// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM64 #include "src/codegen.h" #include "src/debug.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) bool BreakLocationIterator::IsDebugBreakAtReturn() { return Debug::IsDebugBreakAtReturn(rinfo()); } void BreakLocationIterator::SetDebugBreakAtReturn() { // Patch the code emitted by FullCodeGenerator::EmitReturnSequence, changing // the return from JS function sequence from // mov sp, fp // ldp fp, lr, [sp] #16 // lrd ip0, [pc, #(3 * kInstructionSize)] // add sp, sp, ip0 // ret // <number of paramters ... // ... plus one (64 bits)> // to a call to the debug break return code. // ldr ip0, [pc, #(3 * kInstructionSize)] // blr ip0 // hlt kHltBadCode @ code should not return, catch if it does. // <debug break return code ... // ... entry point address (64 bits)> // The patching code must not overflow the space occupied by the return // sequence. STATIC_ASSERT(Assembler::kJSRetSequenceInstructions >= 5); PatchingAssembler patcher(reinterpret_cast<Instruction*>(rinfo()->pc()), 5); byte* entry = debug_info_->GetIsolate()->builtins()->Return_DebugBreak()->entry(); // The first instruction of a patched return sequence must be a load literal // loading the address of the debug break return code. patcher.ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2); // TODO(all): check the following is correct. // The debug break return code will push a frame and call statically compiled // code. By using blr, even though control will not return after the branch, // this call site will be registered in the frame (lr being saved as the pc // of the next instruction to execute for this frame). The debugger can now // iterate on the frames to find call to debug break return code. patcher.blr(ip0); patcher.hlt(kHltBadCode); patcher.dc64(reinterpret_cast<int64_t>(entry)); } void BreakLocationIterator::ClearDebugBreakAtReturn() { // Reset the code emitted by EmitReturnSequence to its original state. rinfo()->PatchCode(original_rinfo()->pc(), Assembler::kJSRetSequenceInstructions); } bool Debug::IsDebugBreakAtReturn(RelocInfo* rinfo) { DCHECK(RelocInfo::IsJSReturn(rinfo->rmode())); return rinfo->IsPatchedReturnSequence(); } bool BreakLocationIterator::IsDebugBreakAtSlot() { DCHECK(IsDebugBreakSlot()); // Check whether the debug break slot instructions have been patched. return rinfo()->IsPatchedDebugBreakSlotSequence(); } void BreakLocationIterator::SetDebugBreakAtSlot() { // Patch the code emitted by DebugCodegen::GenerateSlots, changing the debug // break slot code from // mov x0, x0 @ nop DEBUG_BREAK_NOP // mov x0, x0 @ nop DEBUG_BREAK_NOP // mov x0, x0 @ nop DEBUG_BREAK_NOP // mov x0, x0 @ nop DEBUG_BREAK_NOP // to a call to the debug slot code. // ldr ip0, [pc, #(2 * kInstructionSize)] // blr ip0 // <debug break slot code ... // ... entry point address (64 bits)> // TODO(all): consider adding a hlt instruction after the blr as we don't // expect control to return here. This implies increasing // kDebugBreakSlotInstructions to 5 instructions. // The patching code must not overflow the space occupied by the return // sequence. STATIC_ASSERT(Assembler::kDebugBreakSlotInstructions >= 4); PatchingAssembler patcher(reinterpret_cast<Instruction*>(rinfo()->pc()), 4); byte* entry = debug_info_->GetIsolate()->builtins()->Slot_DebugBreak()->entry(); // The first instruction of a patched debug break slot must be a load literal // loading the address of the debug break slot code. patcher.ldr_pcrel(ip0, (2 * kInstructionSize) >> kLoadLiteralScaleLog2); // TODO(all): check the following is correct. // The debug break slot code will push a frame and call statically compiled // code. By using blr, event hough control will not return after the branch, // this call site will be registered in the frame (lr being saved as the pc // of the next instruction to execute for this frame). The debugger can now // iterate on the frames to find call to debug break slot code. patcher.blr(ip0); patcher.dc64(reinterpret_cast<int64_t>(entry)); } void BreakLocationIterator::ClearDebugBreakAtSlot() { DCHECK(IsDebugBreakSlot()); rinfo()->PatchCode(original_rinfo()->pc(), Assembler::kDebugBreakSlotInstructions); } static void Generate_DebugBreakCallHelper(MacroAssembler* masm, RegList object_regs, RegList non_object_regs, Register scratch) { { FrameScope scope(masm, StackFrame::INTERNAL); // Load padding words on stack. __ Mov(scratch, Smi::FromInt(LiveEdit::kFramePaddingValue)); __ PushMultipleTimes(scratch, LiveEdit::kFramePaddingInitialSize); __ Mov(scratch, Smi::FromInt(LiveEdit::kFramePaddingInitialSize)); __ Push(scratch); // Any live values (object_regs and non_object_regs) in caller-saved // registers (or lr) need to be stored on the stack so that their values are // safely preserved for a call into C code. // // Also: // * object_regs may be modified during the C code by the garbage // collector. Every object register must be a valid tagged pointer or // SMI. // // * non_object_regs will be converted to SMIs so that the garbage // collector doesn't try to interpret them as pointers. // // TODO(jbramley): Why can't this handle callee-saved registers? DCHECK((~kCallerSaved.list() & object_regs) == 0); DCHECK((~kCallerSaved.list() & non_object_regs) == 0); DCHECK((object_regs & non_object_regs) == 0); DCHECK((scratch.Bit() & object_regs) == 0); DCHECK((scratch.Bit() & non_object_regs) == 0); DCHECK((masm->TmpList()->list() & (object_regs | non_object_regs)) == 0); STATIC_ASSERT(kSmiValueSize == 32); CPURegList non_object_list = CPURegList(CPURegister::kRegister, kXRegSizeInBits, non_object_regs); while (!non_object_list.IsEmpty()) { // Store each non-object register as two SMIs. Register reg = Register(non_object_list.PopLowestIndex()); __ Lsr(scratch, reg, 32); __ SmiTagAndPush(scratch, reg); // Stack: // jssp[12]: reg[63:32] // jssp[8]: 0x00000000 (SMI tag & padding) // jssp[4]: reg[31:0] // jssp[0]: 0x00000000 (SMI tag & padding) STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == kWRegSizeInBits); } if (object_regs != 0) { __ PushXRegList(object_regs); } #ifdef DEBUG __ RecordComment("// Calling from debug break to runtime - come in - over"); #endif __ Mov(x0, 0); // No arguments. __ Mov(x1, ExternalReference::debug_break(masm->isolate())); CEntryStub stub(masm->isolate(), 1); __ CallStub(&stub); // Restore the register values from the expression stack. if (object_regs != 0) { __ PopXRegList(object_regs); } non_object_list = CPURegList(CPURegister::kRegister, kXRegSizeInBits, non_object_regs); while (!non_object_list.IsEmpty()) { // Load each non-object register from two SMIs. // Stack: // jssp[12]: reg[63:32] // jssp[8]: 0x00000000 (SMI tag & padding) // jssp[4]: reg[31:0] // jssp[0]: 0x00000000 (SMI tag & padding) Register reg = Register(non_object_list.PopHighestIndex()); __ Pop(scratch, reg); __ Bfxil(reg, scratch, 32, 32); } // Don't bother removing padding bytes pushed on the stack // as the frame is going to be restored right away. // Leave the internal frame. } // Now that the break point has been handled, resume normal execution by // jumping to the target address intended by the caller and that was // overwritten by the address of DebugBreakXXX. ExternalReference after_break_target = ExternalReference::debug_after_break_target_address(masm->isolate()); __ Mov(scratch, after_break_target); __ Ldr(scratch, MemOperand(scratch)); __ Br(scratch); } void DebugCodegen::GenerateCallICStubDebugBreak(MacroAssembler* masm) { // Register state for CallICStub // ----------- S t a t e ------------- // -- x1 : function // -- x3 : slot in feedback array // ----------------------------------- Generate_DebugBreakCallHelper(masm, x1.Bit() | x3.Bit(), 0, x10); } void DebugCodegen::GenerateLoadICDebugBreak(MacroAssembler* masm) { // Calling convention for IC load (from ic-arm.cc). Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); Generate_DebugBreakCallHelper(masm, receiver.Bit() | name.Bit(), 0, x10); } void DebugCodegen::GenerateStoreICDebugBreak(MacroAssembler* masm) { // Calling convention for IC store (from ic-arm64.cc). Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Generate_DebugBreakCallHelper( masm, receiver.Bit() | name.Bit() | value.Bit(), 0, x10); } void DebugCodegen::GenerateKeyedLoadICDebugBreak(MacroAssembler* masm) { // Calling convention for keyed IC load (from ic-arm.cc). GenerateLoadICDebugBreak(masm); } void DebugCodegen::GenerateKeyedStoreICDebugBreak(MacroAssembler* masm) { // Calling convention for IC keyed store call (from ic-arm64.cc). Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Generate_DebugBreakCallHelper( masm, receiver.Bit() | name.Bit() | value.Bit(), 0, x10); } void DebugCodegen::GenerateCompareNilICDebugBreak(MacroAssembler* masm) { // Register state for CompareNil IC // ----------- S t a t e ------------- // -- r0 : value // ----------------------------------- Generate_DebugBreakCallHelper(masm, x0.Bit(), 0, x10); } void DebugCodegen::GenerateReturnDebugBreak(MacroAssembler* masm) { // In places other than IC call sites it is expected that r0 is TOS which // is an object - this is not generally the case so this should be used with // care. Generate_DebugBreakCallHelper(masm, x0.Bit(), 0, x10); } void DebugCodegen::GenerateCallFunctionStubDebugBreak(MacroAssembler* masm) { // Register state for CallFunctionStub (from code-stubs-arm64.cc). // ----------- S t a t e ------------- // -- x1 : function // ----------------------------------- Generate_DebugBreakCallHelper(masm, x1.Bit(), 0, x10); } void DebugCodegen::GenerateCallConstructStubDebugBreak(MacroAssembler* masm) { // Calling convention for CallConstructStub (from code-stubs-arm64.cc). // ----------- S t a t e ------------- // -- x0 : number of arguments (not smi) // -- x1 : constructor function // ----------------------------------- Generate_DebugBreakCallHelper(masm, x1.Bit(), x0.Bit(), x10); } void DebugCodegen::GenerateCallConstructStubRecordDebugBreak( MacroAssembler* masm) { // Calling convention for CallConstructStub (from code-stubs-arm64.cc). // ----------- S t a t e ------------- // -- x0 : number of arguments (not smi) // -- x1 : constructor function // -- x2 : feedback array // -- x3 : feedback slot (smi) // ----------------------------------- Generate_DebugBreakCallHelper( masm, x1.Bit() | x2.Bit() | x3.Bit(), x0.Bit(), x10); } void DebugCodegen::GenerateSlot(MacroAssembler* masm) { // Generate enough nop's to make space for a call instruction. Avoid emitting // the constant pool in the debug break slot code. InstructionAccurateScope scope(masm, Assembler::kDebugBreakSlotInstructions); __ RecordDebugBreakSlot(); for (int i = 0; i < Assembler::kDebugBreakSlotInstructions; i++) { __ nop(Assembler::DEBUG_BREAK_NOP); } } void DebugCodegen::GenerateSlotDebugBreak(MacroAssembler* masm) { // In the places where a debug break slot is inserted no registers can contain // object pointers. Generate_DebugBreakCallHelper(masm, 0, 0, x10); } void DebugCodegen::GeneratePlainReturnLiveEdit(MacroAssembler* masm) { __ Ret(); } void DebugCodegen::GenerateFrameDropperLiveEdit(MacroAssembler* masm) { ExternalReference restarter_frame_function_slot = ExternalReference::debug_restarter_frame_function_pointer_address( masm->isolate()); UseScratchRegisterScope temps(masm); Register scratch = temps.AcquireX(); __ Mov(scratch, restarter_frame_function_slot); __ Str(xzr, MemOperand(scratch)); // We do not know our frame height, but set sp based on fp. __ Sub(masm->StackPointer(), fp, kPointerSize); __ AssertStackConsistency(); __ Pop(x1, fp, lr); // Function, Frame, Return address. // Load context from the function. __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // Get function code. __ Ldr(scratch, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCodeOffset)); __ Add(scratch, scratch, Code::kHeaderSize - kHeapObjectTag); // Re-run JSFunction, x1 is function, cp is context. __ Br(scratch); } const bool LiveEdit::kFrameDropperSupported = true; } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM64