// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Platform-specific code for OpenBSD and NetBSD goes here. For the // POSIX-compatible parts, the implementation is in platform-posix.cc. #include <pthread.h> #include <semaphore.h> #include <signal.h> #include <stdlib.h> #include <sys/resource.h> #include <sys/syscall.h> #include <sys/time.h> #include <sys/types.h> #include <errno.h> #include <fcntl.h> // open #include <stdarg.h> #include <strings.h> // index #include <sys/mman.h> // mmap & munmap #include <sys/stat.h> // open #include <sys/types.h> // mmap & munmap #include <unistd.h> // sysconf #include <cmath> #undef MAP_TYPE #include "src/base/macros.h" #include "src/base/platform/platform.h" namespace v8 { namespace base { const char* OS::LocalTimezone(double time, TimezoneCache* cache) { if (std::isnan(time)) return ""; time_t tv = static_cast<time_t>(std::floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return t->tm_zone; } double OS::LocalTimeOffset(TimezoneCache* cache) { time_t tv = time(NULL); struct tm* t = localtime(&tv); // tm_gmtoff includes any daylight savings offset, so subtract it. return static_cast<double>(t->tm_gmtoff * msPerSecond - (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, AllocateAlignment()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* addr = OS::GetRandomMmapAddr(); void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); if (mbase == MAP_FAILED) return NULL; *allocated = msize; return mbase; } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) OS::Free(memory_, size_); fclose(file_); } std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { std::vector<SharedLibraryAddress> result; // This function assumes that the layout of the file is as follows: // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name] // If we encounter an unexpected situation we abort scanning further entries. FILE* fp = fopen("/proc/self/maps", "r"); if (fp == NULL) return result; // Allocate enough room to be able to store a full file name. const int kLibNameLen = FILENAME_MAX + 1; char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen)); // This loop will terminate once the scanning hits an EOF. while (true) { uintptr_t start, end; char attr_r, attr_w, attr_x, attr_p; // Parse the addresses and permission bits at the beginning of the line. if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; int c; if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') { // Found a read-only executable entry. Skip characters until we reach // the beginning of the filename or the end of the line. do { c = getc(fp); } while ((c != EOF) && (c != '\n') && (c != '/')); if (c == EOF) break; // EOF: Was unexpected, just exit. // Process the filename if found. if (c == '/') { ungetc(c, fp); // Push the '/' back into the stream to be read below. // Read to the end of the line. Exit if the read fails. if (fgets(lib_name, kLibNameLen, fp) == NULL) break; // Drop the newline character read by fgets. We do not need to check // for a zero-length string because we know that we at least read the // '/' character. lib_name[strlen(lib_name) - 1] = '\0'; } else { // No library name found, just record the raw address range. snprintf(lib_name, kLibNameLen, "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); } result.push_back(SharedLibraryAddress(lib_name, start, end)); } else { // Entry not describing executable data. Skip to end of line to set up // reading the next entry. do { c = getc(fp); } while ((c != EOF) && (c != '\n')); if (c == EOF) break; } } free(lib_name); fclose(fp); return result; } void OS::SignalCodeMovingGC() { // Support for ll_prof.py. // // The Linux profiler built into the kernel logs all mmap's with // PROT_EXEC so that analysis tools can properly attribute ticks. We // do a mmap with a name known by ll_prof.py and immediately munmap // it. This injects a GC marker into the stream of events generated // by the kernel and allows us to synchronize V8 code log and the // kernel log. int size = sysconf(_SC_PAGESIZE); FILE* f = fopen(OS::GetGCFakeMMapFile(), "w+"); if (f == NULL) { OS::PrintError("Failed to open %s\n", OS::GetGCFakeMMapFile()); OS::Abort(); } void* addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fileno(f), 0); DCHECK(addr != MAP_FAILED); OS::Free(addr, size); fclose(f); } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } VirtualMemory::VirtualMemory(size_t size) : address_(ReserveRegion(size)), size_(size) { } VirtualMemory::VirtualMemory(size_t size, size_t alignment) : address_(NULL), size_(0) { DCHECK((alignment % OS::AllocateAlignment()) == 0); size_t request_size = RoundUp(size + alignment, static_cast<intptr_t>(OS::AllocateAlignment())); void* reservation = mmap(OS::GetRandomMmapAddr(), request_size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (reservation == MAP_FAILED) return; uint8_t* base = static_cast<uint8_t*>(reservation); uint8_t* aligned_base = RoundUp(base, alignment); DCHECK_LE(base, aligned_base); // Unmap extra memory reserved before and after the desired block. if (aligned_base != base) { size_t prefix_size = static_cast<size_t>(aligned_base - base); OS::Free(base, prefix_size); request_size -= prefix_size; } size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); DCHECK_LE(aligned_size, request_size); if (aligned_size != request_size) { size_t suffix_size = request_size - aligned_size; OS::Free(aligned_base + aligned_size, suffix_size); request_size -= suffix_size; } DCHECK(aligned_size == request_size); address_ = static_cast<void*>(aligned_base); size_ = aligned_size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { bool result = ReleaseRegion(address(), size()); DCHECK(result); USE(result); } } bool VirtualMemory::IsReserved() { return address_ != NULL; } void VirtualMemory::Reset() { address_ = NULL; size_ = 0; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { return CommitRegion(address, size, is_executable); } bool VirtualMemory::Uncommit(void* address, size_t size) { return UncommitRegion(address, size); } bool VirtualMemory::Guard(void* address) { OS::Guard(address, OS::CommitPageSize()); return true; } void* VirtualMemory::ReserveRegion(size_t size) { void* result = mmap(OS::GetRandomMmapAddr(), size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (result == MAP_FAILED) return NULL; return result; } bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(base, size, prot, MAP_PRIVATE | MAP_ANON | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } return true; } bool VirtualMemory::UncommitRegion(void* base, size_t size) { return mmap(base, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } bool VirtualMemory::ReleaseRegion(void* base, size_t size) { return munmap(base, size) == 0; } bool VirtualMemory::HasLazyCommits() { // TODO(alph): implement for the platform. return false; } } } // namespace v8::base