// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM64 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/cpu-profiler.h" #include "src/debug.h" #include "src/isolate-inl.h" #include "src/runtime.h" namespace v8 { namespace internal { // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros. #define __ MacroAssembler::MacroAssembler(Isolate* arg_isolate, byte * buffer, unsigned buffer_size) : Assembler(arg_isolate, buffer, buffer_size), generating_stub_(false), #if DEBUG allow_macro_instructions_(true), #endif has_frame_(false), use_real_aborts_(true), sp_(jssp), tmp_list_(DefaultTmpList()), fptmp_list_(DefaultFPTmpList()) { if (isolate() != NULL) { code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), isolate()); } } CPURegList MacroAssembler::DefaultTmpList() { return CPURegList(ip0, ip1); } CPURegList MacroAssembler::DefaultFPTmpList() { return CPURegList(fp_scratch1, fp_scratch2); } void MacroAssembler::LogicalMacro(const Register& rd, const Register& rn, const Operand& operand, LogicalOp op) { UseScratchRegisterScope temps(this); if (operand.NeedsRelocation(this)) { Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); Logical(rd, rn, temp, op); } else if (operand.IsImmediate()) { int64_t immediate = operand.ImmediateValue(); unsigned reg_size = rd.SizeInBits(); // If the operation is NOT, invert the operation and immediate. if ((op & NOT) == NOT) { op = static_cast<LogicalOp>(op & ~NOT); immediate = ~immediate; } // Ignore the top 32 bits of an immediate if we're moving to a W register. if (rd.Is32Bits()) { // Check that the top 32 bits are consistent. DCHECK(((immediate >> kWRegSizeInBits) == 0) || ((immediate >> kWRegSizeInBits) == -1)); immediate &= kWRegMask; } DCHECK(rd.Is64Bits() || is_uint32(immediate)); // Special cases for all set or all clear immediates. if (immediate == 0) { switch (op) { case AND: Mov(rd, 0); return; case ORR: // Fall through. case EOR: Mov(rd, rn); return; case ANDS: // Fall through. case BICS: break; default: UNREACHABLE(); } } else if ((rd.Is64Bits() && (immediate == -1L)) || (rd.Is32Bits() && (immediate == 0xffffffffL))) { switch (op) { case AND: Mov(rd, rn); return; case ORR: Mov(rd, immediate); return; case EOR: Mvn(rd, rn); return; case ANDS: // Fall through. case BICS: break; default: UNREACHABLE(); } } unsigned n, imm_s, imm_r; if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be encoded in the instruction. LogicalImmediate(rd, rn, n, imm_s, imm_r, op); } else { // Immediate can't be encoded: synthesize using move immediate. Register temp = temps.AcquireSameSizeAs(rn); Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate); if (rd.Is(csp)) { // If rd is the stack pointer we cannot use it as the destination // register so we use the temp register as an intermediate again. Logical(temp, rn, imm_operand, op); Mov(csp, temp); AssertStackConsistency(); } else { Logical(rd, rn, imm_operand, op); } } } else if (operand.IsExtendedRegister()) { DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits()); // Add/sub extended supports shift <= 4. We want to support exactly the // same modes here. DCHECK(operand.shift_amount() <= 4); DCHECK(operand.reg().Is64Bits() || ((operand.extend() != UXTX) && (operand.extend() != SXTX))); Register temp = temps.AcquireSameSizeAs(rn); EmitExtendShift(temp, operand.reg(), operand.extend(), operand.shift_amount()); Logical(rd, rn, temp, op); } else { // The operand can be encoded in the instruction. DCHECK(operand.IsShiftedRegister()); Logical(rd, rn, operand, op); } } void MacroAssembler::Mov(const Register& rd, uint64_t imm) { DCHECK(allow_macro_instructions_); DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits()); DCHECK(!rd.IsZero()); // TODO(all) extend to support more immediates. // // Immediates on Aarch64 can be produced using an initial value, and zero to // three move keep operations. // // Initial values can be generated with: // 1. 64-bit move zero (movz). // 2. 32-bit move inverted (movn). // 3. 64-bit move inverted. // 4. 32-bit orr immediate. // 5. 64-bit orr immediate. // Move-keep may then be used to modify each of the 16-bit half-words. // // The code below supports all five initial value generators, and // applying move-keep operations to move-zero and move-inverted initial // values. // Try to move the immediate in one instruction, and if that fails, switch to // using multiple instructions. if (!TryOneInstrMoveImmediate(rd, imm)) { unsigned reg_size = rd.SizeInBits(); // Generic immediate case. Imm will be represented by // [imm3, imm2, imm1, imm0], where each imm is 16 bits. // A move-zero or move-inverted is generated for the first non-zero or // non-0xffff immX, and a move-keep for subsequent non-zero immX. uint64_t ignored_halfword = 0; bool invert_move = false; // If the number of 0xffff halfwords is greater than the number of 0x0000 // halfwords, it's more efficient to use move-inverted. if (CountClearHalfWords(~imm, reg_size) > CountClearHalfWords(imm, reg_size)) { ignored_halfword = 0xffffL; invert_move = true; } // Mov instructions can't move immediate values into the stack pointer, so // set up a temporary register, if needed. UseScratchRegisterScope temps(this); Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd; // Iterate through the halfwords. Use movn/movz for the first non-ignored // halfword, and movk for subsequent halfwords. DCHECK((reg_size % 16) == 0); bool first_mov_done = false; for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) { uint64_t imm16 = (imm >> (16 * i)) & 0xffffL; if (imm16 != ignored_halfword) { if (!first_mov_done) { if (invert_move) { movn(temp, (~imm16) & 0xffffL, 16 * i); } else { movz(temp, imm16, 16 * i); } first_mov_done = true; } else { // Construct a wider constant. movk(temp, imm16, 16 * i); } } } DCHECK(first_mov_done); // Move the temporary if the original destination register was the stack // pointer. if (rd.IsSP()) { mov(rd, temp); AssertStackConsistency(); } } } void MacroAssembler::Mov(const Register& rd, const Operand& operand, DiscardMoveMode discard_mode) { DCHECK(allow_macro_instructions_); DCHECK(!rd.IsZero()); // Provide a swap register for instructions that need to write into the // system stack pointer (and can't do this inherently). UseScratchRegisterScope temps(this); Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd; if (operand.NeedsRelocation(this)) { Ldr(dst, operand.immediate()); } else if (operand.IsImmediate()) { // Call the macro assembler for generic immediates. Mov(dst, operand.ImmediateValue()); } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { // Emit a shift instruction if moving a shifted register. This operation // could also be achieved using an orr instruction (like orn used by Mvn), // but using a shift instruction makes the disassembly clearer. EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount()); } else if (operand.IsExtendedRegister()) { // Emit an extend instruction if moving an extended register. This handles // extend with post-shift operations, too. EmitExtendShift(dst, operand.reg(), operand.extend(), operand.shift_amount()); } else { // Otherwise, emit a register move only if the registers are distinct, or // if they are not X registers. // // Note that mov(w0, w0) is not a no-op because it clears the top word of // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W // registers is not required to clear the top word of the X register. In // this case, the instruction is discarded. // // If csp is an operand, add #0 is emitted, otherwise, orr #0. if (!rd.Is(operand.reg()) || (rd.Is32Bits() && (discard_mode == kDontDiscardForSameWReg))) { Assembler::mov(rd, operand.reg()); } // This case can handle writes into the system stack pointer directly. dst = rd; } // Copy the result to the system stack pointer. if (!dst.Is(rd)) { DCHECK(rd.IsSP()); Assembler::mov(rd, dst); } } void MacroAssembler::Mvn(const Register& rd, const Operand& operand) { DCHECK(allow_macro_instructions_); if (operand.NeedsRelocation(this)) { Ldr(rd, operand.immediate()); mvn(rd, rd); } else if (operand.IsImmediate()) { // Call the macro assembler for generic immediates. Mov(rd, ~operand.ImmediateValue()); } else if (operand.IsExtendedRegister()) { // Emit two instructions for the extend case. This differs from Mov, as // the extend and invert can't be achieved in one instruction. EmitExtendShift(rd, operand.reg(), operand.extend(), operand.shift_amount()); mvn(rd, rd); } else { mvn(rd, operand); } } unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) { DCHECK((reg_size % 8) == 0); int count = 0; for (unsigned i = 0; i < (reg_size / 16); i++) { if ((imm & 0xffff) == 0) { count++; } imm >>= 16; } return count; } // The movz instruction can generate immediates containing an arbitrary 16-bit // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) { DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits)); return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); } // The movn instruction can generate immediates containing an arbitrary 16-bit // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff. bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) { return IsImmMovz(~imm, reg_size); } void MacroAssembler::ConditionalCompareMacro(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond, ConditionalCompareOp op) { DCHECK((cond != al) && (cond != nv)); if (operand.NeedsRelocation(this)) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); ConditionalCompareMacro(rn, temp, nzcv, cond, op); } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) || (operand.IsImmediate() && IsImmConditionalCompare(operand.ImmediateValue()))) { // The immediate can be encoded in the instruction, or the operand is an // unshifted register: call the assembler. ConditionalCompare(rn, operand, nzcv, cond, op); } else { // The operand isn't directly supported by the instruction: perform the // operation on a temporary register. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); ConditionalCompare(rn, temp, nzcv, cond, op); } } void MacroAssembler::Csel(const Register& rd, const Register& rn, const Operand& operand, Condition cond) { DCHECK(allow_macro_instructions_); DCHECK(!rd.IsZero()); DCHECK((cond != al) && (cond != nv)); if (operand.IsImmediate()) { // Immediate argument. Handle special cases of 0, 1 and -1 using zero // register. int64_t imm = operand.ImmediateValue(); Register zr = AppropriateZeroRegFor(rn); if (imm == 0) { csel(rd, rn, zr, cond); } else if (imm == 1) { csinc(rd, rn, zr, cond); } else if (imm == -1) { csinv(rd, rn, zr, cond); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, imm); csel(rd, rn, temp, cond); } } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) { // Unshifted register argument. csel(rd, rn, operand.reg(), cond); } else { // All other arguments. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); csel(rd, rn, temp, cond); } } bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst, int64_t imm) { unsigned n, imm_s, imm_r; int reg_size = dst.SizeInBits(); if (IsImmMovz(imm, reg_size) && !dst.IsSP()) { // Immediate can be represented in a move zero instruction. Movz can't write // to the stack pointer. movz(dst, imm); return true; } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) { // Immediate can be represented in a move not instruction. Movn can't write // to the stack pointer. movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask)); return true; } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be represented in a logical orr instruction. LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR); return true; } return false; } Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst, int64_t imm) { int reg_size = dst.SizeInBits(); // Encode the immediate in a single move instruction, if possible. if (TryOneInstrMoveImmediate(dst, imm)) { // The move was successful; nothing to do here. } else { // Pre-shift the immediate to the least-significant bits of the register. int shift_low = CountTrailingZeros(imm, reg_size); int64_t imm_low = imm >> shift_low; // Pre-shift the immediate to the most-significant bits of the register. We // insert set bits in the least-significant bits, as this creates a // different immediate that may be encodable using movn or orr-immediate. // If this new immediate is encodable, the set bits will be eliminated by // the post shift on the following instruction. int shift_high = CountLeadingZeros(imm, reg_size); int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1); if (TryOneInstrMoveImmediate(dst, imm_low)) { // The new immediate has been moved into the destination's low bits: // return a new leftward-shifting operand. return Operand(dst, LSL, shift_low); } else if (TryOneInstrMoveImmediate(dst, imm_high)) { // The new immediate has been moved into the destination's high bits: // return a new rightward-shifting operand. return Operand(dst, LSR, shift_high); } else { // Use the generic move operation to set up the immediate. Mov(dst, imm); } } return Operand(dst); } void MacroAssembler::AddSubMacro(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubOp op) { if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() && !operand.NeedsRelocation(this) && (S == LeaveFlags)) { // The instruction would be a nop. Avoid generating useless code. return; } if (operand.NeedsRelocation(this)) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); AddSubMacro(rd, rn, temp, S, op); } else if ((operand.IsImmediate() && !IsImmAddSub(operand.ImmediateValue())) || (rn.IsZero() && !operand.IsShiftedRegister()) || (operand.IsShiftedRegister() && (operand.shift() == ROR))) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); if (operand.IsImmediate()) { Operand imm_operand = MoveImmediateForShiftedOp(temp, operand.ImmediateValue()); AddSub(rd, rn, imm_operand, S, op); } else { Mov(temp, operand); AddSub(rd, rn, temp, S, op); } } else { AddSub(rd, rn, operand, S, op); } } void MacroAssembler::AddSubWithCarryMacro(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubWithCarryOp op) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); UseScratchRegisterScope temps(this); if (operand.NeedsRelocation(this)) { Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); AddSubWithCarryMacro(rd, rn, temp, S, op); } else if (operand.IsImmediate() || (operand.IsShiftedRegister() && (operand.shift() == ROR))) { // Add/sub with carry (immediate or ROR shifted register.) Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); AddSubWithCarry(rd, rn, temp, S, op); } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { // Add/sub with carry (shifted register). DCHECK(operand.reg().SizeInBits() == rd.SizeInBits()); DCHECK(operand.shift() != ROR); DCHECK(is_uintn(operand.shift_amount(), rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2 : kWRegSizeInBitsLog2)); Register temp = temps.AcquireSameSizeAs(rn); EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); AddSubWithCarry(rd, rn, temp, S, op); } else if (operand.IsExtendedRegister()) { // Add/sub with carry (extended register). DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits()); // Add/sub extended supports a shift <= 4. We want to support exactly the // same modes. DCHECK(operand.shift_amount() <= 4); DCHECK(operand.reg().Is64Bits() || ((operand.extend() != UXTX) && (operand.extend() != SXTX))); Register temp = temps.AcquireSameSizeAs(rn); EmitExtendShift(temp, operand.reg(), operand.extend(), operand.shift_amount()); AddSubWithCarry(rd, rn, temp, S, op); } else { // The addressing mode is directly supported by the instruction. AddSubWithCarry(rd, rn, operand, S, op); } } void MacroAssembler::LoadStoreMacro(const CPURegister& rt, const MemOperand& addr, LoadStoreOp op) { int64_t offset = addr.offset(); LSDataSize size = CalcLSDataSize(op); // Check if an immediate offset fits in the immediate field of the // appropriate instruction. If not, emit two instructions to perform // the operation. if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) && !IsImmLSUnscaled(offset)) { // Immediate offset that can't be encoded using unsigned or unscaled // addressing modes. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(addr.base()); Mov(temp, addr.offset()); LoadStore(rt, MemOperand(addr.base(), temp), op); } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) { // Post-index beyond unscaled addressing range. LoadStore(rt, MemOperand(addr.base()), op); add(addr.base(), addr.base(), offset); } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) { // Pre-index beyond unscaled addressing range. add(addr.base(), addr.base(), offset); LoadStore(rt, MemOperand(addr.base()), op); } else { // Encodable in one load/store instruction. LoadStore(rt, addr, op); } } void MacroAssembler::LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairOp op) { // TODO(all): Should we support register offset for load-store-pair? DCHECK(!addr.IsRegisterOffset()); int64_t offset = addr.offset(); LSDataSize size = CalcLSPairDataSize(op); // Check if the offset fits in the immediate field of the appropriate // instruction. If not, emit two instructions to perform the operation. if (IsImmLSPair(offset, size)) { // Encodable in one load/store pair instruction. LoadStorePair(rt, rt2, addr, op); } else { Register base = addr.base(); if (addr.IsImmediateOffset()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(base); Add(temp, base, offset); LoadStorePair(rt, rt2, MemOperand(temp), op); } else if (addr.IsPostIndex()) { LoadStorePair(rt, rt2, MemOperand(base), op); Add(base, base, offset); } else { DCHECK(addr.IsPreIndex()); Add(base, base, offset); LoadStorePair(rt, rt2, MemOperand(base), op); } } } void MacroAssembler::Load(const Register& rt, const MemOperand& addr, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8()) { Ldrsb(rt, addr); } else if (r.IsUInteger8()) { Ldrb(rt, addr); } else if (r.IsInteger16()) { Ldrsh(rt, addr); } else if (r.IsUInteger16()) { Ldrh(rt, addr); } else if (r.IsInteger32()) { Ldr(rt.W(), addr); } else { DCHECK(rt.Is64Bits()); Ldr(rt, addr); } } void MacroAssembler::Store(const Register& rt, const MemOperand& addr, Representation r) { DCHECK(!r.IsDouble()); if (r.IsInteger8() || r.IsUInteger8()) { Strb(rt, addr); } else if (r.IsInteger16() || r.IsUInteger16()) { Strh(rt, addr); } else if (r.IsInteger32()) { Str(rt.W(), addr); } else { DCHECK(rt.Is64Bits()); if (r.IsHeapObject()) { AssertNotSmi(rt); } else if (r.IsSmi()) { AssertSmi(rt); } Str(rt, addr); } } bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch( Label *label, ImmBranchType b_type) { bool need_longer_range = false; // There are two situations in which we care about the offset being out of // range: // - The label is bound but too far away. // - The label is not bound but linked, and the previous branch // instruction in the chain is too far away. if (label->is_bound() || label->is_linked()) { need_longer_range = !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset()); } if (!need_longer_range && !label->is_bound()) { int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type); unresolved_branches_.insert( std::pair<int, FarBranchInfo>(max_reachable_pc, FarBranchInfo(pc_offset(), label))); // Also maintain the next pool check. next_veneer_pool_check_ = Min(next_veneer_pool_check_, max_reachable_pc - kVeneerDistanceCheckMargin); } return need_longer_range; } void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) { DCHECK(allow_macro_instructions_); DCHECK(!rd.IsZero()); if (hint == kAdrNear) { adr(rd, label); return; } DCHECK(hint == kAdrFar); if (label->is_bound()) { int label_offset = label->pos() - pc_offset(); if (Instruction::IsValidPCRelOffset(label_offset)) { adr(rd, label); } else { DCHECK(label_offset <= 0); int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1)); adr(rd, min_adr_offset); Add(rd, rd, label_offset - min_adr_offset); } } else { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); InstructionAccurateScope scope( this, PatchingAssembler::kAdrFarPatchableNInstrs); adr(rd, label); for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) { nop(ADR_FAR_NOP); } movz(scratch, 0); } } void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) { DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) && (bit == -1 || type >= kBranchTypeFirstUsingBit)); if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { B(static_cast<Condition>(type), label); } else { switch (type) { case always: B(label); break; case never: break; case reg_zero: Cbz(reg, label); break; case reg_not_zero: Cbnz(reg, label); break; case reg_bit_clear: Tbz(reg, bit, label); break; case reg_bit_set: Tbnz(reg, bit, label); break; default: UNREACHABLE(); } } } void MacroAssembler::B(Label* label, Condition cond) { DCHECK(allow_macro_instructions_); DCHECK((cond != al) && (cond != nv)); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CondBranchType); if (need_extra_instructions) { b(&done, NegateCondition(cond)); B(label); } else { b(label, cond); } bind(&done); } void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) { DCHECK(allow_macro_instructions_); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); if (need_extra_instructions) { tbz(rt, bit_pos, &done); B(label); } else { tbnz(rt, bit_pos, label); } bind(&done); } void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) { DCHECK(allow_macro_instructions_); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); if (need_extra_instructions) { tbnz(rt, bit_pos, &done); B(label); } else { tbz(rt, bit_pos, label); } bind(&done); } void MacroAssembler::Cbnz(const Register& rt, Label* label) { DCHECK(allow_macro_instructions_); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); if (need_extra_instructions) { cbz(rt, &done); B(label); } else { cbnz(rt, label); } bind(&done); } void MacroAssembler::Cbz(const Register& rt, Label* label) { DCHECK(allow_macro_instructions_); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); if (need_extra_instructions) { cbnz(rt, &done); B(label); } else { cbz(rt, label); } bind(&done); } // Pseudo-instructions. void MacroAssembler::Abs(const Register& rd, const Register& rm, Label* is_not_representable, Label* is_representable) { DCHECK(allow_macro_instructions_); DCHECK(AreSameSizeAndType(rd, rm)); Cmp(rm, 1); Cneg(rd, rm, lt); // If the comparison sets the v flag, the input was the smallest value // representable by rm, and the mathematical result of abs(rm) is not // representable using two's complement. if ((is_not_representable != NULL) && (is_representable != NULL)) { B(is_not_representable, vs); B(is_representable); } else if (is_not_representable != NULL) { B(is_not_representable, vs); } else if (is_representable != NULL) { B(is_representable, vc); } } // Abstracted stack operations. void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3) { DCHECK(AreSameSizeAndType(src0, src1, src2, src3)); int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid(); int size = src0.SizeInBytes(); PushPreamble(count, size); PushHelper(count, size, src0, src1, src2, src3); } void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3, const CPURegister& src4, const CPURegister& src5, const CPURegister& src6, const CPURegister& src7) { DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7)); int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid(); int size = src0.SizeInBytes(); PushPreamble(count, size); PushHelper(4, size, src0, src1, src2, src3); PushHelper(count - 4, size, src4, src5, src6, src7); } void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3) { // It is not valid to pop into the same register more than once in one // instruction, not even into the zero register. DCHECK(!AreAliased(dst0, dst1, dst2, dst3)); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3)); DCHECK(dst0.IsValid()); int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid(); int size = dst0.SizeInBytes(); PopHelper(count, size, dst0, dst1, dst2, dst3); PopPostamble(count, size); } void MacroAssembler::Push(const Register& src0, const FPRegister& src1) { int size = src0.SizeInBytes() + src1.SizeInBytes(); PushPreamble(size); // Reserve room for src0 and push src1. str(src1, MemOperand(StackPointer(), -size, PreIndex)); // Fill the gap with src0. str(src0, MemOperand(StackPointer(), src1.SizeInBytes())); } void MacroAssembler::PushPopQueue::PushQueued( PreambleDirective preamble_directive) { if (queued_.empty()) return; if (preamble_directive == WITH_PREAMBLE) { masm_->PushPreamble(size_); } int count = queued_.size(); int index = 0; while (index < count) { // PushHelper can only handle registers with the same size and type, and it // can handle only four at a time. Batch them up accordingly. CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg}; int batch_index = 0; do { batch[batch_index++] = queued_[index++]; } while ((batch_index < 4) && (index < count) && batch[0].IsSameSizeAndType(queued_[index])); masm_->PushHelper(batch_index, batch[0].SizeInBytes(), batch[0], batch[1], batch[2], batch[3]); } queued_.clear(); } void MacroAssembler::PushPopQueue::PopQueued() { if (queued_.empty()) return; int count = queued_.size(); int index = 0; while (index < count) { // PopHelper can only handle registers with the same size and type, and it // can handle only four at a time. Batch them up accordingly. CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg}; int batch_index = 0; do { batch[batch_index++] = queued_[index++]; } while ((batch_index < 4) && (index < count) && batch[0].IsSameSizeAndType(queued_[index])); masm_->PopHelper(batch_index, batch[0].SizeInBytes(), batch[0], batch[1], batch[2], batch[3]); } masm_->PopPostamble(size_); queued_.clear(); } void MacroAssembler::PushCPURegList(CPURegList registers) { int size = registers.RegisterSizeInBytes(); PushPreamble(registers.Count(), size); // Push up to four registers at a time because if the current stack pointer is // csp and reg_size is 32, registers must be pushed in blocks of four in order // to maintain the 16-byte alignment for csp. while (!registers.IsEmpty()) { int count_before = registers.Count(); const CPURegister& src0 = registers.PopHighestIndex(); const CPURegister& src1 = registers.PopHighestIndex(); const CPURegister& src2 = registers.PopHighestIndex(); const CPURegister& src3 = registers.PopHighestIndex(); int count = count_before - registers.Count(); PushHelper(count, size, src0, src1, src2, src3); } } void MacroAssembler::PopCPURegList(CPURegList registers) { int size = registers.RegisterSizeInBytes(); // Pop up to four registers at a time because if the current stack pointer is // csp and reg_size is 32, registers must be pushed in blocks of four in // order to maintain the 16-byte alignment for csp. while (!registers.IsEmpty()) { int count_before = registers.Count(); const CPURegister& dst0 = registers.PopLowestIndex(); const CPURegister& dst1 = registers.PopLowestIndex(); const CPURegister& dst2 = registers.PopLowestIndex(); const CPURegister& dst3 = registers.PopLowestIndex(); int count = count_before - registers.Count(); PopHelper(count, size, dst0, dst1, dst2, dst3); } PopPostamble(registers.Count(), size); } void MacroAssembler::PushMultipleTimes(CPURegister src, int count) { int size = src.SizeInBytes(); PushPreamble(count, size); if (FLAG_optimize_for_size && count > 8) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Label loop; __ Mov(temp, count / 2); __ Bind(&loop); PushHelper(2, size, src, src, NoReg, NoReg); __ Subs(temp, temp, 1); __ B(ne, &loop); count %= 2; } // Push up to four registers at a time if possible because if the current // stack pointer is csp and the register size is 32, registers must be pushed // in blocks of four in order to maintain the 16-byte alignment for csp. while (count >= 4) { PushHelper(4, size, src, src, src, src); count -= 4; } if (count >= 2) { PushHelper(2, size, src, src, NoReg, NoReg); count -= 2; } if (count == 1) { PushHelper(1, size, src, NoReg, NoReg, NoReg); count -= 1; } DCHECK(count == 0); } void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) { PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes()))); UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(count); if (FLAG_optimize_for_size) { Label loop, done; Subs(temp, count, 1); B(mi, &done); // Push all registers individually, to save code size. Bind(&loop); Subs(temp, temp, 1); PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); B(pl, &loop); Bind(&done); } else { Label loop, leftover2, leftover1, done; Subs(temp, count, 4); B(mi, &leftover2); // Push groups of four first. Bind(&loop); Subs(temp, temp, 4); PushHelper(4, src.SizeInBytes(), src, src, src, src); B(pl, &loop); // Push groups of two. Bind(&leftover2); Tbz(count, 1, &leftover1); PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg); // Push the last one (if required). Bind(&leftover1); Tbz(count, 0, &done); PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); Bind(&done); } } void MacroAssembler::PushHelper(int count, int size, const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3) { // Ensure that we don't unintentially modify scratch or debug registers. InstructionAccurateScope scope(this); DCHECK(AreSameSizeAndType(src0, src1, src2, src3)); DCHECK(size == src0.SizeInBytes()); // When pushing multiple registers, the store order is chosen such that // Push(a, b) is equivalent to Push(a) followed by Push(b). switch (count) { case 1: DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone()); str(src0, MemOperand(StackPointer(), -1 * size, PreIndex)); break; case 2: DCHECK(src2.IsNone() && src3.IsNone()); stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex)); break; case 3: DCHECK(src3.IsNone()); stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex)); str(src0, MemOperand(StackPointer(), 2 * size)); break; case 4: // Skip over 4 * size, then fill in the gap. This allows four W registers // to be pushed using csp, whilst maintaining 16-byte alignment for csp // at all times. stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex)); stp(src1, src0, MemOperand(StackPointer(), 2 * size)); break; default: UNREACHABLE(); } } void MacroAssembler::PopHelper(int count, int size, const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3) { // Ensure that we don't unintentially modify scratch or debug registers. InstructionAccurateScope scope(this); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3)); DCHECK(size == dst0.SizeInBytes()); // When popping multiple registers, the load order is chosen such that // Pop(a, b) is equivalent to Pop(a) followed by Pop(b). switch (count) { case 1: DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone()); ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex)); break; case 2: DCHECK(dst2.IsNone() && dst3.IsNone()); ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex)); break; case 3: DCHECK(dst3.IsNone()); ldr(dst2, MemOperand(StackPointer(), 2 * size)); ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex)); break; case 4: // Load the higher addresses first, then load the lower addresses and // skip the whole block in the second instruction. This allows four W // registers to be popped using csp, whilst maintaining 16-byte alignment // for csp at all times. ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size)); ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex)); break; default: UNREACHABLE(); } } void MacroAssembler::PushPreamble(Operand total_size) { if (csp.Is(StackPointer())) { // If the current stack pointer is csp, then it must be aligned to 16 bytes // on entry and the total size of the specified registers must also be a // multiple of 16 bytes. if (total_size.IsImmediate()) { DCHECK((total_size.ImmediateValue() % 16) == 0); } // Don't check access size for non-immediate sizes. It's difficult to do // well, and it will be caught by hardware (or the simulator) anyway. } else { // Even if the current stack pointer is not the system stack pointer (csp), // the system stack pointer will still be modified in order to comply with // ABI rules about accessing memory below the system stack pointer. BumpSystemStackPointer(total_size); } } void MacroAssembler::PopPostamble(Operand total_size) { if (csp.Is(StackPointer())) { // If the current stack pointer is csp, then it must be aligned to 16 bytes // on entry and the total size of the specified registers must also be a // multiple of 16 bytes. if (total_size.IsImmediate()) { DCHECK((total_size.ImmediateValue() % 16) == 0); } // Don't check access size for non-immediate sizes. It's difficult to do // well, and it will be caught by hardware (or the simulator) anyway. } else if (emit_debug_code()) { // It is safe to leave csp where it is when unwinding the JavaScript stack, // but if we keep it matching StackPointer, the simulator can detect memory // accesses in the now-free part of the stack. SyncSystemStackPointer(); } } void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) { if (offset.IsImmediate()) { DCHECK(offset.ImmediateValue() >= 0); } else if (emit_debug_code()) { Cmp(xzr, offset); Check(le, kStackAccessBelowStackPointer); } Str(src, MemOperand(StackPointer(), offset)); } void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) { if (offset.IsImmediate()) { DCHECK(offset.ImmediateValue() >= 0); } else if (emit_debug_code()) { Cmp(xzr, offset); Check(le, kStackAccessBelowStackPointer); } Ldr(dst, MemOperand(StackPointer(), offset)); } void MacroAssembler::PokePair(const CPURegister& src1, const CPURegister& src2, int offset) { DCHECK(AreSameSizeAndType(src1, src2)); DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0)); Stp(src1, src2, MemOperand(StackPointer(), offset)); } void MacroAssembler::PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset) { DCHECK(AreSameSizeAndType(dst1, dst2)); DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0)); Ldp(dst1, dst2, MemOperand(StackPointer(), offset)); } void MacroAssembler::PushCalleeSavedRegisters() { // Ensure that the macro-assembler doesn't use any scratch registers. InstructionAccurateScope scope(this); // This method must not be called unless the current stack pointer is the // system stack pointer (csp). DCHECK(csp.Is(StackPointer())); MemOperand tos(csp, -2 * kXRegSize, PreIndex); stp(d14, d15, tos); stp(d12, d13, tos); stp(d10, d11, tos); stp(d8, d9, tos); stp(x29, x30, tos); stp(x27, x28, tos); // x28 = jssp stp(x25, x26, tos); stp(x23, x24, tos); stp(x21, x22, tos); stp(x19, x20, tos); } void MacroAssembler::PopCalleeSavedRegisters() { // Ensure that the macro-assembler doesn't use any scratch registers. InstructionAccurateScope scope(this); // This method must not be called unless the current stack pointer is the // system stack pointer (csp). DCHECK(csp.Is(StackPointer())); MemOperand tos(csp, 2 * kXRegSize, PostIndex); ldp(x19, x20, tos); ldp(x21, x22, tos); ldp(x23, x24, tos); ldp(x25, x26, tos); ldp(x27, x28, tos); // x28 = jssp ldp(x29, x30, tos); ldp(d8, d9, tos); ldp(d10, d11, tos); ldp(d12, d13, tos); ldp(d14, d15, tos); } void MacroAssembler::AssertStackConsistency() { // Avoid emitting code when !use_real_abort() since non-real aborts cause too // much code to be generated. if (emit_debug_code() && use_real_aborts()) { if (csp.Is(StackPointer()) || CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) { // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true. We // can't check the alignment of csp without using a scratch register (or // clobbering the flags), but the processor (or simulator) will abort if // it is not properly aligned during a load. ldr(xzr, MemOperand(csp, 0)); } if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) { Label ok; // Check that csp <= StackPointer(), preserving all registers and NZCV. sub(StackPointer(), csp, StackPointer()); cbz(StackPointer(), &ok); // Ok if csp == StackPointer(). tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer(). // Avoid generating AssertStackConsistency checks for the Push in Abort. { DontEmitDebugCodeScope dont_emit_debug_code_scope(this); Abort(kTheCurrentStackPointerIsBelowCsp); } bind(&ok); // Restore StackPointer(). sub(StackPointer(), csp, StackPointer()); } } } void MacroAssembler::AssertFPCRState(Register fpcr) { if (emit_debug_code()) { Label unexpected_mode, done; UseScratchRegisterScope temps(this); if (fpcr.IsNone()) { fpcr = temps.AcquireX(); Mrs(fpcr, FPCR); } // Settings overridden by ConfiugreFPCR(): // - Assert that default-NaN mode is set. Tbz(fpcr, DN_offset, &unexpected_mode); // Settings left to their default values: // - Assert that flush-to-zero is not set. Tbnz(fpcr, FZ_offset, &unexpected_mode); // - Assert that the rounding mode is nearest-with-ties-to-even. STATIC_ASSERT(FPTieEven == 0); Tst(fpcr, RMode_mask); B(eq, &done); Bind(&unexpected_mode); Abort(kUnexpectedFPCRMode); Bind(&done); } } void MacroAssembler::ConfigureFPCR() { UseScratchRegisterScope temps(this); Register fpcr = temps.AcquireX(); Mrs(fpcr, FPCR); // If necessary, enable default-NaN mode. The default values of the other FPCR // options should be suitable, and AssertFPCRState will verify that. Label no_write_required; Tbnz(fpcr, DN_offset, &no_write_required); Orr(fpcr, fpcr, DN_mask); Msr(FPCR, fpcr); Bind(&no_write_required); AssertFPCRState(fpcr); } void MacroAssembler::CanonicalizeNaN(const FPRegister& dst, const FPRegister& src) { AssertFPCRState(); // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except // for NaNs, which become the default NaN. We use fsub rather than fadd // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. Fsub(dst, src, fp_zero); } void MacroAssembler::LoadRoot(CPURegister destination, Heap::RootListIndex index) { // TODO(jbramley): Most root values are constants, and can be synthesized // without a load. Refer to the ARM back end for details. Ldr(destination, MemOperand(root, index << kPointerSizeLog2)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) { Str(source, MemOperand(root, index << kPointerSizeLog2)); } void MacroAssembler::LoadTrueFalseRoots(Register true_root, Register false_root) { STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex); Ldp(true_root, false_root, MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2)); } void MacroAssembler::LoadHeapObject(Register result, Handle<HeapObject> object) { AllowDeferredHandleDereference using_raw_address; if (isolate()->heap()->InNewSpace(*object)) { Handle<Cell> cell = isolate()->factory()->NewCell(object); Mov(result, Operand(cell)); Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); } else { Mov(result, Operand(object)); } } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); } void MacroAssembler::EnumLengthUntagged(Register dst, Register map) { STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset)); And(dst, dst, Map::EnumLengthBits::kMask); } void MacroAssembler::EnumLengthSmi(Register dst, Register map) { EnumLengthUntagged(dst, map); SmiTag(dst, dst); } void MacroAssembler::CheckEnumCache(Register object, Register null_value, Register scratch0, Register scratch1, Register scratch2, Register scratch3, Label* call_runtime) { DCHECK(!AreAliased(object, null_value, scratch0, scratch1, scratch2, scratch3)); Register empty_fixed_array_value = scratch0; Register current_object = scratch1; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Label next, start; Mov(current_object, object); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. Register map = scratch2; Register enum_length = scratch3; Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset)); EnumLengthUntagged(enum_length, map); Cmp(enum_length, kInvalidEnumCacheSentinel); B(eq, call_runtime); B(&start); Bind(&next); Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset)); // For all objects but the receiver, check that the cache is empty. EnumLengthUntagged(enum_length, map); Cbnz(enum_length, call_runtime); Bind(&start); // Check that there are no elements. Register current_object contains the // current JS object we've reached through the prototype chain. Label no_elements; Ldr(current_object, FieldMemOperand(current_object, JSObject::kElementsOffset)); Cmp(current_object, empty_fixed_array_value); B(eq, &no_elements); // Second chance, the object may be using the empty slow element dictionary. CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex); B(ne, call_runtime); Bind(&no_elements); Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset)); Cmp(current_object, null_value); B(ne, &next); } void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver, Register scratch1, Register scratch2, Label* no_memento_found) { ExternalReference new_space_start = ExternalReference::new_space_start(isolate()); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); Add(scratch1, receiver, JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag); Cmp(scratch1, new_space_start); B(lt, no_memento_found); Mov(scratch2, new_space_allocation_top); Ldr(scratch2, MemOperand(scratch2)); Cmp(scratch1, scratch2); B(gt, no_memento_found); Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize)); Cmp(scratch1, Operand(isolate()->factory()->allocation_memento_map())); } void MacroAssembler::JumpToHandlerEntry(Register exception, Register object, Register state, Register scratch1, Register scratch2) { // Handler expects argument in x0. DCHECK(exception.Is(x0)); // Compute the handler entry address and jump to it. The handler table is // a fixed array of (smi-tagged) code offsets. Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset)); Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag); STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2); Lsr(scratch2, state, StackHandler::kKindWidth); Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2)); Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag); Add(scratch1, scratch1, Operand::UntagSmi(scratch2)); Br(scratch1); } void MacroAssembler::InNewSpace(Register object, Condition cond, Label* branch) { DCHECK(cond == eq || cond == ne); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); And(temp, object, ExternalReference::new_space_mask(isolate())); Cmp(temp, ExternalReference::new_space_start(isolate())); B(cond, branch); } void MacroAssembler::Throw(Register value, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The handler expects the exception in x0. DCHECK(value.Is(x0)); // Drop the stack pointer to the top of the top handler. DCHECK(jssp.Is(StackPointer())); Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); Ldr(jssp, MemOperand(scratch1)); // Restore the next handler. Pop(scratch2); Str(scratch2, MemOperand(scratch1)); // Get the code object and state. Restore the context and frame pointer. Register object = scratch1; Register state = scratch2; Pop(object, state, cp, fp); // If the handler is a JS frame, restore the context to the frame. // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp // or cp. Label not_js_frame; Cbz(cp, ¬_js_frame); Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); Bind(¬_js_frame); JumpToHandlerEntry(value, object, state, scratch3, scratch4); } void MacroAssembler::ThrowUncatchable(Register value, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The handler expects the exception in x0. DCHECK(value.Is(x0)); // Drop the stack pointer to the top of the top stack handler. DCHECK(jssp.Is(StackPointer())); Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); Ldr(jssp, MemOperand(scratch1)); // Unwind the handlers until the ENTRY handler is found. Label fetch_next, check_kind; B(&check_kind); Bind(&fetch_next); Peek(jssp, StackHandlerConstants::kNextOffset); Bind(&check_kind); STATIC_ASSERT(StackHandler::JS_ENTRY == 0); Peek(scratch2, StackHandlerConstants::kStateOffset); TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next); // Set the top handler address to next handler past the top ENTRY handler. Pop(scratch2); Str(scratch2, MemOperand(scratch1)); // Get the code object and state. Clear the context and frame pointer (0 was // saved in the handler). Register object = scratch1; Register state = scratch2; Pop(object, state, cp, fp); JumpToHandlerEntry(value, object, state, scratch3, scratch4); } void MacroAssembler::AssertSmi(Register object, BailoutReason reason) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(eq, reason); } } void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(ne, reason); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { AssertNotSmi(object, kOperandIsASmiAndNotAName); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(temp, temp, LAST_NAME_TYPE); Check(ls, kOperandIsNotAName); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking); Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); Assert(eq, kExpectedUndefinedOrCell); Bind(&done_checking); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(ne, kOperandIsASmiAndNotAString); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE); Check(lo, kOperandIsNotAString); } } void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); } void MacroAssembler::TailCallStub(CodeStub* stub) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All arguments must be on the stack before this function is called. // x0 holds the return value after the call. // Check that the number of arguments matches what the function expects. // If f->nargs is -1, the function can accept a variable number of arguments. CHECK(f->nargs < 0 || f->nargs == num_arguments); // Place the necessary arguments. Mov(x0, num_arguments); Mov(x1, ExternalReference(f, isolate())); CEntryStub stub(isolate(), 1, save_doubles); CallStub(&stub); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } void MacroAssembler::CallApiFunctionAndReturn( Register function_address, ExternalReference thunk_ref, int stack_space, int spill_offset, MemOperand return_value_operand, MemOperand* context_restore_operand) { ASM_LOCATION("CallApiFunctionAndReturn"); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate()); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate()), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate()), next_address); DCHECK(function_address.is(x1) || function_address.is(x2)); Label profiler_disabled; Label end_profiler_check; Mov(x10, ExternalReference::is_profiling_address(isolate())); Ldrb(w10, MemOperand(x10)); Cbz(w10, &profiler_disabled); Mov(x3, thunk_ref); B(&end_profiler_check); Bind(&profiler_disabled); Mov(x3, function_address); Bind(&end_profiler_check); // Save the callee-save registers we are going to use. // TODO(all): Is this necessary? ARM doesn't do it. STATIC_ASSERT(kCallApiFunctionSpillSpace == 4); Poke(x19, (spill_offset + 0) * kXRegSize); Poke(x20, (spill_offset + 1) * kXRegSize); Poke(x21, (spill_offset + 2) * kXRegSize); Poke(x22, (spill_offset + 3) * kXRegSize); // Allocate HandleScope in callee-save registers. // We will need to restore the HandleScope after the call to the API function, // by allocating it in callee-save registers they will be preserved by C code. Register handle_scope_base = x22; Register next_address_reg = x19; Register limit_reg = x20; Register level_reg = w21; Mov(handle_scope_base, next_address); Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset)); Add(level_reg, level_reg, 1); Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(this, StackFrame::MANUAL); PushSafepointRegisters(); Mov(x0, ExternalReference::isolate_address(isolate())); CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate()); stub.GenerateCall(this, x3); if (FLAG_log_timer_events) { FrameScope frame(this, StackFrame::MANUAL); PushSafepointRegisters(); Mov(x0, ExternalReference::isolate_address(isolate())); CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); PopSafepointRegisters(); } Label promote_scheduled_exception; Label exception_handled; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // Load value from ReturnValue. Ldr(x0, return_value_operand); Bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); if (emit_debug_code()) { Ldr(w1, MemOperand(handle_scope_base, kLevelOffset)); Cmp(w1, level_reg); Check(eq, kUnexpectedLevelAfterReturnFromApiCall); } Sub(level_reg, level_reg, 1); Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); Ldr(x1, MemOperand(handle_scope_base, kLimitOffset)); Cmp(limit_reg, x1); B(ne, &delete_allocated_handles); Bind(&leave_exit_frame); // Restore callee-saved registers. Peek(x19, (spill_offset + 0) * kXRegSize); Peek(x20, (spill_offset + 1) * kXRegSize); Peek(x21, (spill_offset + 2) * kXRegSize); Peek(x22, (spill_offset + 3) * kXRegSize); // Check if the function scheduled an exception. Mov(x5, ExternalReference::scheduled_exception_address(isolate())); Ldr(x5, MemOperand(x5)); JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception); Bind(&exception_handled); bool restore_context = context_restore_operand != NULL; if (restore_context) { Ldr(cp, *context_restore_operand); } LeaveExitFrame(false, x1, !restore_context); Drop(stack_space); Ret(); Bind(&promote_scheduled_exception); { FrameScope frame(this, StackFrame::INTERNAL); CallExternalReference( ExternalReference( Runtime::kPromoteScheduledException, isolate()), 0); } B(&exception_handled); // HandleScope limit has changed. Delete allocated extensions. Bind(&delete_allocated_handles); Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); // Save the return value in a callee-save register. Register saved_result = x19; Mov(saved_result, x0); Mov(x0, ExternalReference::isolate_address(isolate())); CallCFunction( ExternalReference::delete_handle_scope_extensions(isolate()), 1); Mov(x0, saved_result); B(&leave_exit_frame); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { Mov(x0, num_arguments); Mov(x1, ext); CEntryStub stub(isolate(), 1); CallStub(&stub); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { Mov(x1, builtin); CEntryStub stub(isolate(), 1); Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the builtins object into target register. Ldr(target, GlobalObjectMemOperand()); Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); // Load the JavaScript builtin function from the builtins object. Ldr(target, FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Register function, Builtins::JavaScript id) { DCHECK(!AreAliased(target, function)); GetBuiltinFunction(function, id); // Load the code entry point from the builtins object. Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { ASM_LOCATION("MacroAssembler::InvokeBuiltin"); // You can't call a builtin without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Get the builtin entry in x2 and setup the function object in x1. GetBuiltinEntry(x2, x1, id); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(x2)); Call(x2); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(x2); } } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Mov(x0, num_arguments); JumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { DCHECK(!AreAliased(string, length, scratch1, scratch2)); LoadRoot(scratch2, map_index); SmiTag(scratch1, length); Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); Mov(scratch2, String::kEmptyHashField); Str(scratch1, FieldMemOperand(string, String::kLengthOffset)); Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset)); } int MacroAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_ARM64 // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_ARM64 // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_ARM64 } void MacroAssembler::CallCFunction(ExternalReference function, int num_of_reg_args) { CallCFunction(function, num_of_reg_args, 0); } void MacroAssembler::CallCFunction(ExternalReference function, int num_of_reg_args, int num_of_double_args) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, function); CallCFunction(temp, num_of_reg_args, num_of_double_args); } void MacroAssembler::CallCFunction(Register function, int num_of_reg_args, int num_of_double_args) { DCHECK(has_frame()); // We can pass 8 integer arguments in registers. If we need to pass more than // that, we'll need to implement support for passing them on the stack. DCHECK(num_of_reg_args <= 8); // If we're passing doubles, we're limited to the following prototypes // (defined by ExternalReference::Type): // BUILTIN_COMPARE_CALL: int f(double, double) // BUILTIN_FP_FP_CALL: double f(double, double) // BUILTIN_FP_CALL: double f(double) // BUILTIN_FP_INT_CALL: double f(double, int) if (num_of_double_args > 0) { DCHECK(num_of_reg_args <= 1); DCHECK((num_of_double_args + num_of_reg_args) <= 2); } // If the stack pointer is not csp, we need to derive an aligned csp from the // current stack pointer. const Register old_stack_pointer = StackPointer(); if (!csp.Is(old_stack_pointer)) { AssertStackConsistency(); int sp_alignment = ActivationFrameAlignment(); // The ABI mandates at least 16-byte alignment. DCHECK(sp_alignment >= 16); DCHECK(base::bits::IsPowerOfTwo32(sp_alignment)); // The current stack pointer is a callee saved register, and is preserved // across the call. DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer)); // Align and synchronize the system stack pointer with jssp. Bic(csp, old_stack_pointer, sp_alignment - 1); SetStackPointer(csp); } // Call directly. The function called cannot cause a GC, or allow preemption, // so the return address in the link register stays correct. Call(function); if (!csp.Is(old_stack_pointer)) { if (emit_debug_code()) { // Because the stack pointer must be aligned on a 16-byte boundary, the // aligned csp can be up to 12 bytes below the jssp. This is the case // where we only pushed one W register on top of an aligned jssp. UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); DCHECK(ActivationFrameAlignment() == 16); Sub(temp, csp, old_stack_pointer); // We want temp <= 0 && temp >= -12. Cmp(temp, 0); Ccmp(temp, -12, NFlag, le); Check(ge, kTheStackWasCorruptedByMacroAssemblerCall); } SetStackPointer(old_stack_pointer); } } void MacroAssembler::Jump(Register target) { Br(target); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, Operand(target, rmode)); Br(temp); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast<intptr_t>(target), rmode); } void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) { DCHECK(RelocInfo::IsCodeTarget(rmode)); AllowDeferredHandleDereference embedding_raw_address; Jump(reinterpret_cast<intptr_t>(code.location()), rmode); } void MacroAssembler::Call(Register target) { BlockPoolsScope scope(this); #ifdef DEBUG Label start_call; Bind(&start_call); #endif Blr(target); #ifdef DEBUG AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target)); #endif } void MacroAssembler::Call(Label* target) { BlockPoolsScope scope(this); #ifdef DEBUG Label start_call; Bind(&start_call); #endif Bl(target); #ifdef DEBUG AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target)); #endif } // MacroAssembler::CallSize is sensitive to changes in this function, as it // requires to know how many instructions are used to branch to the target. void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) { BlockPoolsScope scope(this); #ifdef DEBUG Label start_call; Bind(&start_call); #endif // Statement positions are expected to be recorded when the target // address is loaded. positions_recorder()->WriteRecordedPositions(); // Addresses always have 64 bits, so we shouldn't encounter NONE32. DCHECK(rmode != RelocInfo::NONE32); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); if (rmode == RelocInfo::NONE64) { // Addresses are 48 bits so we never need to load the upper 16 bits. uint64_t imm = reinterpret_cast<uint64_t>(target); // If we don't use ARM tagged addresses, the 16 higher bits must be 0. DCHECK(((imm >> 48) & 0xffff) == 0); movz(temp, (imm >> 0) & 0xffff, 0); movk(temp, (imm >> 16) & 0xffff, 16); movk(temp, (imm >> 32) & 0xffff, 32); } else { Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode)); } Blr(temp); #ifdef DEBUG AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode)); #endif } void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id) { #ifdef DEBUG Label start_call; Bind(&start_call); #endif if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } AllowDeferredHandleDereference embedding_raw_address; Call(reinterpret_cast<Address>(code.location()), rmode); #ifdef DEBUG // Check the size of the code generated. AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id)); #endif } int MacroAssembler::CallSize(Register target) { USE(target); return kInstructionSize; } int MacroAssembler::CallSize(Label* target) { USE(target); return kInstructionSize; } int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) { USE(target); // Addresses always have 64 bits, so we shouldn't encounter NONE32. DCHECK(rmode != RelocInfo::NONE32); if (rmode == RelocInfo::NONE64) { return kCallSizeWithoutRelocation; } else { return kCallSizeWithRelocation; } } int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id) { USE(code); USE(ast_id); // Addresses always have 64 bits, so we shouldn't encounter NONE32. DCHECK(rmode != RelocInfo::NONE32); if (rmode == RelocInfo::NONE64) { return kCallSizeWithoutRelocation; } else { return kCallSizeWithRelocation; } } void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number, SmiCheckType smi_check_type) { Label on_not_heap_number; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(object, &on_not_heap_number); } AssertNotSmi(object); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number); Bind(&on_not_heap_number); } void MacroAssembler::JumpIfNotHeapNumber(Register object, Label* on_not_heap_number, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(object, on_not_heap_number); } AssertNotSmi(object); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number); } void MacroAssembler::LookupNumberStringCache(Register object, Register result, Register scratch1, Register scratch2, Register scratch3, Label* not_found) { DCHECK(!AreAliased(object, result, scratch1, scratch2, scratch3)); // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch3; // Load the number string cache. LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); Asr(mask, mask, 1); // Divide length by two. Sub(mask, mask, 1); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Label is_smi; Label load_result_from_cache; JumpIfSmi(object, &is_smi); JumpIfNotHeapNumber(object, not_found); STATIC_ASSERT(kDoubleSize == (kWRegSize * 2)); Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag); Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1)); Eor(scratch1, scratch1, scratch2); And(scratch1, scratch1, mask); // Calculate address of entry in string cache: each entry consists of two // pointer sized fields. Add(scratch1, number_string_cache, Operand(scratch1, LSL, kPointerSizeLog2 + 1)); Register probe = mask; Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); JumpIfSmi(probe, not_found); Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset)); Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset)); Fcmp(d0, d1); B(ne, not_found); B(&load_result_from_cache); Bind(&is_smi); Register scratch = scratch1; And(scratch, mask, Operand::UntagSmi(object)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. Add(scratch, number_string_cache, Operand(scratch, LSL, kPointerSizeLog2 + 1)); // Check if the entry is the smi we are looking for. Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); Cmp(object, probe); B(ne, not_found); // Get the result from the cache. Bind(&load_result_from_cache); Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); IncrementCounter(isolate()->counters()->number_to_string_native(), 1, scratch1, scratch2); } void MacroAssembler::TryRepresentDoubleAsInt(Register as_int, FPRegister value, FPRegister scratch_d, Label* on_successful_conversion, Label* on_failed_conversion) { // Convert to an int and back again, then compare with the original value. Fcvtzs(as_int, value); Scvtf(scratch_d, as_int); Fcmp(value, scratch_d); if (on_successful_conversion) { B(on_successful_conversion, eq); } if (on_failed_conversion) { B(on_failed_conversion, ne); } } void MacroAssembler::TestForMinusZero(DoubleRegister input) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will // cause overflow. Fmov(temp, input); Cmp(temp, 1); } void MacroAssembler::JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero) { TestForMinusZero(input); B(vs, on_negative_zero); } void MacroAssembler::JumpIfMinusZero(Register input, Label* on_negative_zero) { DCHECK(input.Is64Bits()); // Floating point value is in an integer register. Detect -0.0 by subtracting // 1 (cmp), which will cause overflow. Cmp(input, 1); B(vs, on_negative_zero); } void MacroAssembler::ClampInt32ToUint8(Register output, Register input) { // Clamp the value to [0..255]. Cmp(input.W(), Operand(input.W(), UXTB)); // If input < input & 0xff, it must be < 0, so saturate to 0. Csel(output.W(), wzr, input.W(), lt); // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255. Csel(output.W(), output.W(), 255, le); } void MacroAssembler::ClampInt32ToUint8(Register in_out) { ClampInt32ToUint8(in_out, in_out); } void MacroAssembler::ClampDoubleToUint8(Register output, DoubleRegister input, DoubleRegister dbl_scratch) { // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types: // - Inputs lower than 0 (including -infinity) produce 0. // - Inputs higher than 255 (including +infinity) produce 255. // Also, it seems that PIXEL types use round-to-nearest rather than // round-towards-zero. // Squash +infinity before the conversion, since Fcvtnu will normally // convert it to 0. Fmov(dbl_scratch, 255); Fmin(dbl_scratch, dbl_scratch, input); // Convert double to unsigned integer. Values less than zero become zero. // Values greater than 255 have already been clamped to 255. Fcvtnu(output, dbl_scratch); } void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5) { // Untag src and dst into scratch registers. // Copy src->dst in a tight loop. DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4, scratch5)); DCHECK(count >= 2); const Register& remaining = scratch3; Mov(remaining, count / 2); const Register& dst_untagged = scratch1; const Register& src_untagged = scratch2; Sub(dst_untagged, dst, kHeapObjectTag); Sub(src_untagged, src, kHeapObjectTag); // Copy fields in pairs. Label loop; Bind(&loop); Ldp(scratch4, scratch5, MemOperand(src_untagged, kXRegSize* 2, PostIndex)); Stp(scratch4, scratch5, MemOperand(dst_untagged, kXRegSize* 2, PostIndex)); Sub(remaining, remaining, 1); Cbnz(remaining, &loop); // Handle the leftovers. if (count & 1) { Ldr(scratch4, MemOperand(src_untagged)); Str(scratch4, MemOperand(dst_untagged)); } } void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Untag src and dst into scratch registers. // Copy src->dst in an unrolled loop. DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4)); const Register& dst_untagged = scratch1; const Register& src_untagged = scratch2; sub(dst_untagged, dst, kHeapObjectTag); sub(src_untagged, src, kHeapObjectTag); // Copy fields in pairs. for (unsigned i = 0; i < count / 2; i++) { Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex)); Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex)); } // Handle the leftovers. if (count & 1) { Ldr(scratch3, MemOperand(src_untagged)); Str(scratch3, MemOperand(dst_untagged)); } } void MacroAssembler::CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count, Register scratch1, Register scratch2, Register scratch3) { // Untag src and dst into scratch registers. // Copy src->dst in an unrolled loop. DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3)); const Register& dst_untagged = scratch1; const Register& src_untagged = scratch2; Sub(dst_untagged, dst, kHeapObjectTag); Sub(src_untagged, src, kHeapObjectTag); // Copy fields one by one. for (unsigned i = 0; i < count; i++) { Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex)); Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex)); } } void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps, unsigned count) { // One of two methods is used: // // For high 'count' values where many scratch registers are available: // Untag src and dst into scratch registers. // Copy src->dst in a tight loop. // // For low 'count' values or where few scratch registers are available: // Untag src and dst into scratch registers. // Copy src->dst in an unrolled loop. // // In both cases, fields are copied in pairs if possible, and left-overs are // handled separately. DCHECK(!AreAliased(dst, src)); DCHECK(!temps.IncludesAliasOf(dst)); DCHECK(!temps.IncludesAliasOf(src)); DCHECK(!temps.IncludesAliasOf(xzr)); if (emit_debug_code()) { Cmp(dst, src); Check(ne, kTheSourceAndDestinationAreTheSame); } // The value of 'count' at which a loop will be generated (if there are // enough scratch registers). static const unsigned kLoopThreshold = 8; UseScratchRegisterScope masm_temps(this); if ((temps.Count() >= 3) && (count >= kLoopThreshold)) { CopyFieldsLoopPairsHelper(dst, src, count, Register(temps.PopLowestIndex()), Register(temps.PopLowestIndex()), Register(temps.PopLowestIndex()), masm_temps.AcquireX(), masm_temps.AcquireX()); } else if (temps.Count() >= 2) { CopyFieldsUnrolledPairsHelper(dst, src, count, Register(temps.PopLowestIndex()), Register(temps.PopLowestIndex()), masm_temps.AcquireX(), masm_temps.AcquireX()); } else if (temps.Count() == 1) { CopyFieldsUnrolledHelper(dst, src, count, Register(temps.PopLowestIndex()), masm_temps.AcquireX(), masm_temps.AcquireX()); } else { UNREACHABLE(); } } void MacroAssembler::CopyBytes(Register dst, Register src, Register length, Register scratch, CopyHint hint) { UseScratchRegisterScope temps(this); Register tmp1 = temps.AcquireX(); Register tmp2 = temps.AcquireX(); DCHECK(!AreAliased(src, dst, length, scratch, tmp1, tmp2)); DCHECK(!AreAliased(src, dst, csp)); if (emit_debug_code()) { // Check copy length. Cmp(length, 0); Assert(ge, kUnexpectedNegativeValue); // Check src and dst buffers don't overlap. Add(scratch, src, length); // Calculate end of src buffer. Cmp(scratch, dst); Add(scratch, dst, length); // Calculate end of dst buffer. Ccmp(scratch, src, ZFlag, gt); Assert(le, kCopyBuffersOverlap); } Label short_copy, short_loop, bulk_loop, done; if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) { Register bulk_length = scratch; int pair_size = 2 * kXRegSize; int pair_mask = pair_size - 1; Bic(bulk_length, length, pair_mask); Cbz(bulk_length, &short_copy); Bind(&bulk_loop); Sub(bulk_length, bulk_length, pair_size); Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex)); Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex)); Cbnz(bulk_length, &bulk_loop); And(length, length, pair_mask); } Bind(&short_copy); Cbz(length, &done); Bind(&short_loop); Sub(length, length, 1); Ldrb(tmp1, MemOperand(src, 1, PostIndex)); Strb(tmp1, MemOperand(dst, 1, PostIndex)); Cbnz(length, &short_loop); Bind(&done); } void MacroAssembler::FillFields(Register dst, Register field_count, Register filler) { DCHECK(!dst.Is(csp)); UseScratchRegisterScope temps(this); Register field_ptr = temps.AcquireX(); Register counter = temps.AcquireX(); Label done; // Decrement count. If the result < zero, count was zero, and there's nothing // to do. If count was one, flags are set to fail the gt condition at the end // of the pairs loop. Subs(counter, field_count, 1); B(lt, &done); // There's at least one field to fill, so do this unconditionally. Str(filler, MemOperand(dst, kPointerSize, PostIndex)); // If the bottom bit of counter is set, there are an even number of fields to // fill, so pull the start pointer back by one field, allowing the pairs loop // to overwrite the field that was stored above. And(field_ptr, counter, 1); Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2)); // Store filler to memory in pairs. Label entry, loop; B(&entry); Bind(&loop); Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex)); Subs(counter, counter, 2); Bind(&entry); B(gt, &loop); Bind(&done); } void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure, SmiCheckType smi_check) { if (smi_check == DO_SMI_CHECK) { JumpIfEitherSmi(first, second, failure); } else if (emit_debug_code()) { DCHECK(smi_check == DONT_DO_SMI_CHECK); Label not_smi; JumpIfEitherSmi(first, second, NULL, ¬_smi); // At least one input is a smi, but the flags indicated a smi check wasn't // needed. Abort(kUnexpectedSmi); Bind(¬_smi); } // Test that both first and second are sequential one-byte strings. Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { DCHECK(!AreAliased(scratch1, second)); DCHECK(!AreAliased(scratch1, scratch2)); static const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; static const int kFlatOneByteStringTag = ONE_BYTE_STRING_TYPE; And(scratch1, first, kFlatOneByteStringMask); And(scratch2, second, kFlatOneByteStringMask); Cmp(scratch1, kFlatOneByteStringTag); Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq); B(ne, failure); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; And(scratch, type, kFlatOneByteStringMask); Cmp(scratch, kFlatOneByteStringTag); B(ne, failure); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { DCHECK(!AreAliased(first, second, scratch1, scratch2)); const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; And(scratch1, first, kFlatOneByteStringMask); And(scratch2, second, kFlatOneByteStringMask); Cmp(scratch1, kFlatOneByteStringTag); Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq); B(ne, failure); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name) { STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); // if ((type is string && type is internalized) || type == SYMBOL_TYPE) { // continue // } else { // goto not_unique_name // } Tst(type, kIsNotStringMask | kIsNotInternalizedMask); Ccmp(type, SYMBOL_TYPE, ZFlag, ne); B(ne, not_unique_name); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, Register code_reg, Label* done, InvokeFlag flag, bool* definitely_mismatches, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // x0: actual arguments count. // x1: function (passed through to callee). // x2: expected arguments count. // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. DCHECK(actual.is_immediate() || actual.reg().is(x0)); DCHECK(expected.is_immediate() || expected.reg().is(x2)); DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { Mov(x0, actual.immediate()); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; // Set up x2 for the argument adaptor. Mov(x2, expected.immediate()); } } } else { // expected is a register. Operand actual_op = actual.is_immediate() ? Operand(actual.immediate()) : Operand(actual.reg()); // If actual == expected perform a regular invocation. Cmp(expected.reg(), actual_op); B(eq, ®ular_invoke); // Otherwise set up x0 for the argument adaptor. Mov(x0, actual_op); } // If the argument counts may mismatch, generate a call to the argument // adaptor. if (!definitely_matches) { if (!code_constant.is_null()) { Mov(x3, Operand(code_constant)); Add(x3, x3, Code::kHeaderSize - kHeapObjectTag); } Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { // If the arg counts don't match, no extra code is emitted by // MAsm::InvokeCode and we can just fall through. B(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } } Bind(®ular_invoke); } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag, &definitely_mismatches, call_wrapper); // If we are certain that actual != expected, then we know InvokePrologue will // have handled the call through the argument adaptor mechanism. // The called function expects the call kind in x5. if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); Call(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(code); } } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. Bind(&done); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) DCHECK(function.is(x1)); Register expected_reg = x2; Register code_reg = x3; Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); // The number of arguments is stored as an int32_t, and -1 is a marker // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign // extension to correctly handle it. Ldr(expected_reg, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); Ldrsw(expected_reg, FieldMemOperand(expected_reg, SharedFunctionInfo::kFormalParameterCountOffset)); Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) DCHECK(function.Is(x1)); Register code_reg = x3; // Set up the context. Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); InvokeCode(code_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) __ LoadObject(x1, function); InvokeFunction(x1, expected, actual, flag, call_wrapper); } void MacroAssembler::TryConvertDoubleToInt64(Register result, DoubleRegister double_input, Label* done) { // Try to convert with an FPU convert instruction. It's trivial to compute // the modulo operation on an integer register so we convert to a 64-bit // integer. // // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) // when the double is out of range. NaNs and infinities will be converted to 0 // (as ECMA-262 requires). Fcvtzs(result.X(), double_input); // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not // representable using a double, so if the result is one of those then we know // that saturation occured, and we need to manually handle the conversion. // // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting // 1 will cause signed overflow. Cmp(result.X(), 1); Ccmp(result.X(), -1, VFlag, vc); B(vc, done); } void MacroAssembler::TruncateDoubleToI(Register result, DoubleRegister double_input) { Label done; // Try to convert the double to an int64. If successful, the bottom 32 bits // contain our truncated int32 result. TryConvertDoubleToInt64(result, double_input, &done); const Register old_stack_pointer = StackPointer(); if (csp.Is(old_stack_pointer)) { // This currently only happens during compiler-unittest. If it arises // during regular code generation the DoubleToI stub should be updated to // cope with csp and have an extra parameter indicating which stack pointer // it should use. Push(jssp, xzr); // Push xzr to maintain csp required 16-bytes alignment. Mov(jssp, csp); SetStackPointer(jssp); } // If we fell through then inline version didn't succeed - call stub instead. Push(lr, double_input); DoubleToIStub stub(isolate(), jssp, result, 0, true, // is_truncating true); // skip_fastpath CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes()); Pop(xzr, lr); // xzr to drop the double input on the stack. if (csp.Is(old_stack_pointer)) { Mov(csp, jssp); SetStackPointer(csp); AssertStackConsistency(); Pop(xzr, jssp); } Bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { Label done; DCHECK(!result.is(object)); DCHECK(jssp.Is(StackPointer())); Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); // Try to convert the double to an int64. If successful, the bottom 32 bits // contain our truncated int32 result. TryConvertDoubleToInt64(result, fp_scratch, &done); // If we fell through then inline version didn't succeed - call stub instead. Push(lr); DoubleToIStub stub(isolate(), object, result, HeapNumber::kValueOffset - kHeapObjectTag, true, // is_truncating true); // skip_fastpath CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber Pop(lr); Bind(&done); } void MacroAssembler::StubPrologue() { DCHECK(StackPointer().Is(jssp)); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); __ Mov(temp, Smi::FromInt(StackFrame::STUB)); // Compiled stubs don't age, and so they don't need the predictable code // ageing sequence. __ Push(lr, fp, cp, temp); __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); } void MacroAssembler::Prologue(bool code_pre_aging) { if (code_pre_aging) { Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); __ EmitCodeAgeSequence(stub); } else { __ EmitFrameSetupForCodeAgePatching(); } } void MacroAssembler::EnterFrame(StackFrame::Type type) { DCHECK(jssp.Is(StackPointer())); UseScratchRegisterScope temps(this); Register type_reg = temps.AcquireX(); Register code_reg = temps.AcquireX(); Push(lr, fp, cp); Mov(type_reg, Smi::FromInt(type)); Mov(code_reg, Operand(CodeObject())); Push(type_reg, code_reg); // jssp[4] : lr // jssp[3] : fp // jssp[2] : cp // jssp[1] : type // jssp[0] : code object // Adjust FP to point to saved FP. Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); } void MacroAssembler::LeaveFrame(StackFrame::Type type) { DCHECK(jssp.Is(StackPointer())); // Drop the execution stack down to the frame pointer and restore // the caller frame pointer and return address. Mov(jssp, fp); AssertStackConsistency(); Pop(fp, lr); } void MacroAssembler::ExitFramePreserveFPRegs() { PushCPURegList(kCallerSavedFP); } void MacroAssembler::ExitFrameRestoreFPRegs() { // Read the registers from the stack without popping them. The stack pointer // will be reset as part of the unwinding process. CPURegList saved_fp_regs = kCallerSavedFP; DCHECK(saved_fp_regs.Count() % 2 == 0); int offset = ExitFrameConstants::kLastExitFrameField; while (!saved_fp_regs.IsEmpty()) { const CPURegister& dst0 = saved_fp_regs.PopHighestIndex(); const CPURegister& dst1 = saved_fp_regs.PopHighestIndex(); offset -= 2 * kDRegSize; Ldp(dst1, dst0, MemOperand(fp, offset)); } } void MacroAssembler::EnterExitFrame(bool save_doubles, const Register& scratch, int extra_space) { DCHECK(jssp.Is(StackPointer())); // Set up the new stack frame. Mov(scratch, Operand(CodeObject())); Push(lr, fp); Mov(fp, StackPointer()); Push(xzr, scratch); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: Space reserved for SPOffset. // jssp -> fp[-16]: CodeObject() STATIC_ASSERT((2 * kPointerSize) == ExitFrameConstants::kCallerSPDisplacement); STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset); STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset); STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset); // Save the frame pointer and context pointer in the top frame. Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); Str(fp, MemOperand(scratch)); Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); Str(cp, MemOperand(scratch)); STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kLastExitFrameField); if (save_doubles) { ExitFramePreserveFPRegs(); } // Reserve space for the return address and for user requested memory. // We do this before aligning to make sure that we end up correctly // aligned with the minimum of wasted space. Claim(extra_space + 1, kXRegSize); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: Space reserved for SPOffset. // fp[-16]: CodeObject() // fp[-16 - fp_size]: Saved doubles (if save_doubles is true). // jssp[8]: Extra space reserved for caller (if extra_space != 0). // jssp -> jssp[0]: Space reserved for the return address. // Align and synchronize the system stack pointer with jssp. AlignAndSetCSPForFrame(); DCHECK(csp.Is(StackPointer())); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: Space reserved for SPOffset. // fp[-16]: CodeObject() // fp[-16 - fp_size]: Saved doubles (if save_doubles is true). // csp[8]: Memory reserved for the caller if extra_space != 0. // Alignment padding, if necessary. // csp -> csp[0]: Space reserved for the return address. // ExitFrame::GetStateForFramePointer expects to find the return address at // the memory address immediately below the pointer stored in SPOffset. // It is not safe to derive much else from SPOffset, because the size of the // padding can vary. Add(scratch, csp, kXRegSize); Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } // Leave the current exit frame. void MacroAssembler::LeaveExitFrame(bool restore_doubles, const Register& scratch, bool restore_context) { DCHECK(csp.Is(StackPointer())); if (restore_doubles) { ExitFrameRestoreFPRegs(); } // Restore the context pointer from the top frame. if (restore_context) { Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); Ldr(cp, MemOperand(scratch)); } if (emit_debug_code()) { // Also emit debug code to clear the cp in the top frame. Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); Str(xzr, MemOperand(scratch)); } // Clear the frame pointer from the top frame. Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); Str(xzr, MemOperand(scratch)); // Pop the exit frame. // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[...]: The rest of the frame. Mov(jssp, fp); SetStackPointer(jssp); AssertStackConsistency(); Pop(fp, lr); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { Mov(scratch1, value); Mov(scratch2, ExternalReference(counter)); Str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value != 0); if (FLAG_native_code_counters && counter->Enabled()) { Mov(scratch2, ExternalReference(counter)); Ldr(scratch1, MemOperand(scratch2)); Add(scratch1, scratch1, value); Str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { IncrementCounter(counter, -value, scratch1, scratch2); } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in cp). Mov(dst, cp); } } void MacroAssembler::DebugBreak() { Mov(x0, 0); Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate())); CEntryStub ces(isolate(), 1); DCHECK(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } void MacroAssembler::PushTryHandler(StackHandler::Kind kind, int handler_index) { DCHECK(jssp.Is(StackPointer())); // Adjust this code if the asserts don't hold. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // For the JSEntry handler, we must preserve the live registers x0-x4. // (See JSEntryStub::GenerateBody().) unsigned state = StackHandler::IndexField::encode(handler_index) | StackHandler::KindField::encode(kind); // Set up the code object and the state for pushing. Mov(x10, Operand(CodeObject())); Mov(x11, state); // Push the frame pointer, context, state, and code object. if (kind == StackHandler::JS_ENTRY) { DCHECK(Smi::FromInt(0) == 0); Push(xzr, xzr, x11, x10); } else { Push(fp, cp, x11, x10); } // Link the current handler as the next handler. Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate())); Ldr(x10, MemOperand(x11)); Push(x10); // Set this new handler as the current one. Str(jssp, MemOperand(x11)); } void MacroAssembler::PopTryHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); Pop(x10); Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate())); Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes); Str(x10, MemOperand(x11)); } void MacroAssembler::Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. // We apply salt to the original zap value to easily spot the values. Mov(result, (kDebugZapValue & ~0xffL) | 0x11L); Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L); Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L); } B(gc_required); return; } UseScratchRegisterScope temps(this); Register scratch3 = temps.AcquireX(); DCHECK(!AreAliased(result, scratch1, scratch2, scratch3)); DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits()); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK(0 == (object_size & kObjectAlignmentMask)); // Check relative positions of allocation top and limit addresses. // The values must be adjacent in memory to allow the use of LDP. ExternalReference heap_allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference heap_allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address and object size registers. Register top_address = scratch1; Register allocation_limit = scratch2; Mov(top_address, Operand(heap_allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and the allocation limit. Ldp(result, allocation_limit, MemOperand(top_address)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. Ldr(scratch3, MemOperand(top_address)); Cmp(result, scratch3); Check(eq, kUnexpectedAllocationTop); } // Load the allocation limit. 'result' already contains the allocation top. Ldr(allocation_limit, MemOperand(top_address, limit - top)); } // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have // the same alignment on ARM64. STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); // Calculate new top and bail out if new space is exhausted. Adds(scratch3, result, object_size); Ccmp(scratch3, allocation_limit, CFlag, cc); B(hi, gc_required); Str(scratch3, MemOperand(top_address)); // Tag the object if requested. if ((flags & TAG_OBJECT) != 0) { ObjectTag(result, result); } } void MacroAssembler::Allocate(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. // We apply salt to the original zap value to easily spot the values. Mov(result, (kDebugZapValue & ~0xffL) | 0x11L); Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L); Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L); } B(gc_required); return; } UseScratchRegisterScope temps(this); Register scratch3 = temps.AcquireX(); DCHECK(!AreAliased(object_size, result, scratch1, scratch2, scratch3)); DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits()); // Check relative positions of allocation top and limit addresses. // The values must be adjacent in memory to allow the use of LDP. ExternalReference heap_allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference heap_allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address()); DCHECK((limit - top) == kPointerSize); // Set up allocation top address and object size registers. Register top_address = scratch1; Register allocation_limit = scratch2; Mov(top_address, heap_allocation_top); if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and the allocation limit. Ldp(result, allocation_limit, MemOperand(top_address)); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. Ldr(scratch3, MemOperand(top_address)); Cmp(result, scratch3); Check(eq, kUnexpectedAllocationTop); } // Load the allocation limit. 'result' already contains the allocation top. Ldr(allocation_limit, MemOperand(top_address, limit - top)); } // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have // the same alignment on ARM64. STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); // Calculate new top and bail out if new space is exhausted if ((flags & SIZE_IN_WORDS) != 0) { Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2)); } else { Adds(scratch3, result, object_size); } if (emit_debug_code()) { Tst(scratch3, kObjectAlignmentMask); Check(eq, kUnalignedAllocationInNewSpace); } Ccmp(scratch3, allocation_limit, CFlag, cc); B(hi, gc_required); Str(scratch3, MemOperand(top_address)); // Tag the object if requested. if ((flags & TAG_OBJECT) != 0) { ObjectTag(result, result); } } void MacroAssembler::UndoAllocationInNewSpace(Register object, Register scratch) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Make sure the object has no tag before resetting top. Bic(object, object, kHeapObjectTagMask); #ifdef DEBUG // Check that the object un-allocated is below the current top. Mov(scratch, new_space_allocation_top); Ldr(scratch, MemOperand(scratch)); Cmp(object, scratch); Check(lt, kUndoAllocationOfNonAllocatedMemory); #endif // Write the address of the object to un-allocate as the current top. Mov(scratch, new_space_allocation_top); Str(object, MemOperand(scratch)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3)); // Calculate the number of bytes needed for the characters in the string while // observing object alignment. STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); Add(scratch1, length, length); // Length in bytes, not chars. Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); Bic(scratch1, scratch1, kObjectAlignmentMask); // Allocate two-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3)); // Calculate the number of bytes needed for the characters in the string while // observing object alignment. STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); STATIC_ASSERT(kCharSize == 1); Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); Bic(scratch1, scratch1, kObjectAlignmentMask); // Allocate one-byte string in new space. Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { DCHECK(!AreAliased(result, length, scratch1, scratch2)); Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { DCHECK(!AreAliased(result, length, scratch1, scratch2)); Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, scratch1, scratch2); } // Allocates a heap number or jumps to the need_gc label if the young space // is full and a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Label* gc_required, Register scratch1, Register scratch2, CPURegister value, CPURegister heap_number_map, MutableMode mode) { DCHECK(!value.IsValid() || value.Is64Bits()); UseScratchRegisterScope temps(this); // Allocate an object in the heap for the heap number and tag it as a heap // object. Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, NO_ALLOCATION_FLAGS); Heap::RootListIndex map_index = mode == MUTABLE ? Heap::kMutableHeapNumberMapRootIndex : Heap::kHeapNumberMapRootIndex; // Prepare the heap number map. if (!heap_number_map.IsValid()) { // If we have a valid value register, use the same type of register to store // the map so we can use STP to store both in one instruction. if (value.IsValid() && value.IsFPRegister()) { heap_number_map = temps.AcquireD(); } else { heap_number_map = scratch1; } LoadRoot(heap_number_map, map_index); } if (emit_debug_code()) { Register map; if (heap_number_map.IsFPRegister()) { map = scratch1; Fmov(map, DoubleRegister(heap_number_map)); } else { map = Register(heap_number_map); } AssertRegisterIsRoot(map, map_index); } // Store the heap number map and the value in the allocated object. if (value.IsSameSizeAndType(heap_number_map)) { STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize == HeapNumber::kValueOffset); Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset)); } else { Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); if (value.IsValid()) { Str(value, MemOperand(result, HeapNumber::kValueOffset)); } } ObjectTag(result, result); } void MacroAssembler::JumpIfObjectType(Register object, Register map, Register type_reg, InstanceType type, Label* if_cond_pass, Condition cond) { CompareObjectType(object, map, type_reg, type); B(cond, if_cond_pass); } void MacroAssembler::JumpIfNotObjectType(Register object, Register map, Register type_reg, InstanceType type, Label* if_not_object) { JumpIfObjectType(object, map, type_reg, type, if_not_object, ne); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, type_reg, type); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); Cmp(type_reg, type); } void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) { UseScratchRegisterScope temps(this); Register obj_map = temps.AcquireX(); Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareRoot(obj_map, index); } void MacroAssembler::CompareObjectMap(Register obj, Register scratch, Handle<Map> map) { Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMap(scratch, map); } void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map) { Cmp(obj_map, Operand(map)); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } CompareObjectMap(obj, scratch, map); B(ne, fail); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); JumpIfNotRoot(scratch, index, fail); } void MacroAssembler::CheckMap(Register obj_map, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj_map, fail); } CompareMap(obj_map, map); B(ne, fail); } void MacroAssembler::DispatchMap(Register obj, Register scratch, Handle<Map> map, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); Cmp(scratch, Operand(map)); B(ne, &fail); Jump(success, RelocInfo::CODE_TARGET); Bind(&fail); } void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); Tst(temp, mask); } void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) { // Load the map's "bit field 2". __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. DecodeField<Map::ElementsKindBits>(result); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, BoundFunctionAction action) { DCHECK(!AreAliased(function, result, scratch)); Label non_instance; if (action == kMissOnBoundFunction) { // Check that the receiver isn't a smi. JumpIfSmi(function, miss); // Check that the function really is a function. Load map into result reg. JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss); Register scratch_w = scratch.W(); Ldr(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); // On 64-bit platforms, compiler hints field is not a smi. See definition of // kCompilerHintsOffset in src/objects.h. Ldr(scratch_w, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss); // Make sure that the function has an instance prototype. Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance); } // Get the prototype or initial map from the function. Ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and simply // miss the cache instead. This will allow us to allocate a prototype object // on-demand in the runtime system. JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss); // If the function does not have an initial map, we're done. Label done; JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done); // Get the prototype from the initial map. Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); if (action == kMissOnBoundFunction) { B(&done); // Non-instance prototype: fetch prototype from constructor field in initial // map. Bind(&non_instance); Ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); } // All done. Bind(&done); } void MacroAssembler::CompareRoot(const Register& obj, Heap::RootListIndex index) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); DCHECK(!AreAliased(obj, temp)); LoadRoot(temp, index); Cmp(obj, temp); } void MacroAssembler::JumpIfRoot(const Register& obj, Heap::RootListIndex index, Label* if_equal) { CompareRoot(obj, index); B(eq, if_equal); } void MacroAssembler::JumpIfNotRoot(const Register& obj, Heap::RootListIndex index, Label* if_not_equal) { CompareRoot(obj, index); B(ne, if_not_equal); } void MacroAssembler::CompareAndSplit(const Register& lhs, const Operand& rhs, Condition cond, Label* if_true, Label* if_false, Label* fall_through) { if ((if_true == if_false) && (if_false == fall_through)) { // Fall through. } else if (if_true == if_false) { B(if_true); } else if (if_false == fall_through) { CompareAndBranch(lhs, rhs, cond, if_true); } else if (if_true == fall_through) { CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false); } else { CompareAndBranch(lhs, rhs, cond, if_true); B(if_false); } } void MacroAssembler::TestAndSplit(const Register& reg, uint64_t bit_pattern, Label* if_all_clear, Label* if_any_set, Label* fall_through) { if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) { // Fall through. } else if (if_all_clear == if_any_set) { B(if_all_clear); } else if (if_all_clear == fall_through) { TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); } else if (if_any_set == fall_through) { TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear); } else { TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); B(if_all_clear); } } void MacroAssembler::CheckFastElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue); B(hi, fail); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); // If cond==ls, set cond=hi, otherwise compare. Ccmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi); B(hi, fail); } // Note: The ARM version of this clobbers elements_reg, but this version does // not. Some uses of this in ARM64 assume that elements_reg will be preserved. void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register elements_reg, Register scratch1, FPRegister fpscratch1, Label* fail, int elements_offset) { DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1)); Label store_num; // Speculatively convert the smi to a double - all smis can be exactly // represented as a double. SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag); // If value_reg is a smi, we're done. JumpIfSmi(value_reg, &store_num); // Ensure that the object is a heap number. JumpIfNotHeapNumber(value_reg, fail); Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); // Canonicalize NaNs. CanonicalizeNaN(fpscratch1); // Store the result. Bind(&store_num); Add(scratch1, elements_reg, Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2)); Str(fpscratch1, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset)); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::IndexFromHash(Register hash, Register index) { // If the hash field contains an array index pick it out. The assert checks // that the constants for the maximum number of digits for an array index // cached in the hash field and the number of bits reserved for it does not // conflict. DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); DecodeField<String::ArrayIndexValueBits>(index, hash); SmiTag(index, index); } void MacroAssembler::EmitSeqStringSetCharCheck( Register string, Register index, SeqStringSetCharCheckIndexType index_type, Register scratch, uint32_t encoding_mask) { DCHECK(!AreAliased(string, index, scratch)); if (index_type == kIndexIsSmi) { AssertSmi(index); } // Check that string is an object. AssertNotSmi(string, kNonObject); // Check that string has an appropriate map. Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask); Cmp(scratch, encoding_mask); Check(eq, kUnexpectedStringType); Ldr(scratch, FieldMemOperand(string, String::kLengthOffset)); Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch)); Check(lt, kIndexIsTooLarge); DCHECK_EQ(0, Smi::FromInt(0)); Cmp(index, 0); Check(ge, kIndexIsNegative); } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch1, Register scratch2, Label* miss) { DCHECK(!AreAliased(holder_reg, scratch1, scratch2)); Label same_contexts; // Load current lexical context from the stack frame. Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset)); // In debug mode, make sure the lexical context is set. #ifdef DEBUG Cmp(scratch1, 0); Check(ne, kWeShouldNotHaveAnEmptyLexicalContext); #endif // Load the native context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; Ldr(scratch1, FieldMemOperand(scratch1, offset)); Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset)); // Check the context is a native context. if (emit_debug_code()) { // Read the first word and compare to the global_context_map. Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset)); CompareRoot(scratch2, Heap::kNativeContextMapRootIndex); Check(eq, kExpectedNativeContext); } // Check if both contexts are the same. Ldr(scratch2, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); Cmp(scratch1, scratch2); B(&same_contexts, eq); // Check the context is a native context. if (emit_debug_code()) { // We're short on scratch registers here, so use holder_reg as a scratch. Push(holder_reg); Register scratch3 = holder_reg; CompareRoot(scratch2, Heap::kNullValueRootIndex); Check(ne, kExpectedNonNullContext); Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset)); CompareRoot(scratch3, Heap::kNativeContextMapRootIndex); Check(eq, kExpectedNativeContext); Pop(holder_reg); } // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; Ldr(scratch1, FieldMemOperand(scratch1, token_offset)); Ldr(scratch2, FieldMemOperand(scratch2, token_offset)); Cmp(scratch1, scratch2); B(miss, ne); Bind(&same_contexts); } // Compute the hash code from the untagged key. This must be kept in sync with // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in // code-stub-hydrogen.cc void MacroAssembler::GetNumberHash(Register key, Register scratch) { DCHECK(!AreAliased(key, scratch)); // Xor original key with a seed. LoadRoot(scratch, Heap::kHashSeedRootIndex); Eor(key, key, Operand::UntagSmi(scratch)); // The algorithm uses 32-bit integer values. key = key.W(); scratch = scratch.W(); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash <<1 15); Mvn(scratch, key); Add(key, scratch, Operand(key, LSL, 15)); // hash = hash ^ (hash >> 12); Eor(key, key, Operand(key, LSR, 12)); // hash = hash + (hash << 2); Add(key, key, Operand(key, LSL, 2)); // hash = hash ^ (hash >> 4); Eor(key, key, Operand(key, LSR, 4)); // hash = hash * 2057; Mov(scratch, Operand(key, LSL, 11)); Add(key, key, Operand(key, LSL, 3)); Add(key, key, scratch); // hash = hash ^ (hash >> 16); Eor(key, key, Operand(key, LSR, 16)); } void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register result, Register scratch0, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3)); Label done; SmiUntag(scratch0, key); GetNumberHash(scratch0, scratch1); // Compute the capacity mask. Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); Sub(scratch1, scratch1, 1); // Generate an unrolled loop that performs a few probes before giving up. for (int i = 0; i < kNumberDictionaryProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i)); } else { Mov(scratch2, scratch0); } And(scratch2, scratch2, scratch1); // Scale the index by multiplying by the element size. DCHECK(SeededNumberDictionary::kEntrySize == 3); Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); // Check if the key is identical to the name. Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); Ldr(scratch3, FieldMemOperand(scratch2, SeededNumberDictionary::kElementsStartOffset)); Cmp(key, scratch3); if (i != (kNumberDictionaryProbes - 1)) { B(eq, &done); } else { B(ne, miss); } } Bind(&done); // Check that the value is a normal property. const int kDetailsOffset = SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset)); TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss); // Get the value at the masked, scaled index and return. const int kValueOffset = SeededNumberDictionary::kElementsStartOffset + kPointerSize; Ldr(result, FieldMemOperand(scratch2, kValueOffset)); } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch1, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { DCHECK(!AreAliased(object, address, scratch1)); Label done, store_buffer_overflow; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, &ok); Abort(kRememberedSetPointerInNewSpace); bind(&ok); } UseScratchRegisterScope temps(this); Register scratch2 = temps.AcquireX(); // Load store buffer top. Mov(scratch2, ExternalReference::store_buffer_top(isolate())); Ldr(scratch1, MemOperand(scratch2)); // Store pointer to buffer and increment buffer top. Str(address, MemOperand(scratch1, kPointerSize, PostIndex)); // Write back new top of buffer. Str(scratch1, MemOperand(scratch2)); // Call stub on end of buffer. // Check for end of buffer. DCHECK(StoreBuffer::kStoreBufferOverflowBit == (1 << (14 + kPointerSizeLog2))); if (and_then == kFallThroughAtEnd) { Tbz(scratch1, (14 + kPointerSizeLog2), &done); } else { DCHECK(and_then == kReturnAtEnd); Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow); Ret(); } Bind(&store_buffer_overflow); Push(lr); StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode); CallStub(&store_buffer_overflow_stub); Pop(lr); Bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; PopXRegList(kSafepointSavedRegisters); Drop(num_unsaved); } void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the stack, so // adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK(num_unsaved >= 0); Claim(num_unsaved); PushXRegList(kSafepointSavedRegisters); } void MacroAssembler::PushSafepointRegistersAndDoubles() { PushSafepointRegisters(); PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, FPRegister::kAllocatableFPRegisters)); } void MacroAssembler::PopSafepointRegistersAndDoubles() { PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, FPRegister::kAllocatableFPRegisters)); PopSafepointRegisters(); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // Make sure the safepoint registers list is what we expect. DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff); // Safepoint registers are stored contiguously on the stack, but not all the // registers are saved. The following registers are excluded: // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of // the macro assembler. // - x28 (jssp) because JS stack pointer doesn't need to be included in // safepoint registers. // - x31 (csp) because the system stack pointer doesn't need to be included // in safepoint registers. // // This function implements the mapping of register code to index into the // safepoint register slots. if ((reg_code >= 0) && (reg_code <= 15)) { return reg_code; } else if ((reg_code >= 18) && (reg_code <= 27)) { // Skip ip0 and ip1. return reg_code - 2; } else if ((reg_code == 29) || (reg_code == 30)) { // Also skip jssp. return reg_code - 3; } else { // This register has no safepoint register slot. UNREACHABLE(); return -1; } } void MacroAssembler::CheckPageFlagSet(const Register& object, const Register& scratch, int mask, Label* if_any_set) { And(scratch, object, ~Page::kPageAlignmentMask); Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); TestAndBranchIfAnySet(scratch, mask, if_any_set); } void MacroAssembler::CheckPageFlagClear(const Register& object, const Register& scratch, int mask, Label* if_all_clear) { And(scratch, object, ~Page::kPageAlignmentMask); Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); TestAndBranchIfAllClear(scratch, mask, if_all_clear); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register scratch, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip the barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); Add(scratch, object, offset - kHeapObjectTag); if (emit_debug_code()) { Label ok; Tst(scratch, (1 << kPointerSizeLog2) - 1); B(eq, &ok); Abort(kUnalignedCellInWriteBarrier); Bind(&ok); } RecordWrite(object, scratch, value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); Bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4))); Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8))); } } // Will clobber: object, map, dst. // If lr_status is kLRHasBeenSaved, lr will also be clobbered. void MacroAssembler::RecordWriteForMap(Register object, Register map, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode) { ASM_LOCATION("MacroAssembler::RecordWrite"); DCHECK(!AreAliased(object, map)); if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); CompareObjectMap(map, temp, isolate()->factory()->meta_map()); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } if (!FLAG_incremental_marking) { return; } if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); Cmp(temp, map); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. CheckPageFlagClear(map, map, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { Push(lr); } Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag); RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { Pop(lr); } Bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map, dst); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12))); Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16))); } } // Will clobber: object, address, value. // If lr_status is kLRHasBeenSaved, lr will also be clobbered. // // The register 'object' contains a heap object pointer. The heap object tag is // shifted away. void MacroAssembler::RecordWrite( Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { ASM_LOCATION("MacroAssembler::RecordWrite"); DCHECK(!AreAliased(object, value)); if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, MemOperand(address)); Cmp(temp, value); Check(eq, kWrongAddressOrValuePassedToRecordWrite); } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { DCHECK_EQ(0, kSmiTag); JumpIfSmi(value, &done); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlagClear(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, &done); } CheckPageFlagClear(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { Push(lr); } RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { Pop(lr); } Bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address, value); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12))); Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16))); } } void MacroAssembler::AssertHasValidColor(const Register& reg) { if (emit_debug_code()) { // The bit sequence is backward. The first character in the string // represents the least significant bit. DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); Label color_is_valid; Tbnz(reg, 0, &color_is_valid); Tbz(reg, 1, &color_is_valid); Abort(kUnexpectedColorFound); Bind(&color_is_valid); } } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register shift_reg) { DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg)); DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits()); // addr_reg is divided into fields: // |63 page base 20|19 high 8|7 shift 3|2 0| // 'high' gives the index of the cell holding color bits for the object. // 'shift' gives the offset in the cell for this object's color. const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits); Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask); Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2)); // bitmap_reg: // |63 page base 20|19 zeros 15|14 high 3|2 0| Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register shift_scratch, Label* has_color, int first_bit, int second_bit) { // See mark-compact.h for color definitions. DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch)); GetMarkBits(object, bitmap_scratch, shift_scratch); Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); // Shift the bitmap down to get the color of the object in bits [1:0]. Lsr(bitmap_scratch, bitmap_scratch, shift_scratch); AssertHasValidColor(bitmap_scratch); // These bit sequences are backwards. The first character in the string // represents the least significant bit. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); // Check for the color. if (first_bit == 0) { // Checking for white. DCHECK(second_bit == 0); // We only need to test the first bit. Tbz(bitmap_scratch, 0, has_color); } else { Label other_color; // Checking for grey or black. Tbz(bitmap_scratch, 0, &other_color); if (second_bit == 0) { Tbz(bitmap_scratch, 1, has_color); } else { Tbnz(bitmap_scratch, 1, has_color); } Bind(&other_color); } // Fall through if it does not have the right color. } void MacroAssembler::CheckMapDeprecated(Handle<Map> map, Register scratch, Label* if_deprecated) { if (map->CanBeDeprecated()) { Mov(scratch, Operand(map)); Ldrsw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset)); TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated); } } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. } void MacroAssembler::JumpIfDictionaryInPrototypeChain( Register object, Register scratch0, Register scratch1, Label* found) { DCHECK(!AreAliased(object, scratch0, scratch1)); Factory* factory = isolate()->factory(); Register current = scratch0; Label loop_again; // Scratch contains elements pointer. Mov(current, object); // Loop based on the map going up the prototype chain. Bind(&loop_again); Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset)); Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); DecodeField<Map::ElementsKindBits>(scratch1); CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found); Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset)); CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again); } void MacroAssembler::GetRelocatedValueLocation(Register ldr_location, Register result) { DCHECK(!result.Is(ldr_location)); const uint32_t kLdrLitOffset_lsb = 5; const uint32_t kLdrLitOffset_width = 19; Ldr(result, MemOperand(ldr_location)); if (emit_debug_code()) { And(result, result, LoadLiteralFMask); Cmp(result, LoadLiteralFixed); Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral); // The instruction was clobbered. Reload it. Ldr(result, MemOperand(ldr_location)); } Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width); Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2)); } void MacroAssembler::EnsureNotWhite( Register value, Register bitmap_scratch, Register shift_scratch, Register load_scratch, Register length_scratch, Label* value_is_white_and_not_data) { DCHECK(!AreAliased( value, bitmap_scratch, shift_scratch, load_scratch, length_scratch)); // These bit sequences are backwards. The first character in the string // represents the least significant bit. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); GetMarkBits(value, bitmap_scratch, shift_scratch); Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); Lsr(load_scratch, load_scratch, shift_scratch); AssertHasValidColor(load_scratch); // If the value is black or grey we don't need to do anything. // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. Label done; Tbnz(load_scratch, 0, &done); // Value is white. We check whether it is data that doesn't need scanning. Register map = load_scratch; // Holds map while checking type. Label is_data_object; // Check for heap-number. Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); Mov(length_scratch, HeapNumber::kSize); JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object); // Check for strings. DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. Register instance_type = load_scratch; Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); TestAndBranchIfAnySet(instance_type, kIsIndirectStringMask | kIsNotStringMask, value_is_white_and_not_data); // It's a non-indirect (non-cons and non-slice) string. // If it's external, the length is just ExternalString::kSize. // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). // External strings are the only ones with the kExternalStringTag bit // set. DCHECK_EQ(0, kSeqStringTag & kExternalStringTag); DCHECK_EQ(0, kConsStringTag & kExternalStringTag); Mov(length_scratch, ExternalString::kSize); TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object); // Sequential string, either Latin1 or UC16. // For Latin1 (char-size of 1) we shift the smi tag away to get the length. // For UC16 (char-size of 2) we just leave the smi tag in place, thereby // getting the length multiplied by 2. DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4); Ldrsw(length_scratch, UntagSmiFieldMemOperand(value, String::kLengthOffset)); Tst(instance_type, kStringEncodingMask); Cset(load_scratch, eq); Lsl(length_scratch, length_scratch, load_scratch); Add(length_scratch, length_scratch, SeqString::kHeaderSize + kObjectAlignmentMask); Bic(length_scratch, length_scratch, kObjectAlignmentMask); Bind(&is_data_object); // Value is a data object, and it is white. Mark it black. Since we know // that the object is white we can make it black by flipping one bit. Register mask = shift_scratch; Mov(load_scratch, 1); Lsl(mask, load_scratch, shift_scratch); Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); Orr(load_scratch, load_scratch, mask); Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask); Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); Add(load_scratch, load_scratch, length_scratch); Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); Bind(&done); } void MacroAssembler::Assert(Condition cond, BailoutReason reason) { if (emit_debug_code()) { Check(cond, reason); } } void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) { if (emit_debug_code()) { CheckRegisterIsClear(reg, reason); } } void MacroAssembler::AssertRegisterIsRoot(Register reg, Heap::RootListIndex index, BailoutReason reason) { if (emit_debug_code()) { CompareRoot(reg, index); Check(eq, reason); } } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Label ok; Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset)); JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok); JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok); JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok); Abort(kJSObjectWithFastElementsMapHasSlowElements); Bind(&ok); } } void MacroAssembler::AssertIsString(const Register& object) { if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(ne, kOperandIsNotAString); Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE); Check(lo, kOperandIsNotAString); } } void MacroAssembler::Check(Condition cond, BailoutReason reason) { Label ok; B(cond, &ok); Abort(reason); // Will not return here. Bind(&ok); } void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) { Label ok; Cbz(reg, &ok); Abort(reason); // Will not return here. Bind(&ok); } void MacroAssembler::Abort(BailoutReason reason) { #ifdef DEBUG RecordComment("Abort message: "); RecordComment(GetBailoutReason(reason)); if (FLAG_trap_on_abort) { Brk(0); return; } #endif // Abort is used in some contexts where csp is the stack pointer. In order to // simplify the CallRuntime code, make sure that jssp is the stack pointer. // There is no risk of register corruption here because Abort doesn't return. Register old_stack_pointer = StackPointer(); SetStackPointer(jssp); Mov(jssp, old_stack_pointer); // We need some scratch registers for the MacroAssembler, so make sure we have // some. This is safe here because Abort never returns. RegList old_tmp_list = TmpList()->list(); TmpList()->Combine(MacroAssembler::DefaultTmpList()); if (use_real_aborts()) { // Avoid infinite recursion; Push contains some assertions that use Abort. NoUseRealAbortsScope no_real_aborts(this); Mov(x0, Smi::FromInt(reason)); Push(x0); if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); CallRuntime(Runtime::kAbort, 1); } else { CallRuntime(Runtime::kAbort, 1); } } else { // Load the string to pass to Printf. Label msg_address; Adr(x0, &msg_address); // Call Printf directly to report the error. CallPrintf(); // We need a way to stop execution on both the simulator and real hardware, // and Unreachable() is the best option. Unreachable(); // Emit the message string directly in the instruction stream. { BlockPoolsScope scope(this); Bind(&msg_address); EmitStringData(GetBailoutReason(reason)); } } SetStackPointer(old_stack_pointer); TmpList()->set_list(old_tmp_list); } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch1, Register scratch2, Label* no_map_match) { // Load the global or builtins object from the current context. Ldr(scratch1, GlobalObjectMemOperand()); Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset)); // Check that the function's map is the same as the expected cached map. Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX)); size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize; Ldr(scratch2, FieldMemOperand(scratch1, offset)); Cmp(map_in_out, scratch2); B(ne, no_map_match); // Use the transitioned cached map. offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize; Ldr(map_in_out, FieldMemOperand(scratch1, offset)); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the global or builtins object from the current context. Ldr(function, GlobalObjectMemOperand()); // Load the native context from the global or builtins object. Ldr(function, FieldMemOperand(function, GlobalObject::kNativeContextOffset)); // Load the function from the native context. Ldr(function, ContextMemOperand(function, index)); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); B(&ok); Bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); Bind(&ok); } } // This is the main Printf implementation. All other Printf variants call // PrintfNoPreserve after setting up one or more PreserveRegisterScopes. void MacroAssembler::PrintfNoPreserve(const char * format, const CPURegister& arg0, const CPURegister& arg1, const CPURegister& arg2, const CPURegister& arg3) { // We cannot handle a caller-saved stack pointer. It doesn't make much sense // in most cases anyway, so this restriction shouldn't be too serious. DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer())); // The provided arguments, and their proper procedure-call standard registers. CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3}; CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg}; int arg_count = kPrintfMaxArgCount; // The PCS varargs registers for printf. Note that x0 is used for the printf // format string. static const CPURegList kPCSVarargs = CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count); static const CPURegList kPCSVarargsFP = CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1); // We can use caller-saved registers as scratch values, except for the // arguments and the PCS registers where they might need to go. CPURegList tmp_list = kCallerSaved; tmp_list.Remove(x0); // Used to pass the format string. tmp_list.Remove(kPCSVarargs); tmp_list.Remove(arg0, arg1, arg2, arg3); CPURegList fp_tmp_list = kCallerSavedFP; fp_tmp_list.Remove(kPCSVarargsFP); fp_tmp_list.Remove(arg0, arg1, arg2, arg3); // Override the MacroAssembler's scratch register list. The lists will be // reset automatically at the end of the UseScratchRegisterScope. UseScratchRegisterScope temps(this); TmpList()->set_list(tmp_list.list()); FPTmpList()->set_list(fp_tmp_list.list()); // Copies of the printf vararg registers that we can pop from. CPURegList pcs_varargs = kPCSVarargs; CPURegList pcs_varargs_fp = kPCSVarargsFP; // Place the arguments. There are lots of clever tricks and optimizations we // could use here, but Printf is a debug tool so instead we just try to keep // it simple: Move each input that isn't already in the right place to a // scratch register, then move everything back. for (unsigned i = 0; i < kPrintfMaxArgCount; i++) { // Work out the proper PCS register for this argument. if (args[i].IsRegister()) { pcs[i] = pcs_varargs.PopLowestIndex().X(); // We might only need a W register here. We need to know the size of the // argument so we can properly encode it for the simulator call. if (args[i].Is32Bits()) pcs[i] = pcs[i].W(); } else if (args[i].IsFPRegister()) { // In C, floats are always cast to doubles for varargs calls. pcs[i] = pcs_varargs_fp.PopLowestIndex().D(); } else { DCHECK(args[i].IsNone()); arg_count = i; break; } // If the argument is already in the right place, leave it where it is. if (args[i].Aliases(pcs[i])) continue; // Otherwise, if the argument is in a PCS argument register, allocate an // appropriate scratch register and then move it out of the way. if (kPCSVarargs.IncludesAliasOf(args[i]) || kPCSVarargsFP.IncludesAliasOf(args[i])) { if (args[i].IsRegister()) { Register old_arg = Register(args[i]); Register new_arg = temps.AcquireSameSizeAs(old_arg); Mov(new_arg, old_arg); args[i] = new_arg; } else { FPRegister old_arg = FPRegister(args[i]); FPRegister new_arg = temps.AcquireSameSizeAs(old_arg); Fmov(new_arg, old_arg); args[i] = new_arg; } } } // Do a second pass to move values into their final positions and perform any // conversions that may be required. for (int i = 0; i < arg_count; i++) { DCHECK(pcs[i].type() == args[i].type()); if (pcs[i].IsRegister()) { Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg); } else { DCHECK(pcs[i].IsFPRegister()); if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) { Fmov(FPRegister(pcs[i]), FPRegister(args[i])); } else { Fcvt(FPRegister(pcs[i]), FPRegister(args[i])); } } } // Load the format string into x0, as per the procedure-call standard. // // To make the code as portable as possible, the format string is encoded // directly in the instruction stream. It might be cleaner to encode it in a // literal pool, but since Printf is usually used for debugging, it is // beneficial for it to be minimally dependent on other features. Label format_address; Adr(x0, &format_address); // Emit the format string directly in the instruction stream. { BlockPoolsScope scope(this); Label after_data; B(&after_data); Bind(&format_address); EmitStringData(format); Unreachable(); Bind(&after_data); } // We don't pass any arguments on the stack, but we still need to align the C // stack pointer to a 16-byte boundary for PCS compliance. if (!csp.Is(StackPointer())) { Bic(csp, StackPointer(), 0xf); } CallPrintf(arg_count, pcs); } void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) { // A call to printf needs special handling for the simulator, since the system // printf function will use a different instruction set and the procedure-call // standard will not be compatible. #ifdef USE_SIMULATOR { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize); hlt(kImmExceptionIsPrintf); dc32(arg_count); // kPrintfArgCountOffset // Determine the argument pattern. uint32_t arg_pattern_list = 0; for (int i = 0; i < arg_count; i++) { uint32_t arg_pattern; if (args[i].IsRegister()) { arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX; } else { DCHECK(args[i].Is64Bits()); arg_pattern = kPrintfArgD; } DCHECK(arg_pattern < (1 << kPrintfArgPatternBits)); arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i)); } dc32(arg_pattern_list); // kPrintfArgPatternListOffset } #else Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE); #endif } void MacroAssembler::Printf(const char * format, CPURegister arg0, CPURegister arg1, CPURegister arg2, CPURegister arg3) { // We can only print sp if it is the current stack pointer. if (!csp.Is(StackPointer())) { DCHECK(!csp.Aliases(arg0)); DCHECK(!csp.Aliases(arg1)); DCHECK(!csp.Aliases(arg2)); DCHECK(!csp.Aliases(arg3)); } // Printf is expected to preserve all registers, so make sure that none are // available as scratch registers until we've preserved them. RegList old_tmp_list = TmpList()->list(); RegList old_fp_tmp_list = FPTmpList()->list(); TmpList()->set_list(0); FPTmpList()->set_list(0); // Preserve all caller-saved registers as well as NZCV. // If csp is the stack pointer, PushCPURegList asserts that the size of each // list is a multiple of 16 bytes. PushCPURegList(kCallerSaved); PushCPURegList(kCallerSavedFP); // We can use caller-saved registers as scratch values (except for argN). CPURegList tmp_list = kCallerSaved; CPURegList fp_tmp_list = kCallerSavedFP; tmp_list.Remove(arg0, arg1, arg2, arg3); fp_tmp_list.Remove(arg0, arg1, arg2, arg3); TmpList()->set_list(tmp_list.list()); FPTmpList()->set_list(fp_tmp_list.list()); { UseScratchRegisterScope temps(this); // If any of the arguments are the current stack pointer, allocate a new // register for them, and adjust the value to compensate for pushing the // caller-saved registers. bool arg0_sp = StackPointer().Aliases(arg0); bool arg1_sp = StackPointer().Aliases(arg1); bool arg2_sp = StackPointer().Aliases(arg2); bool arg3_sp = StackPointer().Aliases(arg3); if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) { // Allocate a register to hold the original stack pointer value, to pass // to PrintfNoPreserve as an argument. Register arg_sp = temps.AcquireX(); Add(arg_sp, StackPointer(), kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes()); if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits()); if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits()); if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits()); if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits()); } // Preserve NZCV. { UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); Mrs(tmp, NZCV); Push(tmp, xzr); } PrintfNoPreserve(format, arg0, arg1, arg2, arg3); // Restore NZCV. { UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); Pop(xzr, tmp); Msr(NZCV, tmp); } } PopCPURegList(kCallerSavedFP); PopCPURegList(kCallerSaved); TmpList()->set_list(old_tmp_list); FPTmpList()->set_list(old_fp_tmp_list); } void MacroAssembler::EmitFrameSetupForCodeAgePatching() { // TODO(jbramley): Other architectures use the internal memcpy to copy the // sequence. If this is a performance bottleneck, we should consider caching // the sequence and copying it in the same way. InstructionAccurateScope scope(this, kNoCodeAgeSequenceLength / kInstructionSize); DCHECK(jssp.Is(StackPointer())); EmitFrameSetupForCodeAgePatching(this); } void MacroAssembler::EmitCodeAgeSequence(Code* stub) { InstructionAccurateScope scope(this, kNoCodeAgeSequenceLength / kInstructionSize); DCHECK(jssp.Is(StackPointer())); EmitCodeAgeSequence(this, stub); } #undef __ #define __ assm-> void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) { Label start; __ bind(&start); // We can do this sequence using four instructions, but the code ageing // sequence that patches it needs five, so we use the extra space to try to // simplify some addressing modes and remove some dependencies (compared to // using two stp instructions with write-back). __ sub(jssp, jssp, 4 * kXRegSize); __ sub(csp, csp, 4 * kXRegSize); __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize)); __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize)); __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength); } void MacroAssembler::EmitCodeAgeSequence(Assembler * assm, Code * stub) { Label start; __ bind(&start); // When the stub is called, the sequence is replaced with the young sequence // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the // stub jumps to &start, stored in x0. The young sequence does not call the // stub so there is no infinite loop here. // // A branch (br) is used rather than a call (blr) because this code replaces // the frame setup code that would normally preserve lr. __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2); __ adr(x0, &start); __ br(ip0); // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences. __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset); if (stub) { __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start())); __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength); } } bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) { bool is_young = isolate->code_aging_helper()->IsYoung(sequence); DCHECK(is_young || isolate->code_aging_helper()->IsOld(sequence)); return is_young; } void MacroAssembler::TruncatingDiv(Register result, Register dividend, int32_t divisor) { DCHECK(!AreAliased(result, dividend)); DCHECK(result.Is32Bits() && dividend.Is32Bits()); base::MagicNumbersForDivision<uint32_t> mag = base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); Mov(result, mag.multiplier); Smull(result.X(), dividend, result); Asr(result.X(), result.X(), 32); bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; if (divisor > 0 && neg) Add(result, result, dividend); if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend); if (mag.shift > 0) Asr(result, result, mag.shift); Add(result, result, Operand(dividend, LSR, 31)); } #undef __ UseScratchRegisterScope::~UseScratchRegisterScope() { available_->set_list(old_available_); availablefp_->set_list(old_availablefp_); } Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) { int code = AcquireNextAvailable(available_).code(); return Register::Create(code, reg.SizeInBits()); } FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) { int code = AcquireNextAvailable(availablefp_).code(); return FPRegister::Create(code, reg.SizeInBits()); } CPURegister UseScratchRegisterScope::AcquireNextAvailable( CPURegList* available) { CHECK(!available->IsEmpty()); CPURegister result = available->PopLowestIndex(); DCHECK(!AreAliased(result, xzr, csp)); return result; } CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available, const CPURegister& reg) { DCHECK(available->IncludesAliasOf(reg)); available->Remove(reg); return reg; } #define __ masm-> void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg, const Label* smi_check) { Assembler::BlockPoolsScope scope(masm); if (reg.IsValid()) { DCHECK(smi_check->is_bound()); DCHECK(reg.Is64Bits()); // Encode the register (x0-x30) in the lowest 5 bits, then the offset to // 'check' in the other bits. The possible offset is limited in that we // use BitField to pack the data, and the underlying data type is a // uint32_t. uint32_t delta = __ InstructionsGeneratedSince(smi_check); __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta)); } else { DCHECK(!smi_check->is_bound()); // An offset of 0 indicates that there is no patch site. __ InlineData(0); } } InlineSmiCheckInfo::InlineSmiCheckInfo(Address info) : reg_(NoReg), smi_check_(NULL) { InstructionSequence* inline_data = InstructionSequence::At(info); DCHECK(inline_data->IsInlineData()); if (inline_data->IsInlineData()) { uint64_t payload = inline_data->InlineData(); // We use BitField to decode the payload, and BitField can only handle // 32-bit values. DCHECK(is_uint32(payload)); if (payload != 0) { int reg_code = RegisterBits::decode(payload); reg_ = Register::XRegFromCode(reg_code); uint64_t smi_check_delta = DeltaBits::decode(payload); DCHECK(smi_check_delta != 0); smi_check_ = inline_data->preceding(smi_check_delta); } } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM64