// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_IA32 #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/isolate.h" #include "src/jsregexp.h" #include "src/regexp-macro-assembler.h" #include "src/runtime.h" namespace v8 { namespace internal { static void InitializeArrayConstructorDescriptor( Isolate* isolate, CodeStubDescriptor* descriptor, int constant_stack_parameter_count) { // register state // eax -- number of arguments // edi -- function // ebx -- allocation site with elements kind Address deopt_handler = Runtime::FunctionForId( Runtime::kArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { descriptor->Initialize(deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); } } static void InitializeInternalArrayConstructorDescriptor( Isolate* isolate, CodeStubDescriptor* descriptor, int constant_stack_parameter_count) { // register state // eax -- number of arguments // edi -- constructor function Address deopt_handler = Runtime::FunctionForId( Runtime::kInternalArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { descriptor->Initialize(deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); } } void ArrayNoArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); } void ArraySingleArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, 1); } void ArrayNArgumentsConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, -1); } void InternalArrayNoArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0); } void InternalArraySingleArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1); } void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); } #define __ ACCESS_MASM(masm) void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetEnvironmentParameterCount(); { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); DCHECK(param_count == 0 || eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1))); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor.GetEnvironmentParameterRegister(i)); } __ CallExternalReference(miss, param_count); } __ ret(0); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ pushad(); if (save_doubles()) { __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters)); for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); __ movsd(Operand(esp, i * kDoubleSize), reg); } } const int argument_count = 1; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, ecx); __ mov(Operand(esp, 0 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); __ movsd(reg, Operand(esp, i * kDoubleSize)); } __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters)); } __ popad(); __ ret(0); } class FloatingPointHelper : public AllStatic { public: enum ArgLocation { ARGS_ON_STACK, ARGS_IN_REGISTERS }; // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand in register number. Returns operand as floating point number // on FPU stack. static void LoadFloatOperand(MacroAssembler* masm, Register number); // Test if operands are smi or number objects (fp). Requirements: // operand_1 in eax, operand_2 in edx; falls through on float // operands, jumps to the non_float label otherwise. static void CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch); // Test if operands are numbers (smi or HeapNumber objects), and load // them into xmm0 and xmm1 if they are. Jump to label not_numbers if // either operand is not a number. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); }; void DoubleToIStub::Generate(MacroAssembler* masm) { Register input_reg = this->source(); Register final_result_reg = this->destination(); DCHECK(is_truncating()); Label check_negative, process_64_bits, done, done_no_stash; int double_offset = offset(); // Account for return address and saved regs if input is esp. if (input_reg.is(esp)) double_offset += 3 * kPointerSize; MemOperand mantissa_operand(MemOperand(input_reg, double_offset)); MemOperand exponent_operand(MemOperand(input_reg, double_offset + kDoubleSize / 2)); Register scratch1; { Register scratch_candidates[3] = { ebx, edx, edi }; for (int i = 0; i < 3; i++) { scratch1 = scratch_candidates[i]; if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break; } } // Since we must use ecx for shifts below, use some other register (eax) // to calculate the result if ecx is the requested return register. Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead for // the result. Register save_reg = final_result_reg.is(ecx) ? eax : ecx; __ push(scratch1); __ push(save_reg); bool stash_exponent_copy = !input_reg.is(esp); __ mov(scratch1, mantissa_operand); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); // Load x87 register with heap number. __ fld_d(mantissa_operand); } __ mov(ecx, exponent_operand); if (stash_exponent_copy) __ push(ecx); __ and_(ecx, HeapNumber::kExponentMask); __ shr(ecx, HeapNumber::kExponentShift); __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias)); __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; if (CpuFeatures::IsSupported(SSE3)) { __ fstp(0); } __ sub(ecx, Immediate(delta)); __ xor_(result_reg, result_reg); __ cmp(ecx, Immediate(31)); __ j(above, &done); __ shl_cl(scratch1); __ jmp(&check_negative); __ bind(&process_64_bits); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); if (stash_exponent_copy) { // Already a copy of the exponent on the stack, overwrite it. STATIC_ASSERT(kDoubleSize == 2 * kPointerSize); __ sub(esp, Immediate(kDoubleSize / 2)); } else { // Reserve space for 64 bit answer. __ sub(esp, Immediate(kDoubleSize)); // Nolint. } // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result __ add(esp, Immediate(kDoubleSize)); __ jmp(&done_no_stash); } else { // Result must be extracted from shifted 32-bit mantissa __ sub(ecx, Immediate(delta)); __ neg(ecx); if (stash_exponent_copy) { __ mov(result_reg, MemOperand(esp, 0)); } else { __ mov(result_reg, exponent_operand); } __ and_(result_reg, Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32))); __ add(result_reg, Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32))); __ shrd(result_reg, scratch1); __ shr_cl(result_reg); __ test(ecx, Immediate(32)); __ cmov(not_equal, scratch1, result_reg); } // If the double was negative, negate the integer result. __ bind(&check_negative); __ mov(result_reg, scratch1); __ neg(result_reg); if (stash_exponent_copy) { __ cmp(MemOperand(esp, 0), Immediate(0)); } else { __ cmp(exponent_operand, Immediate(0)); } __ cmov(greater, result_reg, scratch1); // Restore registers __ bind(&done); if (stash_exponent_copy) { __ add(esp, Immediate(kDoubleSize / 2)); } __ bind(&done_no_stash); if (!final_result_reg.is(result_reg)) { DCHECK(final_result_reg.is(ecx)); __ mov(final_result_reg, result_reg); } __ pop(save_reg); __ pop(scratch1); __ ret(0); } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register number) { Label load_smi, done; __ JumpIfSmi(number, &load_smi, Label::kNear); __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); __ bind(&load_smi); __ SmiUntag(number); __ push(number); __ fild_s(Operand(esp, 0)); __ pop(number); __ bind(&done); } void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; // Load operand in edx into xmm0, or branch to not_numbers. __ JumpIfSmi(edx, &load_smi_edx, Label::kNear); Factory* factory = masm->isolate()->factory(); __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, not_numbers); // Argument in edx is not a number. __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1, or branch to not_numbers. __ JumpIfSmi(eax, &load_smi_eax, Label::kNear); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map()); __ j(equal, &load_float_eax, Label::kNear); __ jmp(not_numbers); // Argument in eax is not a number. __ bind(&load_smi_edx); __ SmiUntag(edx); // Untag smi before converting to float. __ Cvtsi2sd(xmm0, edx); __ SmiTag(edx); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ SmiUntag(eax); // Untag smi before converting to float. __ Cvtsi2sd(xmm1, eax); __ SmiTag(eax); // Retag smi for heap number overwriting test. __ jmp(&done, Label::kNear); __ bind(&load_float_eax); __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ bind(&done); } void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch) { Label test_other, done; // Test if both operands are floats or smi -> scratch=k_is_float; // Otherwise scratch = k_not_float. __ JumpIfSmi(edx, &test_other, Label::kNear); __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); Factory* factory = masm->isolate()->factory(); __ cmp(scratch, factory->heap_number_map()); __ j(not_equal, non_float); // argument in edx is not a number -> NaN __ bind(&test_other); __ JumpIfSmi(eax, &done, Label::kNear); __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(scratch, factory->heap_number_map()); __ j(not_equal, non_float); // argument in eax is not a number -> NaN // Fall-through: Both operands are numbers. __ bind(&done); } void MathPowStub::Generate(MacroAssembler* masm) { Factory* factory = isolate()->factory(); const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(eax)); const Register base = edx; const Register scratch = ecx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ mov(scratch, Immediate(1)); __ Cvtsi2sd(double_result, scratch); if (exponent_type() == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack. __ mov(base, Operand(esp, 2 * kPointerSize)); __ mov(exponent, Operand(esp, 1 * kPointerSize)); __ JumpIfSmi(base, &base_is_smi, Label::kNear); __ cmp(FieldOperand(base, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, &call_runtime); __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent, Label::kNear); __ bind(&base_is_smi); __ SmiUntag(base); __ Cvtsi2sd(double_base, base); __ bind(&unpack_exponent); __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiUntag(exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ cmp(FieldOperand(exponent, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, &call_runtime); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type() == TAGGED) { __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiUntag(exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { Label fast_power, try_arithmetic_simplification; __ DoubleToI(exponent, double_exponent, double_scratch, TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, &try_arithmetic_simplification, &try_arithmetic_simplification); __ jmp(&int_exponent); __ bind(&try_arithmetic_simplification); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cvttsd2si(exponent, Operand(double_exponent)); __ cmp(exponent, Immediate(0x1)); __ j(overflow, &call_runtime); if (exponent_type() == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label continue_sqrt, continue_rsqrt, not_plus_half; // Test for 0.5. // Load double_scratch with 0.5. __ mov(scratch, Immediate(0x3F000000u)); __ movd(double_scratch, scratch); __ cvtss2sd(double_scratch, double_scratch); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, ¬_plus_half, Label::kNear); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). // According to IEEE-754, single-precision -Infinity has the highest // 9 bits set and the lowest 23 bits cleared. __ mov(scratch, 0xFF800000u); __ movd(double_scratch, scratch); __ cvtss2sd(double_scratch, double_scratch); __ ucomisd(double_base, double_scratch); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_sqrt, Label::kNear); __ j(carry, &continue_sqrt, Label::kNear); // Set result to Infinity in the special case. __ xorps(double_result, double_result); __ subsd(double_result, double_scratch); __ jmp(&done); __ bind(&continue_sqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_scratch, double_scratch); __ addsd(double_scratch, double_base); // Convert -0 to +0. __ sqrtsd(double_result, double_scratch); __ jmp(&done); // Test for -0.5. __ bind(¬_plus_half); // Load double_exponent with -0.5 by substracting 1. __ subsd(double_scratch, double_result); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, &fast_power, Label::kNear); // Calculates reciprocal of square root of base. Check for the special // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). // According to IEEE-754, single-precision -Infinity has the highest // 9 bits set and the lowest 23 bits cleared. __ mov(scratch, 0xFF800000u); __ movd(double_scratch, scratch); __ cvtss2sd(double_scratch, double_scratch); __ ucomisd(double_base, double_scratch); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_rsqrt, Label::kNear); __ j(carry, &continue_rsqrt, Label::kNear); // Set result to 0 in the special case. __ xorps(double_result, double_result); __ jmp(&done); __ bind(&continue_rsqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_exponent, double_exponent); __ addsd(double_exponent, double_base); // Convert -0 to +0. __ sqrtsd(double_exponent, double_exponent); __ divsd(double_result, double_exponent); __ jmp(&done); } // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ sub(esp, Immediate(kDoubleSize)); __ movsd(Operand(esp, 0), double_exponent); __ fld_d(Operand(esp, 0)); // E __ movsd(Operand(esp, 0), double_base); __ fld_d(Operand(esp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // 2^X // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ test_b(eax, 0x5F); // We check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(esp, 0)); __ movsd(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ add(esp, Immediate(kDoubleSize)); __ jmp(&call_runtime); } // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; __ mov(scratch, exponent); // Back up exponent. __ movsd(double_scratch, double_base); // Back up base. __ movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, while_false; __ test(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ neg(scratch); __ bind(&no_neg); __ j(zero, &while_false, Label::kNear); __ shr(scratch, 1); // Above condition means CF==0 && ZF==0. This means that the // bit that has been shifted out is 0 and the result is not 0. __ j(above, &while_true, Label::kNear); __ movsd(double_result, double_scratch); __ j(zero, &while_false, Label::kNear); __ bind(&while_true); __ shr(scratch, 1); __ mulsd(double_scratch, double_scratch); __ j(above, &while_true, Label::kNear); __ mulsd(double_result, double_scratch); __ j(not_zero, &while_true); __ bind(&while_false); // scratch has the original value of the exponent - if the exponent is // negative, return 1/result. __ test(exponent, exponent); __ j(positive, &done); __ divsd(double_scratch2, double_result); __ movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ xorps(double_scratch2, double_scratch2); __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // exponent is a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ Cvtsi2sd(double_exponent, exponent); // Returning or bailing out. Counters* counters = isolate()->counters(); if (exponent_type() == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber(eax, scratch, base, &call_runtime); __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result); __ IncrementCounter(counters->math_pow(), 1); __ ret(2 * kPointerSize); } else { __ bind(&call_runtime); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(4, scratch); __ movsd(Operand(esp, 0 * kDoubleSize), double_base); __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 4); } // Return value is in st(0) on ia32. // Store it into the (fixed) result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1); __ ret(0); } } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax, ebx, &miss); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); } void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) { // Return address is on the stack. Label slow; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); Register scratch = eax; DCHECK(!scratch.is(receiver) && !scratch.is(key)); // Check that the key is an array index, that is Uint32. __ test(key, Immediate(kSmiTagMask | kSmiSignMask)); __ j(not_zero, &slow); // Everything is fine, call runtime. __ pop(scratch); __ push(receiver); // receiver __ push(key); // key __ push(scratch); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); __ bind(&slow); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in edx and the parameter count is in eax. DCHECK(edx.is(ArgumentsAccessReadDescriptor::index())); DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count())); // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(edx, &slow, Label::kNear); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor, Label::kNear); // Check index against formal parameters count limit passed in // through register eax. Use unsigned comparison to get negative // check for free. __ cmp(edx, eax); __ j(above_equal, &slow, Label::kNear); // Read the argument from the stack and return it. STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. __ lea(ebx, Operand(ebp, eax, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmp(edx, ecx); __ j(above_equal, &slow, Label::kNear); // Read the argument from the stack and return it. STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. __ lea(ebx, Operand(ebx, ecx, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(ebx); // Return address. __ push(edx); __ push(ebx); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters // esp[8] : receiver displacement // esp[12] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &runtime, Label::kNear); // Patch the arguments.length and the parameters pointer. __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(Operand(esp, 1 * kPointerSize), ecx); __ lea(edx, Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset)); __ mov(Operand(esp, 2 * kPointerSize), edx); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); } void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters (tagged) // esp[8] : receiver displacement // esp[12] : function // ebx = parameter count (tagged) __ mov(ebx, Operand(esp, 1 * kPointerSize)); // Check if the calling frame is an arguments adaptor frame. // TODO(rossberg): Factor out some of the bits that are shared with the other // Generate* functions. Label runtime; Label adaptor_frame, try_allocate; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor_frame, Label::kNear); // No adaptor, parameter count = argument count. __ mov(ecx, ebx); __ jmp(&try_allocate, Label::kNear); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ lea(edx, Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset)); __ mov(Operand(esp, 2 * kPointerSize), edx); // ebx = parameter count (tagged) // ecx = argument count (smi-tagged) // esp[4] = parameter count (tagged) // esp[8] = address of receiver argument // Compute the mapped parameter count = min(ebx, ecx) in ebx. __ cmp(ebx, ecx); __ j(less_equal, &try_allocate, Label::kNear); __ mov(ebx, ecx); __ bind(&try_allocate); // Save mapped parameter count. __ push(ebx); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; Label no_parameter_map; __ test(ebx, ebx); __ j(zero, &no_parameter_map, Label::kNear); __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize)); __ bind(&no_parameter_map); // 2. Backing store. __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize)); // 3. Arguments object. __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT); // eax = address of new object(s) (tagged) // ecx = argument count (smi-tagged) // esp[0] = mapped parameter count (tagged) // esp[8] = parameter count (tagged) // esp[12] = address of receiver argument // Get the arguments map from the current native context into edi. Label has_mapped_parameters, instantiate; __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset)); __ mov(ebx, Operand(esp, 0 * kPointerSize)); __ test(ebx, ebx); __ j(not_zero, &has_mapped_parameters, Label::kNear); __ mov( edi, Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX))); __ jmp(&instantiate, Label::kNear); __ bind(&has_mapped_parameters); __ mov( edi, Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX))); __ bind(&instantiate); // eax = address of new object (tagged) // ebx = mapped parameter count (tagged) // ecx = argument count (smi-tagged) // edi = address of arguments map (tagged) // esp[0] = mapped parameter count (tagged) // esp[8] = parameter count (tagged) // esp[12] = address of receiver argument // Copy the JS object part. __ mov(FieldOperand(eax, JSObject::kMapOffset), edi); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), masm->isolate()->factory()->empty_fixed_array()); __ mov(FieldOperand(eax, JSObject::kElementsOffset), masm->isolate()->factory()->empty_fixed_array()); // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ mov(edx, Operand(esp, 4 * kPointerSize)); __ AssertNotSmi(edx); __ mov(FieldOperand(eax, JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize), edx); // Use the length (smi tagged) and set that as an in-object property too. __ AssertSmi(ecx); STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ mov(FieldOperand(eax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), ecx); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, edi will point there, otherwise to the // backing store. __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize)); __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); // eax = address of new object (tagged) // ebx = mapped parameter count (tagged) // ecx = argument count (tagged) // edi = address of parameter map or backing store (tagged) // esp[0] = mapped parameter count (tagged) // esp[8] = parameter count (tagged) // esp[12] = address of receiver argument // Free a register. __ push(eax); // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ test(ebx, ebx); __ j(zero, &skip_parameter_map); __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(isolate()->factory()->sloppy_arguments_elements_map())); __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2)))); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax); __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi); __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize)); __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ push(ecx); __ mov(eax, Operand(esp, 2 * kPointerSize)); __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ add(ebx, Operand(esp, 4 * kPointerSize)); __ sub(ebx, eax); __ mov(ecx, isolate()->factory()->the_hole_value()); __ mov(edx, edi); __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize)); // eax = loop variable (tagged) // ebx = mapping index (tagged) // ecx = the hole value // edx = address of parameter map (tagged) // edi = address of backing store (tagged) // esp[0] = argument count (tagged) // esp[4] = address of new object (tagged) // esp[8] = mapped parameter count (tagged) // esp[16] = parameter count (tagged) // esp[20] = address of receiver argument __ jmp(¶meters_test, Label::kNear); __ bind(¶meters_loop); __ sub(eax, Immediate(Smi::FromInt(1))); __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx); __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx); __ add(ebx, Immediate(Smi::FromInt(1))); __ bind(¶meters_test); __ test(eax, eax); __ j(not_zero, ¶meters_loop, Label::kNear); __ pop(ecx); __ bind(&skip_parameter_map); // ecx = argument count (tagged) // edi = address of backing store (tagged) // esp[0] = address of new object (tagged) // esp[4] = mapped parameter count (tagged) // esp[12] = parameter count (tagged) // esp[16] = address of receiver argument // Copy arguments header and remaining slots (if there are any). __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(isolate()->factory()->fixed_array_map())); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); Label arguments_loop, arguments_test; __ mov(ebx, Operand(esp, 1 * kPointerSize)); __ mov(edx, Operand(esp, 4 * kPointerSize)); __ sub(edx, ebx); // Is there a smarter way to do negative scaling? __ sub(edx, ebx); __ jmp(&arguments_test, Label::kNear); __ bind(&arguments_loop); __ sub(edx, Immediate(kPointerSize)); __ mov(eax, Operand(edx, 0)); __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax); __ add(ebx, Immediate(Smi::FromInt(1))); __ bind(&arguments_test); __ cmp(ebx, ecx); __ j(less, &arguments_loop, Label::kNear); // Restore. __ pop(eax); // Address of arguments object. __ pop(ebx); // Parameter count. // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ pop(eax); // Remove saved parameter count. __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count. __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters // esp[8] : receiver displacement // esp[12] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor_frame, Label::kNear); // Get the length from the frame. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ jmp(&try_allocate, Label::kNear); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(Operand(esp, 1 * kPointerSize), ecx); __ lea(edx, Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset)); __ mov(Operand(esp, 2 * kPointerSize), edx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ test(ecx, ecx); __ j(zero, &add_arguments_object, Label::kNear); __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize)); // Do the allocation of both objects in one go. __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); // Get the arguments map from the current native context. __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset)); const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX); __ mov(edi, Operand(edi, offset)); __ mov(FieldOperand(eax, JSObject::kMapOffset), edi); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), masm->isolate()->factory()->empty_fixed_array()); __ mov(FieldOperand(eax, JSObject::kElementsOffset), masm->isolate()->factory()->empty_fixed_array()); // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ AssertSmi(ecx); __ mov(FieldOperand(eax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), ecx); // If there are no actual arguments, we're done. Label done; __ test(ecx, ecx); __ j(zero, &done, Label::kNear); // Get the parameters pointer from the stack. __ mov(edx, Operand(esp, 2 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize)); __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(isolate()->factory()->fixed_array_map())); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); // Untag the length for the loop below. __ SmiUntag(ecx); // Copy the fixed array slots. Label loop; __ bind(&loop); __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); __ add(edi, Immediate(kPointerSize)); __ sub(edx, Immediate(kPointerSize)); __ dec(ecx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // esp[0]: return address // esp[4]: last_match_info (expected JSArray) // esp[8]: previous index // esp[12]: subject string // esp[16]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime; Factory* factory = isolate()->factory(); // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ test(ebx, ebx); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ mov(eax, Operand(esp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &runtime); __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ test(ecx, Immediate(kSmiTagMask)); __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected); __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // ecx: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); __ j(not_equal, &runtime); // ecx: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // Multiplying by 2 comes for free since edx is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); __ j(above, &runtime); // Reset offset for possibly sliced string. __ Move(edi, Immediate(0)); __ mov(eax, Operand(esp, kSubjectOffset)); __ JumpIfSmi(eax, &runtime); __ mov(edx, eax); // Make a copy of the original subject string. __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); // eax: subject string // edx: subject string // ebx: subject string instance type // ecx: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential two byte? If yes, go to (9). // (2) Sequential one byte? If yes, go to (6). // (3) Anything but sequential or cons? If yes, go to (7). // (4) Cons string. If the string is flat, replace subject with first string. // Otherwise bailout. // (5a) Is subject sequential two byte? If yes, go to (9). // (5b) Is subject external? If yes, go to (8). // (6) One byte sequential. Load regexp code for one byte. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (7) Not a long external string? If yes, go to (10). // (8) External string. Make it, offset-wise, look like a sequential string. // (8a) Is the external string one byte? If yes, go to (6). // (9) Two byte sequential. Load regexp code for one byte. Go to (E). // (10) Short external string or not a string? If yes, bail out to runtime. // (11) Sliced string. Replace subject with parent. Go to (5a). Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */, external_string /* 8 */, check_underlying /* 5a */, not_seq_nor_cons /* 7 */, check_code /* E */, not_long_external /* 10 */; // (1) Sequential two byte? If yes, go to (9). __ and_(ebx, kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask | kShortExternalStringMask); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Go to (9). // (2) Sequential one byte? If yes, go to (6). // Any other sequential string must be one byte. __ and_(ebx, Immediate(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6). // (3) Anything but sequential or cons? If yes, go to (7). // We check whether the subject string is a cons, since sequential strings // have already been covered. STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmp(ebx, Immediate(kExternalStringTag)); __ j(greater_equal, ¬_seq_nor_cons); // Go to (7). // (4) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); __ j(not_equal, &runtime); __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); __ bind(&check_underlying); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); // (5a) Is subject sequential two byte? If yes, go to (9). __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Go to (9). // (5b) Is subject external? If yes, go to (8). __ test_b(ebx, kStringRepresentationMask); // The underlying external string is never a short external string. STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); __ j(not_zero, &external_string); // Go to (8). // eax: sequential subject string (or look-alike, external string) // edx: original subject string // ecx: RegExp data (FixedArray) // (6) One byte sequential. Load regexp code for one byte. __ bind(&seq_one_byte_string); // Load previous index and check range before edx is overwritten. We have // to use edx instead of eax here because it might have been only made to // look like a sequential string when it actually is an external string. __ mov(ebx, Operand(esp, kPreviousIndexOffset)); __ JumpIfNotSmi(ebx, &runtime); __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); __ j(above_equal, &runtime); __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset)); __ Move(ecx, Immediate(1)); // Type is one byte. // (E) Carry on. String handling is done. __ bind(&check_code); // edx: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(edx, &runtime); // eax: subject string // ebx: previous index (smi) // edx: code // ecx: encoding of subject string (1 if one_byte, 0 if two_byte); // All checks done. Now push arguments for native regexp code. Counters* counters = isolate()->counters(); __ IncrementCounter(counters->regexp_entry_native(), 1); // Isolates: note we add an additional parameter here (isolate pointer). static const int kRegExpExecuteArguments = 9; __ EnterApiExitFrame(kRegExpExecuteArguments); // Argument 9: Pass current isolate address. __ mov(Operand(esp, 8 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); // Argument 8: Indicate that this is a direct call from JavaScript. __ mov(Operand(esp, 7 * kPointerSize), Immediate(1)); // Argument 7: Start (high end) of backtracking stack memory area. __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ mov(Operand(esp, 6 * kPointerSize), esi); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(Operand(esp, 5 * kPointerSize), Immediate(0)); // Argument 5: static offsets vector buffer. __ mov(Operand(esp, 4 * kPointerSize), Immediate(ExternalReference::address_of_static_offsets_vector( isolate()))); // Argument 2: Previous index. __ SmiUntag(ebx); __ mov(Operand(esp, 1 * kPointerSize), ebx); // Argument 1: Original subject string. // The original subject is in the previous stack frame. Therefore we have to // use ebp, which points exactly to one pointer size below the previous esp. // (Because creating a new stack frame pushes the previous ebp onto the stack // and thereby moves up esp by one kPointerSize.) __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), esi); // esi: original subject string // eax: underlying subject string // ebx: previous index // ecx: encoding of subject string (1 if one_byte 0 if two_byte); // edx: code // Argument 4: End of string data // Argument 3: Start of string data // Prepare start and end index of the input. // Load the length from the original sliced string if that is the case. __ mov(esi, FieldOperand(esi, String::kLengthOffset)); __ add(esi, edi); // Calculate input end wrt offset. __ SmiUntag(edi); __ add(ebx, edi); // Calculate input start wrt offset. // ebx: start index of the input string // esi: end index of the input string Label setup_two_byte, setup_rest; __ test(ecx, ecx); __ j(zero, &setup_two_byte, Label::kNear); __ SmiUntag(esi); __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize)); __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize)); __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. __ jmp(&setup_rest, Label::kNear); __ bind(&setup_two_byte); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2). __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize)); __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. __ bind(&setup_rest); // Locate the code entry and call it. __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(edx); // Drop arguments and come back to JS mode. __ LeaveApiExitFrame(true); // Check the result. Label success; __ cmp(eax, 1); // We expect exactly one result since we force the called regexp to behave // as non-global. __ j(equal, &success); Label failure; __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); __ j(equal, &failure); __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); // If not exception it can only be retry. Handle that in the runtime system. __ j(not_equal, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate()); __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); __ mov(eax, Operand::StaticVariable(pending_exception)); __ cmp(edx, eax); __ j(equal, &runtime); // For exception, throw the exception again. // Clear the pending exception variable. __ mov(Operand::StaticVariable(pending_exception), edx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ cmp(eax, factory->termination_exception()); Label throw_termination_exception; __ j(equal, &throw_termination_exception, Label::kNear); // Handle normal exception by following handler chain. __ Throw(eax); __ bind(&throw_termination_exception); __ ThrowUncatchable(eax); __ bind(&failure); // For failure to match, return null. __ mov(eax, factory->null_value()); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ mov(eax, Operand(esp, kJSRegExpOffset)); __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(edx, Immediate(2)); // edx was a smi. // edx: Number of capture registers // Load last_match_info which is still known to be a fast case JSArray. // Check that the fourth object is a JSArray object. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ JumpIfSmi(eax, &runtime); __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); __ cmp(eax, factory->fixed_array_map()); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); __ SmiUntag(eax); __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead)); __ cmp(edx, eax); __ j(greater, &runtime); // ebx: last_match_info backing store (FixedArray) // edx: number of capture registers // Store the capture count. __ SmiTag(edx); // Number of capture registers to smi. __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); __ SmiUntag(edx); // Number of capture registers back from smi. // Store last subject and last input. __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(ecx, eax); __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi, kDontSaveFPRegs); __ mov(eax, ecx); __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ mov(ecx, Immediate(address_of_static_offsets_vector)); // ebx: last_match_info backing store (FixedArray) // ecx: offsets vector // edx: number of capture registers Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ sub(edx, Immediate(1)); __ j(negative, &done, Label::kNear); // Read the value from the static offsets vector buffer. __ mov(edi, Operand(ecx, edx, times_int_size, 0)); __ SmiTag(edi); // Store the smi value in the last match info. __ mov(FieldOperand(ebx, edx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), edi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ ret(4 * kPointerSize); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); // Deferred code for string handling. // (7) Not a long external string? If yes, go to (10). __ bind(¬_seq_nor_cons); // Compare flags are still set from (3). __ j(greater, ¬_long_external, Label::kNear); // Go to (10). // (8) External string. Short external strings have been ruled out. __ bind(&external_string); // Reload instance type. __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ test_b(ebx, kIsIndirectStringMask); __ Assert(zero, kExternalStringExpectedButNotFound); } __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kTwoByteStringTag == 0); // (8a) Is the external string one byte? If yes, go to (6). __ test_b(ebx, kStringEncodingMask); __ j(not_zero, &seq_one_byte_string); // Goto (6). // eax: sequential subject string (or look-alike, external string) // edx: original subject string // ecx: RegExp data (FixedArray) // (9) Two byte sequential. Load regexp code for one byte. Go to (E). __ bind(&seq_two_byte_string); // Load previous index and check range before edx is overwritten. We have // to use edx instead of eax here because it might have been only made to // look like a sequential string when it actually is an external string. __ mov(ebx, Operand(esp, kPreviousIndexOffset)); __ JumpIfNotSmi(ebx, &runtime); __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); __ j(above_equal, &runtime); __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); __ Move(ecx, Immediate(0)); // Type is two byte. __ jmp(&check_code); // Go to (E). // (10) Not a string or a short external string? If yes, bail out to runtime. __ bind(¬_long_external); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag)); __ j(not_zero, &runtime); // (11) Sliced string. Replace subject with parent. Go to (5a). // Load offset into edi and replace subject string with parent. __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset)); __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset)); __ jmp(&check_underlying); // Go to (5a). #endif // V8_INTERPRETED_REGEXP } static int NegativeComparisonResult(Condition cc) { DCHECK(cc != equal); DCHECK((cc == less) || (cc == less_equal) || (cc == greater) || (cc == greater_equal)); return (cc == greater || cc == greater_equal) ? LESS : GREATER; } static void CheckInputType(MacroAssembler* masm, Register input, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ cmp(FieldOperand(input, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->heap_number_map())); __ j(not_equal, fail); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } static void BranchIfNotInternalizedString(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); __ j(not_zero, label); } void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Label check_unequal_objects; Condition cc = GetCondition(); Label miss; CheckInputType(masm, edx, left(), &miss); CheckInputType(masm, eax, right(), &miss); // Compare two smis. Label non_smi, smi_done; __ mov(ecx, edx); __ or_(ecx, eax); __ JumpIfNotSmi(ecx, &non_smi, Label::kNear); __ sub(edx, eax); // Return on the result of the subtraction. __ j(no_overflow, &smi_done, Label::kNear); __ not_(edx); // Correct sign in case of overflow. edx is never 0 here. __ bind(&smi_done); __ mov(eax, edx); __ ret(0); __ bind(&non_smi); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Identical objects can be compared fast, but there are some tricky cases // for NaN and undefined. Label generic_heap_number_comparison; { Label not_identical; __ cmp(eax, edx); __ j(not_equal, ¬_identical); if (cc != equal) { // Check for undefined. undefined OP undefined is false even though // undefined == undefined. Label check_for_nan; __ cmp(edx, isolate()->factory()->undefined_value()); __ j(not_equal, &check_for_nan, Label::kNear); __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc)))); __ ret(0); __ bind(&check_for_nan); } // Test for NaN. Compare heap numbers in a general way, // to hanlde NaNs correctly. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(isolate()->factory()->heap_number_map())); __ j(equal, &generic_heap_number_comparison, Label::kNear); if (cc != equal) { // Call runtime on identical JSObjects. Otherwise return equal. __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, ¬_identical); } __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); __ bind(¬_identical); } // Strict equality can quickly decide whether objects are equal. // Non-strict object equality is slower, so it is handled later in the stub. if (cc == equal && strict()) { Label slow; // Fallthrough label. Label not_smis; // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(0, Smi::FromInt(0)); __ mov(ecx, Immediate(kSmiTagMask)); __ and_(ecx, eax); __ test(ecx, edx); __ j(not_zero, ¬_smis, Label::kNear); // One operand is a smi. // Check whether the non-smi is a heap number. STATIC_ASSERT(kSmiTagMask == 1); // ecx still holds eax & kSmiTag, which is either zero or one. __ sub(ecx, Immediate(0x01)); __ mov(ebx, edx); __ xor_(ebx, eax); __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx. __ xor_(ebx, eax); // if eax was smi, ebx is now edx, else eax. // Check if the non-smi operand is a heap number. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(isolate()->factory()->heap_number_map())); // If heap number, handle it in the slow case. __ j(equal, &slow, Label::kNear); // Return non-equal (ebx is not zero) __ mov(eax, ebx); __ ret(0); __ bind(¬_smis); // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // Get the type of the first operand. // If the first object is a JS object, we have done pointer comparison. Label first_non_object; STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(below, &first_non_object, Label::kNear); // Return non-zero (eax is not zero) Label return_not_equal; STATIC_ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. __ bind(&slow); } // Generate the number comparison code. Label non_number_comparison; Label unordered; __ bind(&generic_heap_number_comparison); FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, ecx); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, ecx); __ ret(0); // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); DCHECK(cc != not_equal); if (cc == less || cc == less_equal) { __ mov(eax, Immediate(Smi::FromInt(1))); } else { __ mov(eax, Immediate(Smi::FromInt(-1))); } __ ret(0); // The number comparison code did not provide a valid result. __ bind(&non_number_comparison); // Fast negative check for internalized-to-internalized equality. Label check_for_strings; if (cc == equal) { BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx); BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx); // We've already checked for object identity, so if both operands // are internalized they aren't equal. Register eax already holds a // non-zero value, which indicates not equal, so just return. __ ret(0); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &check_unequal_objects); // Inline comparison of one-byte strings. if (cc == equal) { StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx, edi); } #ifdef DEBUG __ Abort(kUnexpectedFallThroughFromStringComparison); #endif __ bind(&check_unequal_objects); if (cc == equal && !strict()) { // Non-strict equality. Objects are unequal if // they are both JSObjects and not undetectable, // and their pointers are different. Label not_both_objects; Label return_unequal; // At most one is a smi, so we can test for smi by adding the two. // A smi plus a heap object has the low bit set, a heap object plus // a heap object has the low bit clear. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagMask == 1); __ lea(ecx, Operand(eax, edx, times_1, 0)); __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, ¬_both_objects, Label::kNear); __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(below, ¬_both_objects, Label::kNear); __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx); __ j(below, ¬_both_objects, Label::kNear); // We do not bail out after this point. Both are JSObjects, and // they are equal if and only if both are undetectable. // The and of the undetectable flags is 1 if and only if they are equal. __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); __ j(zero, &return_unequal, Label::kNear); __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); __ j(zero, &return_unequal, Label::kNear); // The objects are both undetectable, so they both compare as the value // undefined, and are equal. __ Move(eax, Immediate(EQUAL)); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in eax, // or return equal if we fell through to here. __ ret(0); // rax, rdx were pushed __ bind(¬_both_objects); } // Push arguments below the return address. __ pop(ecx); __ push(edx); __ push(eax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc == equal) { builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc)))); } // Restore return address on the stack. __ push(ecx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); __ bind(&miss); GenerateMiss(masm); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // eax : number of arguments to the construct function // ebx : Feedback vector // edx : slot in feedback vector (Smi) // edi : the function to call Isolate* isolate = masm->isolate(); Label initialize, done, miss, megamorphic, not_array_function; // Load the cache state into ecx. __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmp(ecx, edi); __ j(equal, &done, Label::kFar); __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate))); __ j(equal, &done, Label::kFar); if (!FLAG_pretenuring_call_new) { // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. Do a map check on the object in ecx. Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map(); __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map)); __ j(not_equal, &miss); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx); __ cmp(edi, ecx); __ j(not_equal, &megamorphic); __ jmp(&done, Label::kFar); } __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate))); __ j(equal, &initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ mov( FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize), Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate))); __ jmp(&done, Label::kFar); // An uninitialized cache is patched with the function or sentinel to // indicate the ElementsKind if function is the Array constructor. __ bind(&initialize); if (!FLAG_pretenuring_call_new) { // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx); __ cmp(edi, ecx); __ j(not_equal, ¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. { FrameScope scope(masm, StackFrame::INTERNAL); // Arguments register must be smi-tagged to call out. __ SmiTag(eax); __ push(eax); __ push(edi); __ push(edx); __ push(ebx); CreateAllocationSiteStub create_stub(isolate); __ CallStub(&create_stub); __ pop(ebx); __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } __ jmp(&done); __ bind(¬_array_function); } __ mov(FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize), edi); // We won't need edx or ebx anymore, just save edi __ push(edi); __ push(ebx); __ push(edx); __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ pop(edx); __ pop(ebx); __ pop(edi); __ bind(&done); } static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { // Do not transform the receiver for strict mode functions. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset), 1 << SharedFunctionInfo::kStrictModeBitWithinByte); __ j(not_equal, cont); // Do not transform the receiver for natives (shared already in ecx). __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset), 1 << SharedFunctionInfo::kNativeBitWithinByte); __ j(not_equal, cont); } static void EmitSlowCase(Isolate* isolate, MacroAssembler* masm, int argc, Label* non_function) { // Check for function proxy. __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, non_function); __ pop(ecx); __ push(edi); // put proxy as additional argument under return address __ push(ecx); __ Move(eax, Immediate(argc + 1)); __ Move(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); { Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(non_function); __ mov(Operand(esp, (argc + 1) * kPointerSize), edi); __ Move(eax, Immediate(argc)); __ Move(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(adaptor, RelocInfo::CODE_TARGET); } static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { // Wrap the receiver and patch it back onto the stack. { FrameScope frame_scope(masm, StackFrame::INTERNAL); __ push(edi); __ push(eax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ pop(edi); } __ mov(Operand(esp, (argc + 1) * kPointerSize), eax); __ jmp(cont); } static void CallFunctionNoFeedback(MacroAssembler* masm, int argc, bool needs_checks, bool call_as_method) { // edi : the function to call Label slow, non_function, wrap, cont; if (needs_checks) { // Check that the function really is a JavaScript function. __ JumpIfSmi(edi, &non_function); // Goto slow case if we do not have a function. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow); } // Fast-case: Just invoke the function. ParameterCount actual(argc); if (call_as_method) { if (needs_checks) { EmitContinueIfStrictOrNative(masm, &cont); } // Load the receiver from the stack. __ mov(eax, Operand(esp, (argc + 1) * kPointerSize)); if (needs_checks) { __ JumpIfSmi(eax, &wrap); __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(below, &wrap); } else { __ jmp(&wrap); } __ bind(&cont); } __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper()); if (needs_checks) { // Slow-case: Non-function called. __ bind(&slow); // (non_function is bound in EmitSlowCase) EmitSlowCase(masm->isolate(), masm, argc, &non_function); } if (call_as_method) { __ bind(&wrap); EmitWrapCase(masm, argc, &cont); } } void CallFunctionStub::Generate(MacroAssembler* masm) { CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod()); } void CallConstructStub::Generate(MacroAssembler* masm) { // eax : number of arguments // ebx : feedback vector // edx : (only if ebx is not the megamorphic symbol) slot in feedback // vector (Smi) // edi : constructor function Label slow, non_function_call; // Check that function is not a smi. __ JumpIfSmi(edi, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); if (FLAG_pretenuring_call_new) { // Put the AllocationSite from the feedback vector into ebx. // By adding kPointerSize we encode that we know the AllocationSite // entry is at the feedback vector slot given by edx + 1. __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize + kPointerSize)); } else { Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into ebx, or undefined. __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map(); __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map)); __ j(equal, &feedback_register_initialized); __ mov(ebx, isolate()->factory()->undefined_value()); __ bind(&feedback_register_initialized); } __ AssertUndefinedOrAllocationSite(ebx); } // Jump to the function-specific construct stub. Register jmp_reg = ecx; __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(jmp_reg, FieldOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset)); __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize)); __ jmp(jmp_reg); // edi: called object // eax: number of arguments // ecx: object map Label do_call; __ bind(&slow); __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function_call); __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing eax). __ Move(ebx, Immediate(0)); Handle<Code> arguments_adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET); } static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset)); __ mov(vector, FieldOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset)); } void CallIC_ArrayStub::Generate(MacroAssembler* masm) { // edi - function // edx - slot id Label miss; int argc = arg_count(); ParameterCount actual(argc); EmitLoadTypeFeedbackVector(masm, ebx); __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx); __ cmp(edi, ecx); __ j(not_equal, &miss); __ mov(eax, arg_count()); __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); // Verify that ecx contains an AllocationSite Factory* factory = masm->isolate()->factory(); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), factory->allocation_site_map()); __ j(not_equal, &miss); __ mov(ebx, ecx); ArrayConstructorStub stub(masm->isolate(), arg_count()); __ TailCallStub(&stub); __ bind(&miss); GenerateMiss(masm); // The slow case, we need this no matter what to complete a call after a miss. CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod()); // Unreachable. __ int3(); } void CallICStub::Generate(MacroAssembler* masm) { // edi - function // edx - slot id Isolate* isolate = masm->isolate(); Label extra_checks_or_miss, slow_start; Label slow, non_function, wrap, cont; Label have_js_function; int argc = arg_count(); ParameterCount actual(argc); EmitLoadTypeFeedbackVector(masm, ebx); // The checks. First, does edi match the recorded monomorphic target? __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); __ j(not_equal, &extra_checks_or_miss); __ bind(&have_js_function); if (CallAsMethod()) { EmitContinueIfStrictOrNative(masm, &cont); // Load the receiver from the stack. __ mov(eax, Operand(esp, (argc + 1) * kPointerSize)); __ JumpIfSmi(eax, &wrap); __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(below, &wrap); __ bind(&cont); } __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper()); __ bind(&slow); EmitSlowCase(isolate, masm, argc, &non_function); if (CallAsMethod()) { __ bind(&wrap); EmitWrapCase(masm, argc, &cont); } __ bind(&extra_checks_or_miss); Label miss; __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize)); __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate))); __ j(equal, &slow_start); __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate))); __ j(equal, &miss); if (!FLAG_trace_ic) { // We are going megamorphic. If the feedback is a JSFunction, it is fine // to handle it here. More complex cases are dealt with in the runtime. __ AssertNotSmi(ecx); __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &miss); __ mov(FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize), Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate))); __ jmp(&slow_start); } // We are here because tracing is on or we are going monomorphic. __ bind(&miss); GenerateMiss(masm); // the slow case __ bind(&slow_start); // Check that the function really is a JavaScript function. __ JumpIfSmi(edi, &non_function); // Goto slow case if we do not have a function. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow); __ jmp(&have_js_function); // Unreachable __ int3(); } void CallICStub::GenerateMiss(MacroAssembler* masm) { // Get the receiver of the function from the stack; 1 ~ return address. __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize)); { FrameScope scope(masm, StackFrame::INTERNAL); // Push the receiver and the function and feedback info. __ push(ecx); __ push(edi); __ push(ebx); __ push(edx); // Call the entry. IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss : IC::kCallIC_Customization_Miss; ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate()); __ CallExternalReference(miss, 4); // Move result to edi and exit the internal frame. __ mov(edi, eax); } } bool CEntryStub::NeedsImmovableCode() { return false; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); // It is important that the store buffer overflow stubs are generated first. ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. CEntryStub(isolate, 1, kSaveFPRegs).GetCode(); isolate->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // eax: number of arguments including receiver // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter the exit frame that transitions from JavaScript to C++. __ EnterExitFrame(save_doubles()); // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) // Result returned in eax, or eax+edx if result size is 2. // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } // Call C function. __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); __ call(ebx); // Result is in eax or edx:eax - do not destroy these registers! // Runtime functions should not return 'the hole'. Allowing it to escape may // lead to crashes in the IC code later. if (FLAG_debug_code) { Label okay; __ cmp(eax, isolate()->factory()->the_hole_value()); __ j(not_equal, &okay, Label::kNear); __ int3(); __ bind(&okay); } // Check result for exception sentinel. Label exception_returned; __ cmp(eax, isolate()->factory()->exception()); __ j(equal, &exception_returned); ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { __ push(edx); __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); Label okay; __ cmp(edx, Operand::StaticVariable(pending_exception_address)); // Cannot use check here as it attempts to generate call into runtime. __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); __ pop(edx); } // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles()); __ ret(0); // Handling of exception. __ bind(&exception_returned); // Retrieve the pending exception. __ mov(eax, Operand::StaticVariable(pending_exception_address)); // Clear the pending exception. __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); __ mov(Operand::StaticVariable(pending_exception_address), edx); // Special handling of termination exceptions which are uncatchable // by javascript code. Label throw_termination_exception; __ cmp(eax, isolate()->factory()->termination_exception()); __ j(equal, &throw_termination_exception); // Handle normal exception. __ Throw(eax); __ bind(&throw_termination_exception); __ ThrowUncatchable(eax); } void JSEntryStub::Generate(MacroAssembler* masm) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; ProfileEntryHookStub::MaybeCallEntryHook(masm); // Set up frame. __ push(ebp); __ mov(ebp, esp); // Push marker in two places. int marker = type(); __ push(Immediate(Smi::FromInt(marker))); // context slot __ push(Immediate(Smi::FromInt(marker))); // function slot // Save callee-saved registers (C calling conventions). __ push(edi); __ push(esi); __ push(ebx); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate()); __ push(Operand::StaticVariable(c_entry_fp)); // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ j(not_equal, ¬_outermost_js, Label::kNear); __ mov(Operand::StaticVariable(js_entry_sp), ebp); __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ jmp(&invoke, Label::kNear); __ bind(¬_outermost_js); __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate()); __ mov(Operand::StaticVariable(pending_exception), eax); __ mov(eax, Immediate(isolate()->factory()->exception())); __ jmp(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); __ PushTryHandler(StackHandler::JS_ENTRY, 0); // Clear any pending exceptions. __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); __ mov(Operand::StaticVariable(pending_exception), edx); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Notice that we cannot store a // reference to the trampoline code directly in this stub, because the // builtin stubs may not have been generated yet. if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate()); __ mov(edx, Immediate(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); __ mov(edx, Immediate(entry)); } __ mov(edx, Operand(edx, 0)); // deref address __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ call(edx); // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ pop(ebx); __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ j(not_equal, ¬_outermost_js_2); __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. __ pop(Operand::StaticVariable(ExternalReference( Isolate::kCEntryFPAddress, isolate()))); // Restore callee-saved registers (C calling conventions). __ pop(ebx); __ pop(esi); __ pop(edi); __ add(esp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(ebp); __ ret(0); } // Generate stub code for instanceof. // This code can patch a call site inlined cache of the instance of check, // which looks like this. // // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map> // 75 0a jne <some near label> // b8 XX XX XX XX mov eax, <the hole, patched to either true or false> // // If call site patching is requested the stack will have the delta from the // return address to the cmp instruction just below the return address. This // also means that call site patching can only take place with arguments in // registers. TOS looks like this when call site patching is requested // // esp[0] : return address // esp[4] : delta from return address to cmp instruction // void InstanceofStub::Generate(MacroAssembler* masm) { // Call site inlining and patching implies arguments in registers. DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck()); // Fixed register usage throughout the stub. Register object = eax; // Object (lhs). Register map = ebx; // Map of the object. Register function = edx; // Function (rhs). Register prototype = edi; // Prototype of the function. Register scratch = ecx; // Constants describing the call site code to patch. static const int kDeltaToCmpImmediate = 2; static const int kDeltaToMov = 8; static const int kDeltaToMovImmediate = 9; static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b); static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d); static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8); DCHECK_EQ(object.code(), InstanceofStub::left().code()); DCHECK_EQ(function.code(), InstanceofStub::right().code()); // Get the object and function - they are always both needed. Label slow, not_js_object; if (!HasArgsInRegisters()) { __ mov(object, Operand(esp, 2 * kPointerSize)); __ mov(function, Operand(esp, 1 * kPointerSize)); } // Check that the left hand is a JS object. __ JumpIfSmi(object, ¬_js_object); __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) { // Look up the function and the map in the instanceof cache. Label miss; __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex); __ j(not_equal, &miss, Label::kNear); __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex); __ j(not_equal, &miss, Label::kNear); __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&miss); } // Get the prototype of the function. __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(prototype, &slow); __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); // Update the global instanceof or call site inlined cache with the current // map and function. The cached answer will be set when it is known below. if (!HasCallSiteInlineCheck()) { __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex); __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex); } else { // The constants for the code patching are based on no push instructions // at the call site. DCHECK(HasArgsInRegisters()); // Get return address and delta to inlined map check. __ mov(scratch, Operand(esp, 0 * kPointerSize)); __ sub(scratch, Operand(esp, 1 * kPointerSize)); if (FLAG_debug_code) { __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1); __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2); } __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate)); __ mov(Operand(scratch, 0), map); } // Loop through the prototype chain of the object looking for the function // prototype. __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset)); Label loop, is_instance, is_not_instance; __ bind(&loop); __ cmp(scratch, prototype); __ j(equal, &is_instance, Label::kNear); Factory* factory = isolate()->factory(); __ cmp(scratch, Immediate(factory->null_value())); __ j(equal, &is_not_instance, Label::kNear); __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ mov(eax, Immediate(0)); __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex); if (ReturnTrueFalseObject()) { __ mov(eax, factory->true_value()); } } else { // Get return address and delta to inlined map check. __ mov(eax, factory->true_value()); __ mov(scratch, Operand(esp, 0 * kPointerSize)); __ sub(scratch, Operand(esp, 1 * kPointerSize)); if (FLAG_debug_code) { __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov); } __ mov(Operand(scratch, kDeltaToMovImmediate), eax); if (!ReturnTrueFalseObject()) { __ Move(eax, Immediate(0)); } } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { __ mov(eax, Immediate(Smi::FromInt(1))); __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex); if (ReturnTrueFalseObject()) { __ mov(eax, factory->false_value()); } } else { // Get return address and delta to inlined map check. __ mov(eax, factory->false_value()); __ mov(scratch, Operand(esp, 0 * kPointerSize)); __ sub(scratch, Operand(esp, 1 * kPointerSize)); if (FLAG_debug_code) { __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov); } __ mov(Operand(scratch, kDeltaToMovImmediate), eax); if (!ReturnTrueFalseObject()) { __ Move(eax, Immediate(Smi::FromInt(1))); } } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); Label object_not_null, object_not_null_or_smi; __ bind(¬_js_object); // Before null, smi and string value checks, check that the rhs is a function // as for a non-function rhs an exception needs to be thrown. __ JumpIfSmi(function, &slow, Label::kNear); __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch); __ j(not_equal, &slow, Label::kNear); // Null is not instance of anything. __ cmp(object, factory->null_value()); __ j(not_equal, &object_not_null, Label::kNear); if (ReturnTrueFalseObject()) { __ mov(eax, factory->false_value()); } else { __ Move(eax, Immediate(Smi::FromInt(1))); } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&object_not_null); // Smi values is not instance of anything. __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear); if (ReturnTrueFalseObject()) { __ mov(eax, factory->false_value()); } else { __ Move(eax, Immediate(Smi::FromInt(1))); } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&object_not_null_or_smi); // String values is not instance of anything. Condition is_string = masm->IsObjectStringType(object, scratch, scratch); __ j(NegateCondition(is_string), &slow, Label::kNear); if (ReturnTrueFalseObject()) { __ mov(eax, factory->false_value()); } else { __ Move(eax, Immediate(Smi::FromInt(1))); } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); if (!ReturnTrueFalseObject()) { // Tail call the builtin which returns 0 or 1. if (HasArgsInRegisters()) { // Push arguments below return address. __ pop(scratch); __ push(object); __ push(function); __ push(scratch); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } else { // Call the builtin and convert 0/1 to true/false. { FrameScope scope(masm, StackFrame::INTERNAL); __ push(object); __ push(function); __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); } Label true_value, done; __ test(eax, eax); __ j(zero, &true_value, Label::kNear); __ mov(eax, factory->false_value()); __ jmp(&done, Label::kNear); __ bind(&true_value); __ mov(eax, factory->true_value()); __ bind(&done); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); } } // ------------------------------------------------------------------------- // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ test(result_, Immediate(kIsNotStringMask)); __ j(not_zero, receiver_not_string_); // If the index is non-smi trigger the non-smi case. STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ cmp(index_, FieldOperand(object_, String::kLengthOffset)); __ j(above_equal, index_out_of_range_); __ SmiUntag(index_); Factory* factory = masm->isolate()->factory(); StringCharLoadGenerator::Generate( masm, factory, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, masm->isolate()->factory()->heap_number_map(), index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } if (!index_.is(eax)) { // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ mov(index_, eax); } __ pop(object_); // Reload the instance type. __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ push(object_); __ SmiTag(index_); __ push(index_); __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); if (!result_.is(eax)) { __ mov(result_, eax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiShiftSize == 0); DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1)); __ test(code_, Immediate(kSmiTagMask | ((~String::kMaxOneByteCharCode) << kSmiTagSize))); __ j(not_zero, &slow_case_); Factory* factory = masm->isolate()->factory(); __ Move(result_, Immediate(factory->single_character_string_cache())); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiShiftSize == 0); // At this point code register contains smi tagged one byte char code. __ mov(result_, FieldOperand(result_, code_, times_half_pointer_size, FixedArray::kHeaderSize)); __ cmp(result_, factory->undefined_value()); __ j(equal, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); if (!result_.is(eax)) { __ mov(result_, eax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); } void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, String::Encoding encoding) { DCHECK(!scratch.is(dest)); DCHECK(!scratch.is(src)); DCHECK(!scratch.is(count)); // Nothing to do for zero characters. Label done; __ test(count, count); __ j(zero, &done); // Make count the number of bytes to copy. if (encoding == String::TWO_BYTE_ENCODING) { __ shl(count, 1); } Label loop; __ bind(&loop); __ mov_b(scratch, Operand(src, 0)); __ mov_b(Operand(dest, 0), scratch); __ inc(src); __ inc(dest); __ dec(count); __ j(not_zero, &loop); __ bind(&done); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // esp[0]: return address // esp[4]: to // esp[8]: from // esp[12]: string // Make sure first argument is a string. __ mov(eax, Operand(esp, 3 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &runtime); Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); __ j(NegateCondition(is_string), &runtime); // eax: string // ebx: instance type // Calculate length of sub string using the smi values. __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. __ JumpIfNotSmi(ecx, &runtime); __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. __ JumpIfNotSmi(edx, &runtime); __ sub(ecx, edx); __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); Label not_original_string; // Shorter than original string's length: an actual substring. __ j(below, ¬_original_string, Label::kNear); // Longer than original string's length or negative: unsafe arguments. __ j(above, &runtime); // Return original string. Counters* counters = isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(¬_original_string); Label single_char; __ cmp(ecx, Immediate(Smi::FromInt(1))); __ j(equal, &single_char); // eax: string // ebx: instance type // ecx: sub string length (smi) // edx: from index (smi) // Deal with different string types: update the index if necessary // and put the underlying string into edi. Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ test(ebx, Immediate(kIsIndirectStringMask)); __ j(zero, &seq_or_external_string, Label::kNear); Factory* factory = isolate()->factory(); __ test(ebx, Immediate(kSlicedNotConsMask)); __ j(not_zero, &sliced_string, Label::kNear); // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); __ j(not_equal, &runtime); __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset)); // Update instance type. __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&sliced_string); // Sliced string. Fetch parent and adjust start index by offset. __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset)); __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset)); // Update instance type. __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mov(edi, eax); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // edi: underlying subject string // ebx: instance type of underlying subject string // edx: adjusted start index (smi) // ecx: length (smi) __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength))); // Short slice. Copy instead of slicing. __ j(less, ©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ test(ebx, Immediate(kStringEncodingMask)); __ j(zero, &two_byte_slice, Label::kNear); __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime); __ jmp(&set_slice_header, Label::kNear); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime); __ bind(&set_slice_header); __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx); __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi); __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(©_routine); } // edi: underlying subject string // ebx: instance type of underlying subject string // edx: adjusted start index (smi) // ecx: length (smi) // The subject string can only be external or sequential string of either // encoding at this point. Label two_byte_sequential, runtime_drop_two, sequential_string; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ test_b(ebx, kExternalStringTag); __ j(zero, &sequential_string); // Handle external string. // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ test_b(ebx, kShortExternalStringMask); __ j(not_zero, &runtime); __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ bind(&sequential_string); // Stash away (adjusted) index and (underlying) string. __ push(edx); __ push(edi); __ SmiUntag(ecx); STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); __ test_b(ebx, kStringEncodingMask); __ j(zero, &two_byte_sequential); // Sequential one byte string. Allocate the result. __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two); // eax: result string // ecx: result string length // Locate first character of result. __ mov(edi, eax); __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // Load string argument and locate character of sub string start. __ pop(edx); __ pop(ebx); __ SmiUntag(ebx); __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize)); // eax: result string // ecx: result length // edi: first character of result // edx: character of sub string start StringHelper::GenerateCopyCharacters( masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(&two_byte_sequential); // Sequential two-byte string. Allocate the result. __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two); // eax: result string // ecx: result string length // Locate first character of result. __ mov(edi, eax); __ add(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Load string argument and locate character of sub string start. __ pop(edx); __ pop(ebx); // As from is a smi it is 2 times the value which matches the size of a two // byte character. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize)); // eax: result string // ecx: result length // edi: first character of result // edx: character of sub string start StringHelper::GenerateCopyCharacters( masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); // Drop pushed values on the stack before tail call. __ bind(&runtime_drop_two); __ Drop(2); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); __ bind(&single_char); // eax: string // ebx: instance type // ecx: sub string length (smi) // edx: from index (smi) StringCharAtGenerator generator( eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm); __ ret(3 * kPointerSize); generator.SkipSlow(masm, &runtime); } void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ mov(length, FieldOperand(left, String::kLengthOffset)); __ cmp(length, FieldOperand(right, String::kLengthOffset)); __ j(equal, &check_zero_length, Label::kNear); __ bind(&strings_not_equal); __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL))); __ ret(0); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ test(length, length); __ j(not_zero, &compare_chars, Label::kNear); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal, Label::kNear); // Characters are equal. __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_compare_native(), 1); // Find minimum length. Label left_shorter; __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); __ mov(scratch3, scratch1); __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); Register length_delta = scratch3; __ j(less_equal, &left_shorter, Label::kNear); // Right string is shorter. Change scratch1 to be length of right string. __ sub(scratch1, length_delta); __ bind(&left_shorter); Register min_length = scratch1; // If either length is zero, just compare lengths. Label compare_lengths; __ test(min_length, min_length); __ j(zero, &compare_lengths, Label::kNear); // Compare characters. Label result_not_equal; GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal, Label::kNear); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); __ test(length_delta, length_delta); Label length_not_equal; __ j(not_zero, &length_not_equal, Label::kNear); // Result is EQUAL. STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); Label result_greater; Label result_less; __ bind(&length_not_equal); __ j(greater, &result_greater, Label::kNear); __ jmp(&result_less, Label::kNear); __ bind(&result_not_equal); __ j(above, &result_greater, Label::kNear); __ bind(&result_less); // Result is LESS. __ Move(eax, Immediate(Smi::FromInt(LESS))); __ ret(0); // Result is GREATER. __ bind(&result_greater); __ Move(eax, Immediate(Smi::FromInt(GREATER))); __ ret(0); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch, Label* chars_not_equal, Label::Distance chars_not_equal_near) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ lea(left, FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize)); __ lea(right, FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize)); __ neg(length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ mov_b(scratch, Operand(left, index, times_1, 0)); __ cmpb(scratch, Operand(right, index, times_1, 0)); __ j(not_equal, chars_not_equal, chars_not_equal_near); __ inc(index); __ j(not_zero, &loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // esp[0]: return address // esp[4]: right string // esp[8]: left string __ mov(edx, Operand(esp, 2 * kPointerSize)); // left __ mov(eax, Operand(esp, 1 * kPointerSize)); // right Label not_same; __ cmp(edx, eax); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both objects are sequential one-byte strings. __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime); // Compare flat one-byte strings. // Drop arguments from the stack. __ pop(ecx); __ add(esp, Immediate(2 * kPointerSize)); __ push(ecx); StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx, edi); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- edx : left // -- eax : right // -- esp[0] : return address // ----------------------------------- // Load ecx with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ mov(ecx, handle(isolate()->heap()->undefined_value())); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_equal, kExpectedAllocationSite); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), isolate()->factory()->allocation_site_map()); __ Assert(equal, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ mov(ecx, edx); __ or_(ecx, eax); __ JumpIfNotSmi(ecx, &miss, Label::kNear); if (GetCondition() == equal) { // For equality we do not care about the sign of the result. __ sub(eax, edx); } else { Label done; __ sub(edx, eax); __ j(no_overflow, &done, Label::kNear); // Correct sign of result in case of overflow. __ not_(edx); __ bind(&done); __ mov(eax, edx); } __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(edx, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(eax, &miss); } // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(eax, &right_smi, Label::kNear); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); __ j(not_equal, &maybe_undefined1, Label::kNear); __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ jmp(&left, Label::kNear); __ bind(&right_smi); __ mov(ecx, eax); // Can't clobber eax because we can still jump away. __ SmiUntag(ecx); __ Cvtsi2sd(xmm1, ecx); __ bind(&left); __ JumpIfSmi(edx, &left_smi, Label::kNear); __ cmp(FieldOperand(edx, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); __ j(not_equal, &maybe_undefined2, Label::kNear); __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&left_smi); __ mov(ecx, edx); // Can't clobber edx because we can still jump away. __ SmiUntag(ecx); __ Cvtsi2sd(xmm0, ecx); __ bind(&done); // Compare operands. __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. // Performing mov, because xor would destroy the flag register. __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, ecx); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, ecx); __ ret(0); __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ cmp(eax, Immediate(isolate()->factory()->undefined_value())); __ j(not_equal, &miss); __ JumpIfSmi(edx, &unordered); __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); __ j(not_equal, &maybe_undefined2, Label::kNear); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ cmp(edx, Immediate(isolate()->factory()->undefined_value())); __ j(equal, &unordered); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); DCHECK(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; // Check that both operands are heap objects. Label miss; __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss, Label::kNear); // Check that both operands are internalized strings. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ or_(tmp1, tmp2); __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); __ j(not_zero, &miss, Label::kNear); // Internalized strings are compared by identity. Label done; __ cmp(left, right); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(eax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; // Check that both operands are heap objects. Label miss; __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss, Label::kNear); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear); // Unique names are compared by identity. Label done; __ cmp(left, right); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(eax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; Register tmp3 = edi; // Check that both operands are heap objects. __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ mov(tmp3, tmp1); STATIC_ASSERT(kNotStringTag != 0); __ or_(tmp3, tmp2); __ test(tmp3, Immediate(kIsNotStringMask)); __ j(not_zero, &miss); // Fast check for identical strings. Label not_same; __ cmp(left, right); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); // Handle not identical strings. __ bind(¬_same); // Check that both strings are internalized. If they are, we're done // because we already know they are not identical. But in the case of // non-equality compare, we still need to determine the order. We // also know they are both strings. if (equality) { Label do_compare; STATIC_ASSERT(kInternalizedTag == 0); __ or_(tmp1, tmp2); __ test(tmp1, Immediate(kIsNotInternalizedMask)); __ j(not_zero, &do_compare, Label::kNear); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(eax)); __ ret(0); __ bind(&do_compare); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime); // Compare flat one byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3); } // Handle more complex cases in runtime. __ bind(&runtime); __ pop(tmp1); // Return address. __ push(left); __ push(right); __ push(tmp1); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateObjects(MacroAssembler* masm) { DCHECK(state() == CompareICState::OBJECT); Label miss; __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &miss, Label::kNear); __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx); __ j(not_equal, &miss, Label::kNear); __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx); __ j(not_equal, &miss, Label::kNear); DCHECK(GetCondition() == equal); __ sub(eax, edx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &miss, Label::kNear); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(ecx, known_map_); __ j(not_equal, &miss, Label::kNear); __ cmp(ebx, known_map_); __ j(not_equal, &miss, Label::kNear); __ sub(eax, edx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); FrameScope scope(masm, StackFrame::INTERNAL); __ push(edx); // Preserve edx and eax. __ push(eax); __ push(edx); // And also use them as the arguments. __ push(eax); __ push(Immediate(Smi::FromInt(op()))); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ lea(edi, FieldOperand(eax, Code::kHeaderSize)); __ pop(eax); __ pop(edx); } // Do a tail call to the rewritten stub. __ jmp(edi); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a unique name and receiver must be a heap object. void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register properties, Handle<Name> name, Register r0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. Register index = r0; // Capacity is smi 2^n. __ mov(index, FieldOperand(properties, kCapacityOffset)); __ dec(index); __ and_(index, Immediate(Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. DCHECK(NameDictionary::kEntrySize == 3); __ lea(index, Operand(index, index, times_2, 0)); // index *= 3. Register entity_name = r0; // Having undefined at this place means the name is not contained. DCHECK_EQ(kSmiTagSize, 1); __ mov(entity_name, Operand(properties, index, times_half_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ cmp(entity_name, masm->isolate()->factory()->undefined_value()); __ j(equal, done); // Stop if found the property. __ cmp(entity_name, Handle<Name>(name)); __ j(equal, miss); Label good; // Check for the hole and skip. __ cmp(entity_name, masm->isolate()->factory()->the_hole_value()); __ j(equal, &good, Label::kNear); // Check if the entry name is not a unique name. __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); __ JumpIfNotUniqueNameInstanceType( FieldOperand(entity_name, Map::kInstanceTypeOffset), miss); __ bind(&good); } NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0, NEGATIVE_LOOKUP); __ push(Immediate(Handle<Object>(name))); __ push(Immediate(name->Hash())); __ CallStub(&stub); __ test(r0, r0); __ j(not_zero, miss); __ jmp(done); } // Probe the name dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found leaving the // index into the dictionary in |r0|. Jump to the |miss| label // otherwise. void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register r0, Register r1) { DCHECK(!elements.is(r0)); DCHECK(!elements.is(r1)); DCHECK(!name.is(r0)); DCHECK(!name.is(r1)); __ AssertName(name); __ mov(r1, FieldOperand(elements, kCapacityOffset)); __ shr(r1, kSmiTagSize); // convert smi to int __ dec(r1); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ mov(r0, FieldOperand(name, Name::kHashFieldOffset)); __ shr(r0, Name::kHashShift); if (i > 0) { __ add(r0, Immediate(NameDictionary::GetProbeOffset(i))); } __ and_(r0, r1); // Scale the index by multiplying by the entry size. DCHECK(NameDictionary::kEntrySize == 3); __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3 // Check if the key is identical to the name. __ cmp(name, Operand(elements, r0, times_4, kElementsStartOffset - kHeapObjectTag)); __ j(equal, done); } NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0, POSITIVE_LOOKUP); __ push(name); __ mov(r0, FieldOperand(name, Name::kHashFieldOffset)); __ shr(r0, Name::kHashShift); __ push(r0); __ CallStub(&stub); __ test(r1, r1); __ j(zero, miss); __ jmp(done); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Stack frame on entry: // esp[0 * kPointerSize]: return address. // esp[1 * kPointerSize]: key's hash. // esp[2 * kPointerSize]: key. // Registers: // dictionary_: NameDictionary to probe. // result_: used as scratch. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Label in_dictionary, maybe_in_dictionary, not_in_dictionary; Register scratch = result(); __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset)); __ dec(scratch); __ SmiUntag(scratch); __ push(scratch); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the null value). for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ mov(scratch, Operand(esp, 2 * kPointerSize)); if (i > 0) { __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i))); } __ and_(scratch, Operand(esp, 0)); // Scale the index by multiplying by the entry size. DCHECK(NameDictionary::kEntrySize == 3); __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3. // Having undefined at this place means the name is not contained. DCHECK_EQ(kSmiTagSize, 1); __ mov(scratch, Operand(dictionary(), index(), times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ cmp(scratch, isolate()->factory()->undefined_value()); __ j(equal, ¬_in_dictionary); // Stop if found the property. __ cmp(scratch, Operand(esp, 3 * kPointerSize)); __ j(equal, &in_dictionary); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // If we hit a key that is not a unique name during negative // lookup we have to bailout as this key might be equal to the // key we are looking for. // Check if the entry name is not a unique name. __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ JumpIfNotUniqueNameInstanceType( FieldOperand(scratch, Map::kInstanceTypeOffset), &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ mov(result(), Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } __ bind(&in_dictionary); __ mov(result(), Immediate(1)); __ Drop(1); __ ret(2 * kPointerSize); __ bind(¬_in_dictionary); __ mov(result(), Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs); stub.GetCode(); StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. __ jmp(&skip_to_incremental_noncompacting, Label::kNear); __ jmp(&skip_to_incremental_compacting, Label::kFar); if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. masm->set_byte_at(0, kTwoByteNopInstruction); masm->set_byte_at(2, kFiveByteNopInstruction); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, not_zero, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ ret(0); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); __ mov(Operand(esp, 0 * kPointerSize), regs_.object()); __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label object_is_black, need_incremental, need_incremental_pop_object; __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask)); __ and_(regs_.scratch0(), regs_.object()); __ mov(regs_.scratch1(), Operand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ sub(regs_.scratch1(), Immediate(1)); __ mov(Operand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset), regs_.scratch1()); __ j(negative, &need_incremental); // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &object_is_black, Label::kNear); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&object_is_black); // Get the value from the slot. __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, zero, &ensure_not_white, Label::kNear); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, not_zero, &ensure_not_white, Label::kNear); __ jmp(&need_incremental); __ bind(&ensure_not_white); } // We need an extra register for this, so we push the object register // temporarily. __ push(regs_.object()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. &need_incremental_pop_object, Label::kNear); __ pop(regs_.object()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&need_incremental_pop_object); __ pop(regs_.object()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : element value to store // -- ecx : element index as smi // -- esp[0] : return address // -- esp[4] : array literal index in function // -- esp[8] : array literal // clobbers ebx, edx, edi // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label slow_elements_from_double; Label fast_elements; // Get array literal index, array literal and its map. __ mov(edx, Operand(esp, 1 * kPointerSize)); __ mov(ebx, Operand(esp, 2 * kPointerSize)); __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset)); __ CheckFastElements(edi, &double_elements); // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements __ JumpIfSmi(eax, &smi_element); __ CheckFastSmiElements(edi, &fast_elements, Label::kNear); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); __ pop(edi); // Pop return address and remember to put back later for tail // call. __ push(ebx); __ push(ecx); __ push(eax); __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset)); __ push(edx); __ push(edi); // Return return address so that tail call returns to right // place. __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); __ bind(&slow_elements_from_double); __ pop(edx); __ jmp(&slow_elements); // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. __ bind(&fast_elements); __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size, FixedArrayBase::kHeaderSize)); __ mov(Operand(ecx, 0), eax); // Update the write barrier for the array store. __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, // and value is Smi. __ bind(&smi_element); __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); __ mov(FieldOperand(ebx, ecx, times_half_pointer_size, FixedArrayBase::kHeaderSize), eax); __ ret(0); // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS. __ bind(&double_elements); __ push(edx); __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset)); __ StoreNumberToDoubleElements(eax, edx, ecx, edi, xmm0, &slow_elements_from_double); __ pop(edx); __ ret(0); } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; __ mov(ebx, MemOperand(ebp, parameter_count_offset)); masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ pop(ecx); int additional_offset = function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0; __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset)); __ jmp(ecx); // Return to IC Miss stub, continuation still on stack. } void LoadICTrampolineStub::Generate(MacroAssembler* masm) { EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); VectorLoadStub stub(isolate(), state()); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); } void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); VectorKeyedLoadStub stub(isolate()); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); masm->CallStub(&stub); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // Save volatile registers. const int kNumSavedRegisters = 3; __ push(eax); __ push(ecx); __ push(edx); // Calculate and push the original stack pointer. __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize)); __ push(eax); // Retrieve our return address and use it to calculate the calling // function's address. __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize)); __ sub(eax, Immediate(Assembler::kCallInstructionLength)); __ push(eax); // Call the entry hook. DCHECK(isolate()->function_entry_hook() != NULL); __ call(FUNCTION_ADDR(isolate()->function_entry_hook()), RelocInfo::RUNTIME_ENTRY); __ add(esp, Immediate(2 * kPointerSize)); // Restore ecx. __ pop(edx); __ pop(ecx); __ pop(eax); __ ret(0); } template<class T> static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(edx, kind); __ j(not_equal, &next); T stub(masm->isolate(), kind); __ TailCallStub(&stub); __ bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES) // edx - kind (if mode != DISABLE_ALLOCATION_SITES) // eax - number of arguments // edi - constructor? // esp[0] - return address // esp[4] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { DCHECK(FAST_SMI_ELEMENTS == 0); DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1); DCHECK(FAST_ELEMENTS == 2); DCHECK(FAST_HOLEY_ELEMENTS == 3); DCHECK(FAST_DOUBLE_ELEMENTS == 4); DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ test_b(edx, 1); __ j(not_zero, &normal_sequence); } // look at the first argument __ mov(ecx, Operand(esp, kPointerSize)); __ test(ecx, ecx); __ j(zero, &normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry. __ inc(edx); if (FLAG_debug_code) { Handle<Map> allocation_site_map = masm->isolate()->factory()->allocation_site_map(); __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map)); __ Assert(equal, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset), Immediate(Smi::FromInt(kFastElementsKindPackedToHoley))); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(edx, kind); __ j(not_equal, &next); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub); __ bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template<class T> static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( isolate); ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( isolate); ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( isolate); } void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( Isolate* isolate) { ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); stubh3.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (argument_count() == ANY) { Label not_zero_case, not_one_case; __ test(eax, eax); __ j(not_zero, ¬_zero_case); CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); __ bind(¬_zero_case); __ cmp(eax, 1); __ j(greater, ¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); } else if (argument_count() == NONE) { CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); } else if (argument_count() == ONE) { CreateArrayDispatchOneArgument(masm, mode); } else if (argument_count() == MORE_THAN_ONE) { CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); } else { UNREACHABLE(); } } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc (only if argument_count() == ANY) // -- ebx : AllocationSite or undefined // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); // We should either have undefined in ebx or a valid AllocationSite __ AssertUndefinedOrAllocationSite(ebx); } Label no_info; // If the feedback vector is the undefined value call an array constructor // that doesn't use AllocationSites. __ cmp(ebx, isolate()->factory()->undefined_value()); __ j(equal, &no_info); // Only look at the lower 16 bits of the transition info. __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(edx); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { Label not_zero_case, not_one_case; Label normal_sequence; __ test(eax, eax); __ j(not_zero, ¬_zero_case); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0); __ bind(¬_zero_case); __ cmp(eax, 1); __ j(greater, ¬_one_case); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ mov(ecx, Operand(esp, kPointerSize)); __ test(ecx, ecx); __ j(zero, &normal_sequence); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey); } __ bind(&normal_sequence); InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); __ bind(¬_one_case); InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); __ TailCallStub(&stubN); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(ecx); if (FLAG_debug_code) { Label done; __ cmp(ecx, Immediate(FAST_ELEMENTS)); __ j(equal, &done); __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS)); __ Assert(equal, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmp(ecx, Immediate(FAST_ELEMENTS)); __ j(equal, &fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } void CallApiFunctionStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : callee // -- ebx : call_data // -- ecx : holder // -- edx : api_function_address // -- esi : context // -- // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[argc * 4] : first argument // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Register callee = eax; Register call_data = ebx; Register holder = ecx; Register api_function_address = edx; Register return_address = edi; Register context = esi; int argc = this->argc(); bool is_store = this->is_store(); bool call_data_undefined = this->call_data_undefined(); typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kArgsLength == 7); __ pop(return_address); // context save __ push(context); // load context from callee __ mov(context, FieldOperand(callee, JSFunction::kContextOffset)); // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined) { // return value __ push(Immediate(isolate()->factory()->undefined_value())); // return value default __ push(Immediate(isolate()->factory()->undefined_value())); } else { // return value __ push(scratch); // return value default __ push(scratch); } // isolate __ push(Immediate(reinterpret_cast<int>(isolate()))); // holder __ push(holder); __ mov(scratch, esp); // return address __ push(return_address); // API function gets reference to the v8::Arguments. If CPU profiler // is enabled wrapper function will be called and we need to pass // address of the callback as additional parameter, always allocate // space for it. const int kApiArgc = 1 + 1; // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; __ PrepareCallApiFunction(kApiArgc + kApiStackSpace); // FunctionCallbackInfo::implicit_args_. __ mov(ApiParameterOperand(2), scratch); __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize)); // FunctionCallbackInfo::values_. __ mov(ApiParameterOperand(3), scratch); // FunctionCallbackInfo::length_. __ Move(ApiParameterOperand(4), Immediate(argc)); // FunctionCallbackInfo::is_construct_call_. __ Move(ApiParameterOperand(5), Immediate(0)); // v8::InvocationCallback's argument. __ lea(scratch, ApiParameterOperand(2)); __ mov(ApiParameterOperand(0), scratch); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(isolate()); Operand context_restore_operand(ebp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } Operand return_value_operand(ebp, return_value_offset * kPointerSize); __ CallApiFunctionAndReturn(api_function_address, thunk_ref, ApiParameterOperand(1), argc + FCA::kArgsLength + 1, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : name // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object // -- ... // -- edx : api_function_address // ----------------------------------- DCHECK(edx.is(ApiGetterDescriptor::function_address())); // array for v8::Arguments::values_, handler for name and pointer // to the values (it considered as smi in GC). const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2; // Allocate space for opional callback address parameter in case // CPU profiler is active. const int kApiArgc = 2 + 1; Register api_function_address = edx; Register scratch = ebx; // load address of name __ lea(scratch, Operand(esp, 1 * kPointerSize)); __ PrepareCallApiFunction(kApiArgc); __ mov(ApiParameterOperand(0), scratch); // name. __ add(scratch, Immediate(kPointerSize)); __ mov(ApiParameterOperand(1), scratch); // arguments pointer. ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ CallApiFunctionAndReturn(api_function_address, thunk_ref, ApiParameterOperand(2), kStackSpace, Operand(ebp, 7 * kPointerSize), NULL); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32