual type and do a signed compare with the width of the type range. __ GetObjectType(input, temp, temp2); __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset)); // Objects with a non-function constructor have class 'Object'. __ GetObjectType(temp, temp2, temp2); if (String::Equals(class_name, isolate()->factory()->Object_string())) { __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE)); } else { __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE)); } // temp now contains the constructor function. Grab the // instance class name from there. __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ lw(temp, FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. // End with the address of this class_name instance in temp register. // On MIPS, the caller must do the comparison with Handle<String>class_name. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = scratch0(); Register temp2 = ToRegister(instr->temp()); Handle<String> class_name = instr->hydrogen()->class_name(); EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), class_name, input, temp, temp2); EmitBranch(instr, eq, temp, Operand(class_name)); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); EmitBranch(instr, eq, temp, Operand(instr->map())); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Label true_label, done; DCHECK(ToRegister(instr->left()).is(a0)); // Object is in a0. DCHECK(ToRegister(instr->right()).is(a1)); // Function is in a1. Register result = ToRegister(instr->result()); DCHECK(result.is(v0)); InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ Branch(&true_label, eq, result, Operand(zero_reg)); __ li(result, Operand(factory()->false_value())); __ Branch(&done); __ bind(&true_label); __ li(result, Operand(factory()->true_value())); __ bind(&done); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal FINAL : public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); } virtual LInstruction* instr() OVERRIDE { return instr_; } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); Register result = ToRegister(instr->result()); DCHECK(object.is(a0)); DCHECK(result.is(v0)); // A Smi is not instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; Register map = temp; __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ bind(deferred->map_check()); // Label for calculating code patching. // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch with // the cached map. Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value()); __ li(at, Operand(Handle<Object>(cell))); __ lw(at, FieldMemOperand(at, PropertyCell::kValueOffset)); __ BranchShort(&cache_miss, ne, map, Operand(at)); // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch // with true or false. The distance from map check has to be constant. __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE); __ Branch(&done); // The inlined call site cache did not match. Check null and string before // calling the deferred code. __ bind(&cache_miss); // Null is not instance of anything. __ LoadRoot(temp, Heap::kNullValueRootIndex); __ Branch(&false_result, eq, object, Operand(temp)); // String values is not instance of anything. Condition cc = __ IsObjectStringType(object, temp, temp); __ Branch(&false_result, cc, temp, Operand(zero_reg)); // Go to the deferred code. __ Branch(deferred->entry()); __ bind(&false_result); __ LoadRoot(result, Heap::kFalseValueRootIndex); // Here result has either true or false. Deferred code also produces true or // false object. __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { Register result = ToRegister(instr->result()); DCHECK(result.is(v0)); InstanceofStub::Flags flags = InstanceofStub::kNoFlags; flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kArgsInRegisters); flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kCallSiteInlineCheck); flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kReturnTrueFalseObject); InstanceofStub stub(isolate(), flags); PushSafepointRegistersScope scope(this); LoadContextFromDeferred(instr->context()); // Get the temp register reserved by the instruction. This needs to be t0 as // its slot of the pushing of safepoint registers is used to communicate the // offset to the location of the map check. Register temp = ToRegister(instr->temp()); DCHECK(temp.is(t0)); __ li(InstanceofStub::right(), instr->function()); static const int kAdditionalDelta = 7; int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; Label before_push_delta; __ bind(&before_push_delta); { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE); __ StoreToSafepointRegisterSlot(temp, temp); } CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); // Put the result value into the result register slot and // restore all registers. __ StoreToSafepointRegisterSlot(result, result); } void LCodeGen::DoCmpT(LCmpT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Token::Value op = instr->op(); Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); // On MIPS there is no need for a "no inlined smi code" marker (nop). Condition condition = ComputeCompareCondition(op); // A minor optimization that relies on LoadRoot always emitting one // instruction. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); Label done, check; __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg)); __ bind(&check); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check)); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in v0. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ push(v0); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit, 1); } if (info()->saves_caller_doubles()) { RestoreCallerDoubles(); } int no_frame_start = -1; if (NeedsEagerFrame()) { __ mov(sp, fp); no_frame_start = masm_->pc_offset(); __ Pop(ra, fp); } if (instr->has_constant_parameter_count()) { int parameter_count = ToInteger32(instr->constant_parameter_count()); int32_t sp_delta = (parameter_count + 1) * kPointerSize; if (sp_delta != 0) { __ Addu(sp, sp, Operand(sp_delta)); } } else { Register reg = ToRegister(instr->parameter_count()); // The argument count parameter is a smi __ SmiUntag(reg); __ sll(at, reg, kPointerSizeLog2); __ Addu(sp, sp, at); } __ Jump(ra); if (no_frame_start != -1) { info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); } } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell().handle()))); __ lw(result, FieldMemOperand(at, Cell::kValueOffset)); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, result, Operand(at)); } } template <class T> void LCodeGen::EmitVectorLoadICRegisters(T* instr) { DCHECK(FLAG_vector_ics); Register vector = ToRegister(instr->temp_vector()); DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister())); __ li(vector, instr->hydrogen()->feedback_vector()); // No need to allocate this register. DCHECK(VectorLoadICDescriptor::SlotRegister().is(a0)); __ li(VectorLoadICDescriptor::SlotRegister(), Operand(Smi::FromInt(instr->hydrogen()->slot()))); } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->global_object()) .is(LoadDescriptor::ReceiverRegister())); DCHECK(ToRegister(instr->result()).is(v0)); __ li(LoadDescriptor::NameRegister(), Operand(instr->name())); if (FLAG_vector_ics) { EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); } ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL; Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register value = ToRegister(instr->value()); Register cell = scratch0(); // Load the cell. __ li(cell, Operand(instr->hydrogen()->cell().handle())); // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. if (instr->hydrogen()->RequiresHoleCheck()) { // We use a temp to check the payload. Register payload = ToRegister(instr->temp()); __ lw(payload, FieldMemOperand(cell, Cell::kValueOffset)); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, payload, Operand(at)); } // Store the value. __ sw(value, FieldMemOperand(cell, Cell::kValueOffset)); // Cells are always rescanned, so no write barrier here. } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ lw(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr, result, Operand(at)); } else { Label is_not_hole; __ Branch(&is_not_hole, ne, result, Operand(at)); __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); MemOperand target = ContextOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ lw(scratch, target); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr, scratch, Operand(at)); } else { __ Branch(&skip_assignment, ne, scratch, Operand(at)); } } __ sw(value, target); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; __ RecordWriteContextSlot(context, target.offset(), value, scratch0(), GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); Register object = ToRegister(instr->object()); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); MemOperand operand = MemOperand(object, offset); __ Load(result, operand, access.representation()); return; } if (instr->hydrogen()->representation().IsDouble()) { DoubleRegister result = ToDoubleRegister(instr->result()); __ ldc1(result, FieldMemOperand(object, offset)); return; } Register result = ToRegister(instr->result()); if (!access.IsInobject()) { __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); object = result; } MemOperand operand = FieldMemOperand(object, offset); __ Load(result, operand, access.representation()); } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); DCHECK(ToRegister(instr->result()).is(v0)); // Name is always in a2. __ li(LoadDescriptor::NameRegister(), Operand(instr->name())); if (FLAG_vector_ics) { EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); } Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register scratch = scratch0(); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Get the prototype or initial map from the function. __ lw(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, result, Operand(at)); // If the function does not have an initial map, we're done. Label done; __ GetObjectType(result, scratch, scratch); __ Branch(&done, ne, scratch, Operand(MAP_TYPE)); // Get the prototype from the initial map. __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadRoot(LLoadRoot* instr) { Register result = ToRegister(instr->result()); __ LoadRoot(result, instr->index()); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. if (instr->length()->IsConstantOperand()) { int const_length = ToInteger32(LConstantOperand::cast(instr->length())); if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int index = (const_length - const_index) + 1; __ lw(result, MemOperand(arguments, index * kPointerSize)); } else { Register index = ToRegister(instr->index()); __ li(at, Operand(const_length + 1)); __ Subu(result, at, index); __ sll(at, result, kPointerSizeLog2); __ Addu(at, arguments, at); __ lw(result, MemOperand(at)); } } else if (instr->index()->IsConstantOperand()) { Register length = ToRegister(instr->length()); int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int loc = const_index - 1; if (loc != 0) { __ Subu(result, length, Operand(loc)); __ sll(at, result, kPointerSizeLog2); __ Addu(at, arguments, at); __ lw(result, MemOperand(at)); } else { __ sll(at, length, kPointerSizeLog2); __ Addu(at, arguments, at); __ lw(result, MemOperand(at)); } } else { Register length = ToRegister(instr->length()); Register index = ToRegister(instr->index()); __ Subu(result, length, index); __ Addu(result, result, 1); __ sll(at, result, kPointerSizeLog2); __ Addu(at, arguments, at); __ lw(result, MemOperand(at)); } } void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; int base_offset = instr->base_offset(); if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || elements_kind == FLOAT32_ELEMENTS || elements_kind == EXTERNAL_FLOAT64_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { int base_offset = instr->base_offset(); FPURegister result = ToDoubleRegister(instr->result()); if (key_is_constant) { __ Addu(scratch0(), external_pointer, constant_key << element_size_shift); } else { __ sll(scratch0(), key, shift_size); __ Addu(scratch0(), scratch0(), external_pointer); } if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || elements_kind == FLOAT32_ELEMENTS) { __ lwc1(result, MemOperand(scratch0(), base_offset)); __ cvt_d_s(result, result); } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS __ ldc1(result, MemOperand(scratch0(), base_offset)); } } else { Register result = ToRegister(instr->result()); MemOperand mem_operand = PrepareKeyedOperand( key, external_pointer, key_is_constant, constant_key, element_size_shift, shift_size, base_offset); switch (elements_kind) { case EXTERNAL_INT8_ELEMENTS: case INT8_ELEMENTS: __ lb(result, mem_operand); break; case EXTERNAL_UINT8_CLAMPED_ELEMENTS: case EXTERNAL_UINT8_ELEMENTS: case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ lbu(result, mem_operand); break; case EXTERNAL_INT16_ELEMENTS: case INT16_ELEMENTS: __ lh(result, mem_operand); break; case EXTERNAL_UINT16_ELEMENTS: case UINT16_ELEMENTS: __ lhu(result, mem_operand); break; case EXTERNAL_INT32_ELEMENTS: case INT32_ELEMENTS: __ lw(result, mem_operand); break; case EXTERNAL_UINT32_ELEMENTS: case UINT32_ELEMENTS: __ lw(result, mem_operand); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { DeoptimizeIf(Ugreater_equal, instr, result, Operand(0x80000000)); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case EXTERNAL_FLOAT32_ELEMENTS: case EXTERNAL_FLOAT64_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case SLOPPY_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { Register elements = ToRegister(instr->elements()); bool key_is_constant = instr->key()->IsConstantOperand(); Register key = no_reg; DoubleRegister result = ToDoubleRegister(instr->result()); Register scratch = scratch0(); int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); int base_offset = instr->base_offset(); if (key_is_constant) { int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } base_offset += constant_key * kDoubleSize; } __ Addu(scratch, elements, Operand(base_offset)); if (!key_is_constant) { key = ToRegister(instr->key()); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; __ sll(at, key, shift_size); __ Addu(scratch, scratch, at); } __ ldc1(result, MemOperand(scratch)); if (instr->hydrogen()->RequiresHoleCheck()) { __ lw(scratch, MemOperand(scratch, kHoleNanUpper32Offset)); DeoptimizeIf(eq, instr, scratch, Operand(kHoleNanUpper32)); } } void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { Register elements = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Register store_base = scratch; int offset = instr->base_offset(); if (instr->key()->IsConstantOperand()) { LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset += ToInteger32(const_operand) * kPointerSize; store_base = elements; } else { Register key = ToRegister(instr->key()); // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsSmi()) { __ sll(scratch, key, kPointerSizeLog2 - kSmiTagSize); __ addu(scratch, elements, scratch); } else { __ sll(scratch, key, kPointerSizeLog2); __ addu(scratch, elements, scratch); } } __ lw(result, MemOperand(store_base, offset)); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { __ SmiTst(result, scratch); DeoptimizeIf(ne, instr, scratch, Operand(zero_reg)); } else { __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, result, Operand(scratch)); } } } void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { if (instr->is_typed_elements()) { DoLoadKeyedExternalArray(instr); } else if (instr->hydrogen()->representation().IsDouble()) { DoLoadKeyedFixedDoubleArray(instr); } else { DoLoadKeyedFixedArray(instr); } } MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base, bool key_is_constant, int constant_key, int element_size, int shift_size, int base_offset) { if (key_is_constant) { return MemOperand(base, (constant_key << element_size) + base_offset); } if (base_offset == 0) { if (shift_size >= 0) { __ sll(scratch0(), key, shift_size); __ Addu(scratch0(), base, scratch0()); return MemOperand(scratch0()); } else { DCHECK_EQ(-1, shift_size); __ srl(scratch0(), key, 1); __ Addu(scratch0(), base, scratch0()); return MemOperand(scratch0()); } } if (shift_size >= 0) { __ sll(scratch0(), key, shift_size); __ Addu(scratch0(), base, scratch0()); return MemOperand(scratch0(), base_offset); } else { DCHECK_EQ(-1, shift_size); __ sra(scratch0(), key, 1); __ Addu(scratch0(), base, scratch0()); return MemOperand(scratch0(), base_offset); } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); if (FLAG_vector_ics) { EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); } Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register scratch = scratch0(); Register temp = scratch1(); Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ Subu(result, sp, 2 * kPointerSize); } else { // Check if the calling frame is an arguments adaptor frame. Label done, adapted; __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne). __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq). } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elem = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ Addu(result, zero_reg, Operand(scope()->num_parameters())); __ Branch(&done, eq, fp, Operand(elem)); // Arguments adaptor frame present. Get argument length from there. __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(result, MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, result_in_receiver; if (!instr->hydrogen()->known_function()) { // Do not transform the receiver to object for strict mode // functions. __ lw(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ lw(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); // Do not transform the receiver to object for builtins. int32_t strict_mode_function_mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize); __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask)); __ Branch(&result_in_receiver, ne, scratch, Operand(zero_reg)); } // Normal function. Replace undefined or null with global receiver. __ LoadRoot(scratch, Heap::kNullValueRootIndex); __ Branch(&global_object, eq, receiver, Operand(scratch)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Branch(&global_object, eq, receiver, Operand(scratch)); // Deoptimize if the receiver is not a JS object. __ SmiTst(receiver, scratch); DeoptimizeIf(eq, instr, scratch, Operand(zero_reg)); __ GetObjectType(receiver, scratch, scratch); DeoptimizeIf(lt, instr, scratch, Operand(FIRST_SPEC_OBJECT_TYPE)); __ Branch(&result_in_receiver); __ bind(&global_object); __ lw(result, FieldMemOperand(function, JSFunction::kContextOffset)); __ lw(result, ContextOperand(result, Context::GLOBAL_OBJECT_INDEX)); __ lw(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset)); if (result.is(receiver)) { __ bind(&result_in_receiver); } else { Label result_ok; __ Branch(&result_ok); __ bind(&result_in_receiver); __ mov(result, receiver); __ bind(&result_ok); } } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); DCHECK(receiver.is(a0)); // Used for parameter count. DCHECK(function.is(a1)); // Required by InvokeFunction. DCHECK(ToRegister(instr->result()).is(v0)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; DeoptimizeIf(hi, instr, length, Operand(kArgumentsLimit)); // Push the receiver and use the register to keep the original // number of arguments. __ push(receiver); __ Move(receiver, length); // The arguments are at a one pointer size offset from elements. __ Addu(elements, elements, Operand(1 * kPointerSize)); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg)); __ sll(scratch, length, 2); __ bind(&loop); __ Addu(scratch, elements, scratch); __ lw(scratch, MemOperand(scratch)); __ push(scratch); __ Subu(length, length, Operand(1)); __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg)); __ sll(scratch, length, 2); __ bind(&invoke); DCHECK(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); // The number of arguments is stored in receiver which is a0, as expected // by InvokeFunction. ParameterCount actual(receiver); __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { Abort(kDoPushArgumentNotImplementedForDoubleType); } else { Register argument_reg = EmitLoadRegister(argument, at); __ push(argument_reg); } } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ lw(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { // If there is a non-return use, the context must be moved to a register. Register result = ToRegister(instr->result()); if (info()->IsOptimizing()) { __ lw(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // If there is no frame, the context must be in cp. DCHECK(result.is(cp)); } } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { DCHECK(ToRegister(instr->context()).is(cp)); __ li(scratch0(), instr->hydrogen()->pairs()); __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); // The context is the first argument. __ Push(cp, scratch0(), scratch1()); CallRuntime(Runtime::kDeclareGlobals, 3, instr); } void LCodeGen::CallKnownFunction(Handle<JSFunction> function, int formal_parameter_count, int arity, LInstruction* instr, A1State a1_state) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; LPointerMap* pointers = instr->pointer_map(); if (can_invoke_directly) { if (a1_state == A1_UNINITIALIZED) { __ li(a1, function); } // Change context. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Set r0 to arguments count if adaption is not needed. Assumes that r0 // is available to write to at this point. if (dont_adapt_arguments) { __ li(a0, Operand(arity)); } // Invoke function. __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Call(at); // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } else { SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(arity); ParameterCount expected(formal_parameter_count); __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator); } } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { DCHECK(instr->context() != NULL); DCHECK(ToRegister(instr->context()).is(cp)); Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // Deoptimize if not a heap number. __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, scratch, Operand(at)); Label done; Register exponent = scratch0(); scratch = no_reg; __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. __ Move(result, input); __ And(at, exponent, Operand(HeapNumber::kSignMask)); __ Branch(&done, eq, at, Operand(zero_reg)); // Input is negative. Reverse its sign. // Preserve the value of all registers. { PushSafepointRegistersScope scope(this); // Registers were saved at the safepoint, so we can use // many scratch registers. Register tmp1 = input.is(a1) ? a0 : a1; Register tmp2 = input.is(a2) ? a0 : a2; Register tmp3 = input.is(a3) ? a0 : a3; Register tmp4 = input.is(t0) ? a0 : t0; // exponent: floating point exponent value. Label allocated, slow; __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); __ Branch(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, instr->context()); // Set the pointer to the new heap number in tmp. if (!tmp1.is(v0)) __ mov(tmp1, v0); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input, input); __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); __ bind(&allocated); // exponent: floating point exponent value. // tmp1: allocated heap number. __ And(exponent, exponent, Operand(~HeapNumber::kSignMask)); __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); __ StoreToSafepointRegisterSlot(tmp1, result); } __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label done; __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); __ mov(result, input); __ subu(result, zero_reg, input); // Overflow if result is still negative, i.e. 0x80000000. DeoptimizeIf(lt, instr, result, Operand(zero_reg)); __ bind(&done); } void LCodeGen::DoMathAbs(LMathAbs* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber FINAL : public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LMathAbs* instr_; }; Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { FPURegister input = ToDoubleRegister(instr->value()); FPURegister result = ToDoubleRegister(instr->result()); __ abs_d(result, input); } else if (r.IsSmiOrInteger32()) { EmitIntegerMathAbs(instr); } else { // Representation is tagged. DeferredMathAbsTaggedHeapNumber* deferred = new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input, deferred->entry()); // If smi, handle it directly. EmitIntegerMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LMathFloor* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); Register scratch1 = scratch0(); Register except_flag = ToRegister(instr->temp()); __ EmitFPUTruncate(kRoundToMinusInf, result, input, scratch1, double_scratch0(), except_flag); // Deopt if the operation did not succeed. DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. Label done; __ Branch(&done, ne, result, Operand(zero_reg)); __ Mfhc1(scratch1, input); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg)); __ bind(&done); } } void LCodeGen::DoMathRound(LMathRound* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp()); Register scratch = scratch0(); Label done, check_sign_on_zero; // Extract exponent bits. __ Mfhc1(result, input); __ Ext(scratch, result, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // If the number is in ]-0.5, +0.5[, the result is +/- 0. Label skip1; __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2)); __ mov(result, zero_reg); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Branch(&check_sign_on_zero); } else { __ Branch(&done); } __ bind(&skip1); // The following conversion will not work with numbers // outside of ]-2^32, 2^32[. DeoptimizeIf(ge, instr, scratch, Operand(HeapNumber::kExponentBias + 32)); // Save the original sign for later comparison. __ And(scratch, result, Operand(HeapNumber::kSignMask)); __ Move(double_scratch0(), 0.5); __ add_d(double_scratch0(), input, double_scratch0()); // Check sign of the result: if the sign changed, the input // value was in ]0.5, 0[ and the result should be -0. __ Mfhc1(result, double_scratch0()); __ Xor(result, result, Operand(scratch)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // ARM uses 'mi' here, which is 'lt' DeoptimizeIf(lt, instr, result, Operand(zero_reg)); } else { Label skip2; // ARM uses 'mi' here, which is 'lt' // Negating it results in 'ge' __ Branch(&skip2, ge, result, Operand(zero_reg)); __ mov(result, zero_reg); __ Branch(&done); __ bind(&skip2); } Register except_flag = scratch; __ EmitFPUTruncate(kRoundToMinusInf, result, double_scratch0(), at, double_scratch1, except_flag); DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. __ Branch(&done, ne, result, Operand(zero_reg)); __ bind(&check_sign_on_zero); __ Mfhc1(scratch, input); __ And(scratch, scratch, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, scratch, Operand(zero_reg)); } __ bind(&done); } void LCodeGen::DoMathFround(LMathFround* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ cvt_s_d(result.low(), input); __ cvt_d_s(result, result.low()); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ sqrt_d(result, input); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister temp = ToDoubleRegister(instr->temp()); DCHECK(!input.is(result)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done; __ Move(temp, -V8_INFINITY); __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input); // Set up Infinity in the delay slot. // result is overwritten if the branch is not taken. __ neg_d(result, temp); // Add +0 to convert -0 to +0. __ add_d(result, input, kDoubleRegZero); __ sqrt_d(result, result); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. Register tagged_exponent = MathPowTaggedDescriptor::exponent(); DCHECK(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(f4)); DCHECK(!instr->right()->IsRegister() || ToRegister(instr->right()).is(tagged_exponent)); DCHECK(ToDoubleRegister(instr->left()).is(f2)); DCHECK(ToDoubleRegister(instr->result()).is(f0)); if (exponent_type.IsSmi()) { MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(tagged_exponent, &no_deopt); DCHECK(!t3.is(tagged_exponent)); __ lw(t3, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, t3, Operand(at)); __ bind(&no_deopt); MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(isolate(), MathPowStub::INTEGER); __ CallStub(&stub); } else { DCHECK(exponent_type.IsDouble()); MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathExp(LMathExp* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp()); DoubleRegister double_scratch2 = double_scratch0(); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); MathExpGenerator::EmitMathExp( masm(), input, result, double_scratch1, double_scratch2, temp1, temp2, scratch0()); } void LCodeGen::DoMathLog(LMathLog* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathClz32(LMathClz32* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ Clz(result, input); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->function()).is(a1)); DCHECK(instr->HasPointerMap()); Handle<JSFunction> known_function = instr->hydrogen()->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(instr->arity()); __ InvokeFunction(a1, count, CALL_FUNCTION, generator); } else { CallKnownFunction(known_function, instr->hydrogen()->formal_parameter_count(), instr->arity(), instr, A1_CONTAINS_TARGET); } } void LCodeGen::DoTailCallThroughMegamorphicCache( LTailCallThroughMegamorphicCache* instr) { Register receiver = ToRegister(instr->receiver()); Register name = ToRegister(instr->name()); DCHECK(receiver.is(LoadDescriptor::ReceiverRegister())); DCHECK(name.is(LoadDescriptor::NameRegister())); DCHECK(receiver.is(a1)); DCHECK(name.is(a2)); Register scratch = a3; Register extra = t0; Register extra2 = t1; Register extra3 = t2; // Important for the tail-call. bool must_teardown_frame = NeedsEagerFrame(); // The probe will tail call to a handler if found. isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(), must_teardown_frame, receiver, name, scratch, extra, extra2, extra3); // Tail call to miss if we ended up here. if (must_teardown_frame) __ LeaveFrame(StackFrame::INTERNAL); LoadIC::GenerateMiss(masm()); } void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { DCHECK(ToRegister(instr->result()).is(v0)); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); __ Call(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); generator.BeforeCall(__ CallSize(target)); __ Addu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(target); } generator.AfterCall(); } void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { DCHECK(ToRegister(instr->function()).is(a1)); DCHECK(ToRegister(instr->result()).is(v0)); if (instr->hydrogen()->pass_argument_count()) { __ li(a0, Operand(instr->arity())); } // Change context. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Load the code entry address __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Call(at); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::DoCallFunction(LCallFunction* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->function()).is(a1)); DCHECK(ToRegister(instr->result()).is(v0)); int arity = instr->arity(); CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoCallNew(LCallNew* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->constructor()).is(a1)); DCHECK(ToRegister(instr->result()).is(v0)); __ li(a0, Operand(instr->arity())); // No cell in a2 for construct type feedback in optimized code __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->constructor()).is(a1)); DCHECK(ToRegister(instr->result()).is(v0)); __ li(a0, Operand(instr->arity())); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need a change here, // look at the first argument. __ lw(t1, MemOperand(sp, 0)); __ Branch(&packed_case, eq, t1, Operand(zero_reg)); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(isolate(), holey_kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); __ jmp(&done); __ bind(&packed_case); } ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); __ bind(&done); } else { ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); } } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { Register function = ToRegister(instr->function()); Register code_object = ToRegister(instr->code_object()); __ Addu(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); __ sw(code_object, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); if (instr->offset()->IsConstantOperand()) { LConstantOperand* offset = LConstantOperand::cast(instr->offset()); __ Addu(result, base, Operand(ToInteger32(offset))); } else { Register offset = ToRegister(instr->offset()); __ Addu(result, base, offset); } } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Representation representation = instr->representation(); Register object = ToRegister(instr->object()); Register scratch = scratch0(); HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { Register value = ToRegister(instr->value()); MemOperand operand = MemOperand(object, offset); __ Store(value, operand, representation); return; } __ AssertNotSmi(object); DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsSmi(LConstantOperand::cast(instr->value()))); if (representation.IsDouble()) { DCHECK(access.IsInobject()); DCHECK(!instr->hydrogen()->has_transition()); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); DoubleRegister value = ToDoubleRegister(instr->value()); __ sdc1(value, FieldMemOperand(object, offset)); return; } if (instr->hydrogen()->has_transition()) { Handle<Map> transition = instr->hydrogen()->transition_map(); AddDeprecationDependency(transition); __ li(scratch, Operand(transition)); __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); if (instr->hydrogen()->NeedsWriteBarrierForMap()) { Register temp = ToRegister(instr->temp()); // Update the write barrier for the map field. __ RecordWriteForMap(object, scratch, temp, GetRAState(), kSaveFPRegs); } } // Do the store. Register value = ToRegister(instr->value()); if (access.IsInobject()) { MemOperand operand = FieldMemOperand(object, offset); __ Store(value, operand, representation); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the object for in-object properties. __ RecordWriteField(object, offset, value, scratch, GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, instr->hydrogen()->SmiCheckForWriteBarrier(), instr->hydrogen()->PointersToHereCheckForValue()); } } else { __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); MemOperand operand = FieldMemOperand(scratch, offset); __ Store(value, operand, representation); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWriteField(scratch, offset, value, object, GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, instr->hydrogen()->SmiCheckForWriteBarrier(), instr->hydrogen()->PointersToHereCheckForValue()); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); __ li(StoreDescriptor::NameRegister(), Operand(instr->name())); Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode()); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { Condition cc = instr->hydrogen()->allow_equality() ? hi : hs; Operand operand(0); Register reg; if (instr->index()->IsConstantOperand()) { operand = ToOperand(instr->index()); reg = ToRegister(instr->length()); cc = CommuteCondition(cc); } else { reg = ToRegister(instr->index()); operand = ToOperand(instr->length()); } if (FLAG_debug_code && instr->hydrogen()->skip_check()) { Label done; __ Branch(&done, NegateCondition(cc), reg, operand); __ stop("eliminated bounds check failed"); __ bind(&done); } else { DeoptimizeIf(cc, instr, reg, operand); } } void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; int base_offset = instr->base_offset(); if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || elements_kind == FLOAT32_ELEMENTS || elements_kind == EXTERNAL_FLOAT64_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { Register address = scratch0(); FPURegister value(ToDoubleRegister(instr->value())); if (key_is_constant) { if (constant_key != 0) { __ Addu(address, external_pointer, Operand(constant_key << element_size_shift)); } else { address = external_pointer; } } else { __ sll(address, key, shift_size); __ Addu(address, external_pointer, address); } if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || elements_kind == FLOAT32_ELEMENTS) { __ cvt_s_d(double_scratch0(), value); __ swc1(double_scratch0(), MemOperand(address, base_offset)); } else { // Storing doubles, not floats. __ sdc1(value, MemOperand(address, base_offset)); } } else { Register value(ToRegister(instr->value())); MemOperand mem_operand = PrepareKeyedOperand( key, external_pointer, key_is_constant, constant_key, element_size_shift, shift_size, base_offset); switch (elements_kind) { case EXTERNAL_UINT8_CLAMPED_ELEMENTS: case EXTERNAL_INT8_ELEMENTS: case EXTERNAL_UINT8_ELEMENTS: case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: case INT8_ELEMENTS: __ sb(value, mem_operand); break; case EXTERNAL_INT16_ELEMENTS: case EXTERNAL_UINT16_ELEMENTS: case INT16_ELEMENTS: case UINT16_ELEMENTS: __ sh(value, mem_operand); break; case EXTERNAL_INT32_ELEMENTS: case EXTERNAL_UINT32_ELEMENTS: case INT32_ELEMENTS: case UINT32_ELEMENTS: __ sw(value, mem_operand); break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case EXTERNAL_FLOAT32_ELEMENTS: case EXTERNAL_FLOAT64_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case SLOPPY_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { DoubleRegister value = ToDoubleRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); DoubleRegister double_scratch = double_scratch0(); bool key_is_constant = instr->key()->IsConstantOperand(); int base_offset = instr->base_offset(); Label not_nan, done; // Calculate the effective address of the slot in the array to store the // double value. int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); if (key_is_constant) { int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } __ Addu(scratch, elements, Operand((constant_key << element_size_shift) + base_offset)); } else { int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; __ Addu(scratch, elements, Operand(base_offset)); __ sll(at, ToRegister(instr->key()), shift_size); __ Addu(scratch, scratch, at); } if (instr->NeedsCanonicalization()) { Label is_nan; // Check for NaN. All NaNs must be canonicalized. __ BranchF(NULL, &is_nan, eq, value, value); __ Branch(¬_nan); // Only load canonical NaN if the comparison above set the overflow. __ bind(&is_nan); __ LoadRoot(at, Heap::kNanValueRootIndex); __ ldc1(double_scratch, FieldMemOperand(at, HeapNumber::kValueOffset)); __ sdc1(double_scratch, MemOperand(scratch, 0)); __ Branch(&done); } __ bind(¬_nan); __ sdc1(value, MemOperand(scratch, 0)); __ bind(&done); } void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Register scratch = scratch0(); Register store_base = scratch; int offset = instr->base_offset(); // Do the store. if (instr->key()->IsConstantOperand()) { DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset += ToInteger32(const_operand) * kPointerSize; store_base = elements; } else { // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsSmi()) { __ sll(scratch, key, kPointerSizeLog2 - kSmiTagSize); __ addu(scratch, elements, scratch); } else { __ sll(scratch, key, kPointerSizeLog2); __ addu(scratch, elements, scratch); } } __ sw(value, MemOperand(store_base, offset)); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ Addu(key, store_base, Operand(offset)); __ RecordWrite(elements, key, value, GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { // By cases: external, fast double if (instr->is_typed_elements()) { DoStoreKeyedExternalArray(instr); } else if (instr->hydrogen()->value()->representation().IsDouble()) { DoStoreKeyedFixedDoubleArray(instr); } else { DoStoreKeyedFixedArray(instr); } } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register scratch = scratch0(); Handle<Map> from_map = instr->original_map(); Handle<Map> to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); __ Branch(¬_applicable, ne, scratch, Operand(from_map)); if (IsSimpleMapChangeTransition(from_kind, to_kind)) { Register new_map_reg = ToRegister(instr->new_map_temp()); __ li(new_map_reg, Operand(to_map)); __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); // Write barrier. __ RecordWriteForMap(object_reg, new_map_reg, scratch, GetRAState(), kDontSaveFPRegs); } else { DCHECK(object_reg.is(a0)); DCHECK(ToRegister(instr->context()).is(cp)); PushSafepointRegistersScope scope(this); __ li(a1, Operand(to_map)); bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); __ CallStub(&stub); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } __ bind(¬_applicable); } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp = ToRegister(instr->temp()); Label no_memento_found; __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found, ne, &no_memento_found); DeoptimizeIf(al, instr); __ bind(&no_memento_found); } void LCodeGen::DoStringAdd(LStringAdd* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(a1)); DCHECK(ToRegister(instr->right()).is(a0)); StringAddStub stub(isolate(), instr->hydrogen()->flags(), instr->hydrogen()->pretenure_flag()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt FINAL : public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredStringCharCodeAt(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index))); __ push(scratch); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); __ AssertSmi(v0); __ SmiUntag(v0); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode FINAL : public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredStringCharFromCode(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); DCHECK(!char_code.is(result)); __ Branch(deferred->entry(), hi, char_code, Operand(String::kMaxOneByteCharCode)); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ sll(scratch, char_code, kPointerSizeLog2); __ Addu(result, result, scratch); __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Branch(deferred->entry(), eq, result, Operand(scratch)); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); DCHECK(output->IsDoubleRegister()); FPURegister single_scratch = double_scratch0().low(); if (input->IsStackSlot()) { Register scratch = scratch0(); __ lw(scratch, ToMemOperand(input)); __ mtc1(scratch, single_scratch); } else { __ mtc1(ToRegister(input), single_scratch); } __ cvt_d_w(ToDoubleRegister(output), single_scratch); } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); FPURegister dbl_scratch = double_scratch0(); __ mtc1(ToRegister(input), dbl_scratch); __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch, f22); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI FINAL : public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), SIGNED_INT32); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LNumberTagI* instr_; }; Register src = ToRegister(instr->value()); Register dst = ToRegister(instr->result()); Register overflow = scratch0(); DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); __ SmiTagCheckOverflow(dst, src, overflow); __ BranchOnOverflow(deferred->entry(), overflow); __ bind(deferred->exit()); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU FINAL : public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), UNSIGNED_INT32); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LNumberTagU* instr_; }; Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue)); __ SmiTag(result, input); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2, IntegerSignedness signedness) { Label done, slow; Register src = ToRegister(value); Register dst = ToRegister(instr->result()); Register tmp1 = scratch0(); Register tmp2 = ToRegister(temp1); Register tmp3 = ToRegister(temp2); DoubleRegister dbl_scratch = double_scratch0(); if (signedness == SIGNED_INT32) { // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. if (dst.is(src)) { __ SmiUntag(src, dst); __ Xor(src, src, Operand(0x80000000)); } __ mtc1(src, dbl_scratch); __ cvt_d_w(dbl_scratch, dbl_scratch); } else { __ mtc1(src, dbl_scratch); __ Cvt_d_uw(dbl_scratch, dbl_scratch, f22); } if (FLAG_inline_new) { __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, DONT_TAG_RESULT); __ Branch(&done); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); { // TODO(3095996): Put a valid pointer value in the stack slot where the // result register is stored, as this register is in the pointer map, but // contains an integer value. __ mov(dst, zero_reg); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // NumberTagI and NumberTagD use the context from the frame, rather than // the environment's HContext or HInlinedContext value. // They only call Runtime::kAllocateHeapNumber. // The corresponding HChange instructions are added in a phase that does // not have easy access to the local context. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ Subu(v0, v0, kHeapObjectTag); __ StoreToSafepointRegisterSlot(v0, dst); } // Done. Put the value in dbl_scratch into the value of the allocated heap // number. __ bind(&done); __ sdc1(dbl_scratch, MemOperand(dst, HeapNumber::kValueOffset)); __ Addu(dst, dst, kHeapObjectTag); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD FINAL : public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredNumberTagD(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LNumberTagD* instr_; }; DoubleRegister input_reg = ToDoubleRegister(instr->value()); Register scratch = scratch0(); Register reg = ToRegister(instr->result()); Register temp1 = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); // We want the untagged address first for performance __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(), DONT_TAG_RESULT); } else { __ Branch(deferred->entry()); } __ bind(deferred->exit()); __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset)); // Now that we have finished with the object's real address tag it __ Addu(reg, reg, kHeapObjectTag); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ mov(reg, zero_reg); PushSafepointRegistersScope scope(this); // NumberTagI and NumberTagD use the context from the frame, rather than // the environment's HContext or HInlinedContext value. // They only call Runtime::kAllocateHeapNumber. // The corresponding HChange instructions are added in a phase that does // not have easy access to the local context. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ Subu(v0, v0, kHeapObjectTag); __ StoreToSafepointRegisterSlot(v0, reg); } void LCodeGen::DoSmiTag(LSmiTag* instr) { HChange* hchange = instr->hydrogen(); Register input = ToRegister(instr->value()); Register output = ToRegister(instr->result()); if (hchange->CheckFlag(HValue::kCanOverflow) && hchange->value()->CheckFlag(HValue::kUint32)) { __ And(at, input, Operand(0xc0000000)); DeoptimizeIf(ne, instr, at, Operand(zero_reg)); } if (hchange->CheckFlag(HValue::kCanOverflow) && !hchange->value()->CheckFlag(HValue::kUint32)) { __ SmiTagCheckOverflow(output, input, at); DeoptimizeIf(lt, instr, at, Operand(zero_reg)); } else { __ SmiTag(output, input); } } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); if (instr->needs_check()) { STATIC_ASSERT(kHeapObjectTag == 1); // If the input is a HeapObject, value of scratch won't be zero. __ And(scratch, input, Operand(kHeapObjectTag)); __ SmiUntag(result, input); DeoptimizeIf(ne, instr, scratch, Operand(zero_reg)); } else { __ SmiUntag(result, input); } } void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, DoubleRegister result_reg, NumberUntagDMode mode) { bool can_convert_undefined_to_nan = instr->hydrogen()->can_convert_undefined_to_nan(); bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); Register scratch = scratch0(); Label convert, load_smi, done; if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { // Smi check. __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); // Heap number map check. __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); if (can_convert_undefined_to_nan) { __ Branch(&convert, ne, scratch, Operand(at)); } else { DeoptimizeIf(ne, instr, scratch, Operand(at)); } // Load heap number. __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); if (deoptimize_on_minus_zero) { __ mfc1(at, result_reg.low()); __ Branch(&done, ne, at, Operand(zero_reg)); __ Mfhc1(scratch, result_reg); DeoptimizeIf(eq, instr, scratch, Operand(HeapNumber::kSignMask)); } __ Branch(&done); if (can_convert_undefined_to_nan) { __ bind(&convert); // Convert undefined (and hole) to NaN. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); DeoptimizeIf(ne, instr, input_reg, Operand(at)); __ LoadRoot(scratch, Heap::kNanValueRootIndex); __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset)); __ Branch(&done); } } else { __ SmiUntag(scratch, input_reg); DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); } // Smi to double register conversion __ bind(&load_smi); // scratch: untagged value of input_reg __ mtc1(scratch, result_reg); __ cvt_d_w(result_reg, result_reg); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Register input_reg = ToRegister(instr->value()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->temp()); DoubleRegister double_scratch = double_scratch0(); DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2()); DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2)); DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1)); Label done; // The input is a tagged HeapObject. // Heap number map check. __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); // This 'at' value and scratch1 map value are used for tests in both clauses // of the if. if (instr->truncating()) { // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. Label no_heap_number, check_bools, check_false; // Check HeapNumber map. __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at)); __ mov(scratch2, input_reg); // In delay slot. __ TruncateHeapNumberToI(input_reg, scratch2); __ Branch(&done); // Check for Oddballs. Undefined/False is converted to zero and True to one // for truncating conversions. __ bind(&no_heap_number); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&check_bools, ne, input_reg, Operand(at)); DCHECK(ToRegister(instr->result()).is(input_reg)); __ Branch(USE_DELAY_SLOT, &done); __ mov(input_reg, zero_reg); // In delay slot. __ bind(&check_bools); __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(&check_false, ne, scratch2, Operand(at)); __ Branch(USE_DELAY_SLOT, &done); __ li(input_reg, Operand(1)); // In delay slot. __ bind(&check_false); __ LoadRoot(at, Heap::kFalseValueRootIndex); DeoptimizeIf(ne, instr, scratch2, Operand(at), "cannot truncate"); __ Branch(USE_DELAY_SLOT, &done); __ mov(input_reg, zero_reg); // In delay slot. } else { DeoptimizeIf(ne, instr, scratch1, Operand(at), "not a heap number"); // Load the double value. __ ldc1(double_scratch, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToZero, input_reg, double_scratch, scratch1, double_scratch2, except_flag, kCheckForInexactConversion); DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg), "lost precision or NaN"); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Branch(&done, ne, input_reg, Operand(zero_reg)); __ Mfhc1(scratch1, double_scratch); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg), "minus zero"); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI FINAL : public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredTaggedToI(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister()); DCHECK(input->Equals(instr->result())); Register input_reg = ToRegister(input); if (instr->hydrogen()->value()->representation().IsSmi()) { __ SmiUntag(input_reg); } else { DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); // Let the deferred code handle the HeapObject case. __ JumpIfNotSmi(input_reg, deferred->entry()); // Smi to int32 conversion. __ SmiUntag(input_reg); __ bind(deferred->exit()); } } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister()); LOperand* result = instr->result(); DCHECK(result->IsDoubleRegister()); Register input_reg = ToRegister(input); DoubleRegister result_reg = ToDoubleRegister(result); HValue* value = instr->hydrogen()->value(); NumberUntagDMode mode = value->representation().IsSmi() ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; EmitNumberUntagD(instr, input_reg, result_reg, mode); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); DoubleRegister double_input = ToDoubleRegister(instr->value()); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, double_input); } else { Register except_flag = LCodeGen::scratch1(); __ EmitFPUTruncate(kRoundToMinusInf, result_reg, double_input, scratch1, double_scratch0(), except_flag, kCheckForInexactConversion); // Deopt if the operation did not succeed (except_flag != 0). DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ Branch(&done, ne, result_reg, Operand(zero_reg)); __ Mfhc1(scratch1, double_input); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg)); __ bind(&done); } } } void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = LCodeGen::scratch0(); DoubleRegister double_input = ToDoubleRegister(instr->value()); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, double_input); } else { Register except_flag = LCodeGen::scratch1(); __ EmitFPUTruncate(kRoundToMinusInf, result_reg, double_input, scratch1, double_scratch0(), except_flag, kCheckForInexactConversion); // Deopt if the operation did not succeed (except_flag != 0). DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ Branch(&done, ne, result_reg, Operand(zero_reg)); __ Mfhc1(scratch1, double_input); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg)); __ bind(&done); } } __ SmiTagCheckOverflow(result_reg, result_reg, scratch1); DeoptimizeIf(lt, instr, scratch1, Operand(zero_reg)); } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); __ SmiTst(ToRegister(input), at); DeoptimizeIf(ne, instr, at, Operand(zero_reg)); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->type().IsHeapObject()) { LOperand* input = instr->value(); __ SmiTst(ToRegister(input), at); DeoptimizeIf(eq, instr, at, Operand(zero_reg)); } } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); Register scratch = scratch0(); __ GetObjectType(input, scratch, scratch); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(ne, instr, scratch, Operand(first)); } else { DeoptimizeIf(lo, instr, scratch, Operand(first)); // Omit check for the last type. if (last != LAST_TYPE) { DeoptimizeIf(hi, instr, scratch, Operand(last)); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (base::bits::IsPowerOfTwo32(mask)) { DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); __ And(at, scratch, mask); DeoptimizeIf(tag == 0 ? ne : eq, instr, at, Operand(zero_reg)); } else { __ And(scratch, scratch, Operand(mask)); DeoptimizeIf(ne, instr, scratch, Operand(tag)); } } } void LCodeGen::DoCheckValue(LCheckValue* instr) { Register reg = ToRegister(instr->value()); Handle<HeapObject> object = instr->hydrogen()->object().handle(); AllowDeferredHandleDereference smi_check; if (isolate()->heap()->InNewSpace(*object)) { Register reg = ToRegister(instr->value()); Handle<Cell> cell = isolate()->factory()->NewCell(object); __ li(at, Operand(Handle<Object>(cell))); __ lw(at, FieldMemOperand(at, Cell::kValueOffset)); DeoptimizeIf(ne, instr, reg, Operand(at)); } else { DeoptimizeIf(ne, instr, reg, Operand(object)); } } void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { { PushSafepointRegistersScope scope(this); __ push(object); __ mov(cp, zero_reg); __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); RecordSafepointWithRegisters( instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(v0, scratch0()); } __ SmiTst(scratch0(), at); DeoptimizeIf(eq, instr, at, Operand(zero_reg)); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { class DeferredCheckMaps FINAL : public LDeferredCode { public: DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) : LDeferredCode(codegen), instr_(instr), object_(object) { SetExit(check_maps()); } virtual void Generate() OVERRIDE { codegen()->DoDeferredInstanceMigration(instr_, object_); } Label* check_maps() { return &check_maps_; } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LCheckMaps* instr_; Label check_maps_; Register object_; }; if (instr->hydrogen()->IsStabilityCheck()) { const UniqueSet<Map>* maps = instr->hydrogen()->maps(); for (int i = 0; i < maps->size(); ++i) { AddStabilityDependency(maps->at(i).handle()); } return; } Register map_reg = scratch0(); LOperand* input = instr->value(); DCHECK(input->IsRegister()); Register reg = ToRegister(input); __ lw(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); DeferredCheckMaps* deferred = NULL; if (instr->hydrogen()->HasMigrationTarget()) { deferred = new(zone()) DeferredCheckMaps(this, instr, reg); __ bind(deferred->check_maps()); } const UniqueSet<Map>* maps = instr->hydrogen()->maps(); Label success; for (int i = 0; i < maps->size() - 1; i++) { Handle<Map> map = maps->at(i).handle(); __ CompareMapAndBranch(map_reg, map, &success, eq, &success); } Handle<Map> map = maps->at(maps->size() - 1).handle(); // Do the CompareMap() directly within the Branch() and DeoptimizeIf(). if (instr->hydrogen()->HasMigrationTarget()) { __ Branch(deferred->entry(), ne, map_reg, Operand(map)); } else { DeoptimizeIf(ne, instr, map_reg, Operand(map)); } __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->temp()); __ ClampDoubleToUint8(result_reg, value_reg, temp_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { Register unclamped_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampUint8(result_reg, unclamped_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { Register scratch = scratch0(); Register input_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->temp()); Label is_smi, done, heap_number; // Both smi and heap number cases are handled. __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi); // Check for heap number __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map())); // Check for undefined. Undefined is converted to zero for clamping // conversions. DeoptimizeIf(ne, instr, input_reg, Operand(factory()->undefined_value())); __ mov(result_reg, zero_reg); __ jmp(&done); // Heap number __ bind(&heap_number); __ ldc1(double_scratch0(), FieldMemOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg); __ jmp(&done); __ bind(&is_smi); __ ClampUint8(result_reg, scratch); __ bind(&done); } void LCodeGen::DoDoubleBits(LDoubleBits* instr) { DoubleRegister value_reg = ToDoubleRegister(instr->value()); Register result_reg = ToRegister(instr->result()); if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { __ FmoveHigh(result_reg, value_reg); } else { __ FmoveLow(result_reg, value_reg); } } void LCodeGen::DoConstructDouble(LConstructDouble* instr) { Register hi_reg = ToRegister(instr->hi()); Register lo_reg = ToRegister(instr->lo()); DoubleRegister result_reg = ToDoubleRegister(instr->result()); __ Move(result_reg, lo_reg, hi_reg); } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate FINAL : public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredAllocate(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); // Allocate memory for the object. AllocationFlags flags = TAG_OBJECT; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation()); DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE); } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); if (size <= Page::kMaxRegularHeapObjectSize) { __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } else { __ jmp(deferred->entry()); } } else { Register size = ToRegister(instr->size()); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } __ bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { STATIC_ASSERT(kHeapObjectTag == 1); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ li(scratch, Operand(size - kHeapObjectTag)); } else { __ Subu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag)); } __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); Label loop; __ bind(&loop); __ Subu(scratch, scratch, Operand(kPointerSize)); __ Addu(at, result, Operand(scratch)); __ sw(scratch2, MemOperand(at)); __ Branch(&loop, ge, scratch, Operand(zero_reg)); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this); if (instr->size()->IsRegister()) { Register size = ToRegister(instr->size()); DCHECK(!size.is(result)); __ SmiTag(size); __ push(size); } else { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); if (size >= 0 && size <= Smi::kMaxValue) { __ Push(Smi::FromInt(size)); } else { // We should never get here at runtime => abort __ stop("invalid allocation size"); return; } } int flags = AllocateDoubleAlignFlag::encode( instr->hydrogen()->MustAllocateDoubleAligned()); if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation()); DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE); } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE); } else { flags = AllocateTargetSpace::update(flags, NEW_SPACE); } __ Push(Smi::FromInt(flags)); CallRuntimeFromDeferred( Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { DCHECK(ToRegister(instr->value()).is(a0)); DCHECK(ToRegister(instr->result()).is(v0)); __ push(a0); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Label materialized; // Registers will be used as follows: // t3 = literals array. // a1 = regexp literal. // a0 = regexp literal clone. // a2 and t0-t2 are used as temporaries. int literal_offset = FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); __ li(t3, instr->hydrogen()->literals()); __ lw(a1, FieldMemOperand(t3, literal_offset)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&materialized, ne, a1, Operand(at)); // Create regexp literal using runtime function // Result will be in v0. __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ li(t1, Operand(instr->hydrogen()->pattern())); __ li(t0, Operand(instr->hydrogen()->flags())); __ Push(t3, t2, t1, t0); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ mov(a1, v0); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ li(a0, Operand(Smi::FromInt(size))); __ Push(a1, a0); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(a1); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ lw(a3, FieldMemOperand(a1, i)); __ lw(a2, FieldMemOperand(a1, i + kPointerSize)); __ sw(a3, FieldMemOperand(v0, i)); __ sw(a2, FieldMemOperand(v0, i + kPointerSize)); } if ((size % (2 * kPointerSize)) != 0) { __ lw(a3, FieldMemOperand(a1, size - kPointerSize)); __ sw(a3, FieldMemOperand(v0, size - kPointerSize)); } } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { DCHECK(ToRegister(instr->context()).is(cp)); // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && instr->hydrogen()->has_no_literals()) { FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(), instr->hydrogen()->kind()); __ li(a2, Operand(instr->hydrogen()->shared_info())); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else { __ li(a2, Operand(instr->hydrogen()->shared_info())); __ li(a1, Operand(pretenure ? factory()->true_value() : factory()->false_value())); __ Push(cp, a2, a1); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { DCHECK(ToRegister(instr->result()).is(v0)); Register input = ToRegister(instr->value()); __ push(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); Register cmp1 = no_reg; Operand cmp2 = Operand(no_reg); Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input, instr->type_literal(), &cmp1, &cmp2); DCHECK(cmp1.is_valid()); DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid()); if (final_branch_condition != kNoCondition) { EmitBranch(instr, final_branch_condition, cmp1, cmp2); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle<String> type_name, Register* cmp1, Operand* cmp2) { // This function utilizes the delay slot heavily. This is used to load // values that are always usable without depending on the type of the input // register. Condition final_branch_condition = kNoCondition; Register scratch = scratch0(); Factory* factory = isolate()->factory(); if (String::Equals(type_name, factory->number_string())) { __ JumpIfSmi(input, true_label); __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); *cmp1 = input; *cmp2 = Operand(at); final_branch_condition = eq; } else if (String::Equals(type_name, factory->string_string())) { __ JumpIfSmi(input, false_label); __ GetObjectType(input, input, scratch); __ Branch(USE_DELAY_SLOT, false_label, ge, scratch, Operand(FIRST_NONSTRING_TYPE)); // input is an object so we can load the BitFieldOffset even if we take the // other branch. __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); *cmp1 = at; *cmp2 = Operand(zero_reg); final_branch_condition = eq; } else if (String::Equals(type_name, factory->symbol_string())) { __ JumpIfSmi(input, false_label); __ GetObjectType(input, input, scratch); *cmp1 = scratch; *cmp2 = Operand(SYMBOL_TYPE); final_branch_condition = eq; } else if (String::Equals(type_name, factory->boolean_string())) { __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); __ LoadRoot(at, Heap::kFalseValueRootIndex); *cmp1 = at; *cmp2 = Operand(input); final_branch_condition = eq; } else if (String::Equals(type_name, factory->undefined_string())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); // The first instruction of JumpIfSmi is an And - it is safe in the delay // slot. __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); *cmp1 = at; *cmp2 = Operand(zero_reg); final_branch_condition = ne; } else if (String::Equals(type_name, factory->function_string())) { STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ JumpIfSmi(input, false_label); __ GetObjectType(input, scratch, input); __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE)); *cmp1 = input; *cmp2 = Operand(JS_FUNCTION_PROXY_TYPE); final_branch_condition = eq; } else if (String::Equals(type_name, factory->object_string())) { __ JumpIfSmi(input, false_label); __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); Register map = input; __ GetObjectType(input, map, scratch); __ Branch(false_label, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ Branch(USE_DELAY_SLOT, false_label, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); // map is still valid, so the BitField can be loaded in delay slot. // Check for undetectable objects => false. __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); *cmp1 = at; *cmp2 = Operand(zero_reg); final_branch_condition = eq; } else { *cmp1 = at; *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion. __ Branch(false_label); } return final_branch_condition; } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp1 = ToRegister(instr->temp()); EmitIsConstructCall(temp1, scratch0()); EmitBranch(instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); } void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { DCHECK(!temp1.is(temp2)); // Get the frame pointer for the calling frame. __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); __ Branch(&check_frame_marker, ne, temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { if (!info()->IsStub()) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; DCHECK_EQ(0, padding_size % Assembler::kInstrSize); while (padding_size > 0) { __ nop(); padding_size -= Assembler::kInstrSize; } } } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { last_lazy_deopt_pc_ = masm()->pc_offset(); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && type == Deoptimizer::EAGER) { type = Deoptimizer::LAZY; } DeoptimizeIf(al, instr, type, zero_reg, Operand(zero_reg), instr->hydrogen()->reason()); } void LCodeGen::DoDummy(LDummy* instr) { // Nothing to see here, move on! } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); LoadContextFromDeferred(instr->context()); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck FINAL : public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredStackCheck(instr_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LStackCheck* instr_; }; DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&done, hs, sp, Operand(at)); DCHECK(instr->context()->IsRegister()); DCHECK(ToRegister(instr->context()).is(cp)); CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { DCHECK(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at)); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. DCHECK(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); GenerateOsrPrologue(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { Register result = ToRegister(instr->result()); Register object = ToRegister(instr->object()); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); DeoptimizeIf(eq, instr, object, Operand(at)); Register null_value = t1; __ LoadRoot(null_value, Heap::kNullValueRootIndex); DeoptimizeIf(eq, instr, object, Operand(null_value)); __ And(at, object, kSmiTagMask); DeoptimizeIf(eq, instr, at, Operand(zero_reg)); STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ GetObjectType(object, a1, a1); DeoptimizeIf(le, instr, a1, Operand(LAST_JS_PROXY_TYPE)); Label use_cache, call_runtime; DCHECK(object.is(a0)); __ CheckEnumCache(null_value, &call_runtime); __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset)); __ Branch(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(object); CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); DCHECK(result.is(v0)); __ LoadRoot(at, Heap::kMetaMapRootIndex); DeoptimizeIf(ne, instr, a1, Operand(at)); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0))); __ li(result, Operand(isolate()->factory()->empty_fixed_array())); __ jmp(&done); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ lw(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); __ lw(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); DeoptimizeIf(eq, instr, result, Operand(zero_reg)); __ bind(&done); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); Register map = ToRegister(instr->map()); __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); DeoptimizeIf(ne, instr, map, Operand(scratch0())); } void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register result, Register object, Register index) { PushSafepointRegistersScope scope(this); __ Push(object, index); __ mov(cp, zero_reg); __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); RecordSafepointWithRegisters( instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { class DeferredLoadMutableDouble FINAL : public LDeferredCode { public: DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr, Register result, Register object, Register index) : LDeferredCode(codegen), instr_(instr), result_(result), object_(object), index_(index) { } virtual void Generate() OVERRIDE { codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); } virtual LInstruction* instr() OVERRIDE { return instr_; } private: LLoadFieldByIndex* instr_; Register result_; Register object_; Register index_; }; Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); DeferredLoadMutableDouble* deferred; deferred = new(zone()) DeferredLoadMutableDouble( this, instr, result, object, index); Label out_of_object, done; __ And(scratch, index, Operand(Smi::FromInt(1))); __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg)); __ sra(index, index, 1); __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg)); __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot. STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); __ Addu(scratch, object, scratch); __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); __ Branch(&done); __ bind(&out_of_object); __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); // Index is equal to negated out of object property index plus 1. __ Subu(scratch, result, scratch); __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize)); __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { Register context = ToRegister(instr->context()); __ sw(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { Handle<ScopeInfo> scope_info = instr->scope_info(); __ li(at, scope_info); __ Push(at, ToRegister(instr->function())); CallRuntime(Runtime::kPushBlockContext, 2, instr); RecordSafepoint(Safepoint::kNoLazyDeopt); } #undef __ } } // namespace v8::internal