// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_ #define V8_IA32_MACRO_ASSEMBLER_IA32_H_ #include "src/assembler.h" #include "src/bailout-reason.h" #include "src/frames.h" #include "src/globals.h" namespace v8 { namespace internal { // Convenience for platform-independent signatures. We do not normally // distinguish memory operands from other operands on ia32. typedef Operand MemOperand; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum PointersToHereCheck { kPointersToHereMaybeInteresting, kPointersToHereAreAlwaysInteresting }; enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 }; #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg, Register reg7 = no_reg, Register reg8 = no_reg); #endif // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: // The isolate parameter can be NULL if the macro assembler should // not use isolate-dependent functionality. In this case, it's the // responsibility of the caller to never invoke such function on the // macro assembler. MacroAssembler(Isolate* isolate, void* buffer, int size); void Load(Register dst, const Operand& src, Representation r); void Store(Register src, const Operand& dst, Representation r); // Operations on roots in the root-array. void LoadRoot(Register destination, Heap::RootListIndex index); void StoreRoot(Register source, Register scratch, Heap::RootListIndex index); void CompareRoot(Register with, Register scratch, Heap::RootListIndex index); // These methods can only be used with constant roots (i.e. non-writable // and not in new space). void CompareRoot(Register with, Heap::RootListIndex index); void CompareRoot(const Operand& with, Heap::RootListIndex index); // --------------------------------------------------------------------------- // GC Support enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd }; // Record in the remembered set the fact that we have a pointer to new space // at the address pointed to by the addr register. Only works if addr is not // in new space. void RememberedSetHelper(Register object, // Used for debug code. Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); void CheckPageFlagForMap( Handle<Map> map, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); void CheckMapDeprecated(Handle<Map> map, Register scratch, Label* if_deprecated); // Check if object is in new space. Jumps if the object is not in new space. // The register scratch can be object itself, but scratch will be clobbered. void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch, Label::Distance distance = Label::kFar) { InNewSpace(object, scratch, zero, branch, distance); } // Check if object is in new space. Jumps if the object is in new space. // The register scratch can be object itself, but it will be clobbered. void JumpIfInNewSpace(Register object, Register scratch, Label* branch, Label::Distance distance = Label::kFar) { InNewSpace(object, scratch, not_zero, branch, distance); } // Check if an object has a given incremental marking color. Also uses ecx! void HasColor(Register object, Register scratch0, Register scratch1, Label* has_color, Label::Distance has_color_distance, int first_bit, int second_bit); void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black, Label::Distance on_black_distance = Label::kFar); // Checks the color of an object. If the object is already grey or black // then we just fall through, since it is already live. If it is white and // we can determine that it doesn't need to be scanned, then we just mark it // black and fall through. For the rest we jump to the label so the // incremental marker can fix its assumptions. void EnsureNotWhite(Register object, Register scratch1, Register scratch2, Label* object_is_white_and_not_data, Label::Distance distance); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // As above, but the offset has the tag presubtracted. For use with // Operand(reg, off). void RecordWriteContextSlot( Register context, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting) { RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp, remembered_set_action, smi_check, pointers_to_here_check_for_value); } // Notify the garbage collector that we wrote a pointer into a fixed array. // |array| is the array being stored into, |value| is the // object being stored. |index| is the array index represented as a // Smi. All registers are clobbered by the operation RecordWriteArray // filters out smis so it does not update the write barrier if the // value is a smi. void RecordWriteArray( Register array, Register value, Register index, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // For page containing |object| mark region covering |address| // dirty. |object| is the object being stored into, |value| is the // object being stored. The address and value registers are clobbered by the // operation. RecordWrite filters out smis so it does not update the // write barrier if the value is a smi. void RecordWrite( Register object, Register address, Register value, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // For page containing |object| mark the region covering the object's map // dirty. |object| is the object being stored into, |map| is the Map object // that was stored. void RecordWriteForMap( Register object, Handle<Map> map, Register scratch1, Register scratch2, SaveFPRegsMode save_fp); // --------------------------------------------------------------------------- // Debugger Support void DebugBreak(); // Generates function and stub prologue code. void StubPrologue(); void Prologue(bool code_pre_aging); // Enter specific kind of exit frame. Expects the number of // arguments in register eax and sets up the number of arguments in // register edi and the pointer to the first argument in register // esi. void EnterExitFrame(bool save_doubles); void EnterApiExitFrame(int argc); // Leave the current exit frame. Expects the return value in // register eax:edx (untouched) and the pointer to the first // argument in register esi. void LeaveExitFrame(bool save_doubles); // Leave the current exit frame. Expects the return value in // register eax (untouched). void LeaveApiExitFrame(bool restore_context); // Find the function context up the context chain. void LoadContext(Register dst, int context_chain_length); // Conditionally load the cached Array transitioned map of type // transitioned_kind from the native context if the map in register // map_in_out is the cached Array map in the native context of // expected_kind. void LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match); // Load the global function with the given index. void LoadGlobalFunction(int index, Register function); // Load the initial map from the global function. The registers // function and map can be the same. void LoadGlobalFunctionInitialMap(Register function, Register map); // Push and pop the registers that can hold pointers. void PushSafepointRegisters() { pushad(); } void PopSafepointRegisters() { popad(); } // Store the value in register/immediate src in the safepoint // register stack slot for register dst. void StoreToSafepointRegisterSlot(Register dst, Register src); void StoreToSafepointRegisterSlot(Register dst, Immediate src); void LoadFromSafepointRegisterSlot(Register dst, Register src); void LoadHeapObject(Register result, Handle<HeapObject> object); void CmpHeapObject(Register reg, Handle<HeapObject> object); void PushHeapObject(Handle<HeapObject> object); void LoadObject(Register result, Handle<Object> object) { AllowDeferredHandleDereference heap_object_check; if (object->IsHeapObject()) { LoadHeapObject(result, Handle<HeapObject>::cast(object)); } else { Move(result, Immediate(object)); } } void CmpObject(Register reg, Handle<Object> object) { AllowDeferredHandleDereference heap_object_check; if (object->IsHeapObject()) { CmpHeapObject(reg, Handle<HeapObject>::cast(object)); } else { cmp(reg, Immediate(object)); } } // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { InvokeCode(Operand(code), expected, actual, flag, call_wrapper); } void InvokeCode(const Operand& code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); // Invoke specified builtin JavaScript function. Adds an entry to // the unresolved list if the name does not resolve. void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper = NullCallWrapper()); // Store the function for the given builtin in the target register. void GetBuiltinFunction(Register target, Builtins::JavaScript id); // Store the code object for the given builtin in the target register. void GetBuiltinEntry(Register target, Builtins::JavaScript id); // Expression support // cvtsi2sd instruction only writes to the low 64-bit of dst register, which // hinders register renaming and makes dependence chains longer. So we use // xorps to clear the dst register before cvtsi2sd to solve this issue. void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); } void Cvtsi2sd(XMMRegister dst, const Operand& src); // Support for constant splitting. bool IsUnsafeImmediate(const Immediate& x); void SafeMove(Register dst, const Immediate& x); void SafePush(const Immediate& x); // Compare object type for heap object. // Incoming register is heap_object and outgoing register is map. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. void CmpInstanceType(Register map, InstanceType type); // Check if a map for a JSObject indicates that the object has fast elements. // Jump to the specified label if it does not. void CheckFastElements(Register map, Label* fail, Label::Distance distance = Label::kFar); // Check if a map for a JSObject indicates that the object can have both smi // and HeapObject elements. Jump to the specified label if it does not. void CheckFastObjectElements(Register map, Label* fail, Label::Distance distance = Label::kFar); // Check if a map for a JSObject indicates that the object has fast smi only // elements. Jump to the specified label if it does not. void CheckFastSmiElements(Register map, Label* fail, Label::Distance distance = Label::kFar); // Check to see if maybe_number can be stored as a double in // FastDoubleElements. If it can, store it at the index specified by key in // the FastDoubleElements array elements, otherwise jump to fail. void StoreNumberToDoubleElements(Register maybe_number, Register elements, Register key, Register scratch1, XMMRegister scratch2, Label* fail, int offset = 0); // Compare an object's map with the specified map. void CompareMap(Register obj, Handle<Map> map); // Check if the map of an object is equal to a specified map and branch to // label if not. Skip the smi check if not required (object is known to be a // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match // against maps that are ElementsKind transition maps of the specified map. void CheckMap(Register obj, Handle<Map> map, Label* fail, SmiCheckType smi_check_type); // Check if the map of an object is equal to a specified map and branch to a // specified target if equal. Skip the smi check if not required (object is // known to be a heap object) void DispatchMap(Register obj, Register unused, Handle<Map> map, Handle<Code> success, SmiCheckType smi_check_type); // Check if the object in register heap_object is a string. Afterwards the // register map contains the object map and the register instance_type // contains the instance_type. The registers map and instance_type can be the // same in which case it contains the instance type afterwards. Either of the // registers map and instance_type can be the same as heap_object. Condition IsObjectStringType(Register heap_object, Register map, Register instance_type); // Check if the object in register heap_object is a name. Afterwards the // register map contains the object map and the register instance_type // contains the instance_type. The registers map and instance_type can be the // same in which case it contains the instance type afterwards. Either of the // registers map and instance_type can be the same as heap_object. Condition IsObjectNameType(Register heap_object, Register map, Register instance_type); // Check if a heap object's type is in the JSObject range, not including // JSFunction. The object's map will be loaded in the map register. // Any or all of the three registers may be the same. // The contents of the scratch register will always be overwritten. void IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail); // The contents of the scratch register will be overwritten. void IsInstanceJSObjectType(Register map, Register scratch, Label* fail); // FCmp is similar to integer cmp, but requires unsigned // jcc instructions (je, ja, jae, jb, jbe, je, and jz). void FCmp(); void ClampUint8(Register reg); void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg, Register result_reg); void SlowTruncateToI(Register result_reg, Register input_reg, int offset = HeapNumber::kValueOffset - kHeapObjectTag); void TruncateHeapNumberToI(Register result_reg, Register input_reg); void TruncateDoubleToI(Register result_reg, XMMRegister input_reg); void DoubleToI(Register result_reg, XMMRegister input_reg, XMMRegister scratch, MinusZeroMode minus_zero_mode, Label* lost_precision, Label* is_nan, Label* minus_zero, Label::Distance dst = Label::kFar); // Smi tagging support. void SmiTag(Register reg) { STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); add(reg, reg); } void SmiUntag(Register reg) { sar(reg, kSmiTagSize); } // Modifies the register even if it does not contain a Smi! void SmiUntag(Register reg, Label* is_smi) { STATIC_ASSERT(kSmiTagSize == 1); sar(reg, kSmiTagSize); STATIC_ASSERT(kSmiTag == 0); j(not_carry, is_smi); } void LoadUint32(XMMRegister dst, Register src); // Jump the register contains a smi. inline void JumpIfSmi(Register value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } // Jump if the operand is a smi. inline void JumpIfSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } // Jump if register contain a non-smi. inline void JumpIfNotSmi(Register value, Label* not_smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, not_smi_label, distance); } void LoadInstanceDescriptors(Register map, Register descriptors); void EnumLength(Register dst, Register map); void NumberOfOwnDescriptors(Register dst, Register map); template<typename Field> void DecodeField(Register reg) { static const int shift = Field::kShift; static const int mask = Field::kMask >> Field::kShift; if (shift != 0) { sar(reg, shift); } and_(reg, Immediate(mask)); } template<typename Field> void DecodeFieldToSmi(Register reg) { static const int shift = Field::kShift; static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize; STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0); STATIC_ASSERT(kSmiTag == 0); if (shift < kSmiTagSize) { shl(reg, kSmiTagSize - shift); } else if (shift > kSmiTagSize) { sar(reg, shift - kSmiTagSize); } and_(reg, Immediate(mask)); } void LoadPowerOf2(XMMRegister dst, Register scratch, int power); // Abort execution if argument is not a number, enabled via --debug-code. void AssertNumber(Register object); // Abort execution if argument is not a smi, enabled via --debug-code. void AssertSmi(Register object); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); // Abort execution if argument is not a string, enabled via --debug-code. void AssertString(Register object); // Abort execution if argument is not a name, enabled via --debug-code. void AssertName(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object); // --------------------------------------------------------------------------- // Exception handling // Push a new try handler and link it into try handler chain. void PushTryHandler(StackHandler::Kind kind, int handler_index); // Unlink the stack handler on top of the stack from the try handler chain. void PopTryHandler(); // Throw to the top handler in the try hander chain. void Throw(Register value); // Throw past all JS frames to the top JS entry frame. void ThrowUncatchable(Register value); // --------------------------------------------------------------------------- // Inline caching support // Generate code for checking access rights - used for security checks // on access to global objects across environments. The holder register // is left untouched, but the scratch register is clobbered. void CheckAccessGlobalProxy(Register holder_reg, Register scratch1, Register scratch2, Label* miss); void GetNumberHash(Register r0, Register scratch); void LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register r0, Register r1, Register r2, Register result); // --------------------------------------------------------------------------- // Allocation support // Allocate an object in new space or old pointer space. If the given space // is exhausted control continues at the gc_required label. The allocated // object is returned in result and end of the new object is returned in // result_end. The register scratch can be passed as no_reg in which case // an additional object reference will be added to the reloc info. The // returned pointers in result and result_end have not yet been tagged as // heap objects. If result_contains_top_on_entry is true the content of // result is known to be the allocation top on entry (could be result_end // from a previous call). If result_contains_top_on_entry is true scratch // should be no_reg as it is never used. void Allocate(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void Allocate(int header_size, ScaleFactor element_size, Register element_count, RegisterValueType element_count_type, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // Undo allocation in new space. The object passed and objects allocated after // it will no longer be allocated. Make sure that no pointers are left to the // object(s) no longer allocated as they would be invalid when allocation is // un-done. void UndoAllocationInNewSpace(Register object); // Allocate a heap number in new space with undefined value. The // register scratch2 can be passed as no_reg; the others must be // valid registers. Returns tagged pointer in result register, or // jumps to gc_required if new space is full. void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Label* gc_required, MutableMode mode = IMMUTABLE); // Allocate a sequential string. All the header fields of the string object // are initialized. void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateOneByteString(Register result, int length, Register scratch1, Register scratch2, Label* gc_required); // Allocate a raw cons string object. Only the map field of the result is // initialized. void AllocateTwoByteConsString(Register result, Register scratch1, Register scratch2, Label* gc_required); void AllocateOneByteConsString(Register result, Register scratch1, Register scratch2, Label* gc_required); // Allocate a raw sliced string object. Only the map field of the result is // initialized. void AllocateTwoByteSlicedString(Register result, Register scratch1, Register scratch2, Label* gc_required); void AllocateOneByteSlicedString(Register result, Register scratch1, Register scratch2, Label* gc_required); // Copy memory, byte-by-byte, from source to destination. Not optimized for // long or aligned copies. // The contents of index and scratch are destroyed. void CopyBytes(Register source, Register destination, Register length, Register scratch); // Initialize fields with filler values. Fields starting at |start_offset| // not including end_offset are overwritten with the value in |filler|. At // the end the loop, |start_offset| takes the value of |end_offset|. void InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler); // --------------------------------------------------------------------------- // Support functions. // Check a boolean-bit of a Smi field. void BooleanBitTest(Register object, int field_offset, int bit_index); // Check if result is zero and op is negative. void NegativeZeroTest(Register result, Register op, Label* then_label); // Check if result is zero and any of op1 and op2 are negative. // Register scratch is destroyed, and it must be different from op2. void NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label); // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other registers may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, bool miss_on_bound_function = false); // Picks out an array index from the hash field. // Register use: // hash - holds the index's hash. Clobbered. // index - holds the overwritten index on exit. void IndexFromHash(Register hash, Register index); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. Generate the code if necessary. void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); // Tail call a code stub (jump). Generate the code if necessary. void TailCallStub(CodeStub* stub); // Return from a code stub after popping its arguments. void StubReturn(int argc); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); void CallRuntimeSaveDoubles(Runtime::FunctionId id) { const Runtime::Function* function = Runtime::FunctionForId(id); CallRuntime(function, function->nargs, kSaveFPRegs); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId id, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles); } // Convenience function: call an external reference. void CallExternalReference(ExternalReference ref, int num_arguments); // Tail call of a runtime routine (jump). // Like JumpToExternalReference, but also takes care of passing the number // of parameters. void TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in esp[0], esp[4], // etc., not pushed. The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_arguments, Register scratch); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); // Prepares stack to put arguments (aligns and so on). Reserves // space for return value if needed (assumes the return value is a handle). // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1) // etc. Saves context (esi). If space was reserved for return value then // stores the pointer to the reserved slot into esi. void PrepareCallApiFunction(int argc); // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Clobbers ebx, edi and // caller-save registers. Restores context. On return removes // stack_space * kPointerSize (GCed). void CallApiFunctionAndReturn(Register function_address, ExternalReference thunk_ref, Operand thunk_last_arg, int stack_space, Operand return_value_operand, Operand* context_restore_operand); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& ext); // --------------------------------------------------------------------------- // Utilities void Ret(); // Return and drop arguments from stack, where the number of arguments // may be bigger than 2^16 - 1. Requires a scratch register. void Ret(int bytes_dropped, Register scratch); // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the esp register. void Drop(int element_count); void Call(Label* target) { call(target); } void Push(Register src) { push(src); } void Pop(Register dst) { pop(dst); } // Emit call to the code we are currently generating. void CallSelf() { Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location())); call(self, RelocInfo::CODE_TARGET); } // Move if the registers are not identical. void Move(Register target, Register source); // Move a constant into a destination using the most efficient encoding. void Move(Register dst, const Immediate& x); void Move(const Operand& dst, const Immediate& x); // Move an immediate into an XMM register. void Move(XMMRegister dst, double val); // Push a handle value. void Push(Handle<Object> handle) { push(Immediate(handle)); } void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } Handle<Object> CodeObject() { DCHECK(!code_object_.is_null()); return code_object_; } // Emit code for a truncating division by a constant. The dividend register is // unchanged, the result is in edx, and eax gets clobbered. void TruncatingDiv(Register dividend, int32_t divisor); // --------------------------------------------------------------------------- // StatsCounter support void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); void IncrementCounter(Condition cc, StatsCounter* counter, int value); void DecrementCounter(Condition cc, StatsCounter* counter, int value); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, BailoutReason reason); void AssertFastElements(Register elements); // Like Assert(), but always enabled. void Check(Condition cc, BailoutReason reason); // Print a message to stdout and abort execution. void Abort(BailoutReason reason); // Check that the stack is aligned. void CheckStackAlignment(); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_has_frame(bool value) { has_frame_ = value; } bool has_frame() { return has_frame_; } inline bool AllowThisStubCall(CodeStub* stub); // --------------------------------------------------------------------------- // String utilities. // Generate code to do a lookup in the number string cache. If the number in // the register object is found in the cache the generated code falls through // with the result in the result register. The object and the result register // can be the same. If the number is not found in the cache the code jumps to // the label not_found with only the content of register object unchanged. void LookupNumberStringCache(Register object, Register result, Register scratch1, Register scratch2, Label* not_found); // Check whether the instance type represents a flat one-byte string. Jump to // the label if not. If the instance type can be scratched specify same // register for both instance type and scratch. void JumpIfInstanceTypeIsNotSequentialOneByte( Register instance_type, Register scratch, Label* on_not_flat_one_byte_string); // Checks if both objects are sequential one-byte strings, and jumps to label // if either is not. void JumpIfNotBothSequentialOneByteStrings( Register object1, Register object2, Register scratch1, Register scratch2, Label* on_not_flat_one_byte_strings); // Checks if the given register or operand is a unique name void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name, Label::Distance distance = Label::kFar) { JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance); } void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name, Label::Distance distance = Label::kFar); void EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask); static int SafepointRegisterStackIndex(Register reg) { return SafepointRegisterStackIndex(reg.code()); } // Activation support. void EnterFrame(StackFrame::Type type); void LeaveFrame(StackFrame::Type type); // Expects object in eax and returns map with validated enum cache // in eax. Assumes that any other register can be used as a scratch. void CheckEnumCache(Label* call_runtime); // AllocationMemento support. Arrays may have an associated // AllocationMemento object that can be checked for in order to pretransition // to another type. // On entry, receiver_reg should point to the array object. // scratch_reg gets clobbered. // If allocation info is present, conditional code is set to equal. void TestJSArrayForAllocationMemento(Register receiver_reg, Register scratch_reg, Label* no_memento_found); void JumpIfJSArrayHasAllocationMemento(Register receiver_reg, Register scratch_reg, Label* memento_found) { Label no_memento_found; TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, &no_memento_found); j(equal, memento_found); bind(&no_memento_found); } // Jumps to found label if a prototype map has dictionary elements. void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, Register scratch1, Label* found); private: bool generating_stub_; bool has_frame_; // This handle will be patched with the code object on installation. Handle<Object> code_object_; // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, const Operand& code_operand, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance done_distance, const CallWrapper& call_wrapper = NullCallWrapper()); void EnterExitFramePrologue(); void EnterExitFrameEpilogue(int argc, bool save_doubles); void LeaveExitFrameEpilogue(bool restore_context); // Allocation support helpers. void LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags); void UpdateAllocationTopHelper(Register result_end, Register scratch, AllocationFlags flags); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); // Helper for finding the mark bits for an address. Afterwards, the // bitmap register points at the word with the mark bits and the mask // the position of the first bit. Uses ecx as scratch and leaves addr_reg // unchanged. inline void GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg); // Helper for throwing exceptions. Compute a handler address and jump to // it. See the implementation for register usage. void JumpToHandlerEntry(); // Compute memory operands for safepoint stack slots. Operand SafepointRegisterSlot(Register reg); static int SafepointRegisterStackIndex(int reg_code); // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. Is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion. class CodePatcher { public: CodePatcher(byte* address, int size); virtual ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } inline Operand FixedArrayElementOperand(Register array, Register index_as_smi, int additional_offset = 0) { int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize; return FieldOperand(array, index_as_smi, times_half_pointer_size, offset); } inline Operand ContextOperand(Register context, int index) { return Operand(context, Context::SlotOffset(index)); } inline Operand GlobalObjectOperand() { return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX); } // Generates an Operand for saving parameters after PrepareCallApiFunction. Operand ApiParameterOperand(int index); #ifdef GENERATED_CODE_COVERAGE extern void LogGeneratedCodeCoverage(const char* file_line); #define CODE_COVERAGE_STRINGIFY(x) #x #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) #define ACCESS_MASM(masm) { \ byte* ia32_coverage_function = \ reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ masm->pushfd(); \ masm->pushad(); \ masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \ masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \ masm->pop(eax); \ masm->popad(); \ masm->popfd(); \ } \ masm-> #else #define ACCESS_MASM(masm) masm-> #endif } } // namespace v8::internal #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_