// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM64 #include "src/codegen.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen.h" #include "src/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ Ldr(result, GlobalObjectMemOperand()); __ Ldr(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ Ldr(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ Ldr(result, GlobalObjectMemOperand()); __ Ldr(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ Ldr(result, ContextMemOperand(result, Context::INTERNAL_ARRAY_FUNCTION_INDEX)); } void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- x0 : number of arguments excluding receiver // -- x1 : called function (only guaranteed when // extra_args requires it) // -- cp : context // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument (argc == x0) // -- sp[4 * argc] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ Push(x1); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects x0 to contain the number of arguments // including the receiver and the extra arguments. __ Add(x0, x0, num_extra_args + 1); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_InternalArrayCode"); Label generic_array_code; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, x1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); __ Tst(x10, kSmiTagMask); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction); __ CompareObjectType(x10, x11, x12, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_ArrayCode"); Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, x1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); __ Tst(x10, kSmiTagMask); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(x10, x11, x12, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_StringConstructCode"); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1, x10, x11); Register argc = x0; Register function = x1; if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, x10); __ Cmp(function, x10); __ Assert(eq, kUnexpectedStringFunction); } // Load the first arguments in x0 and get rid of the rest. Label no_arguments; __ Cbz(argc, &no_arguments); // First args = sp[(argc - 1) * 8]. __ Sub(argc, argc, 1); __ Claim(argc, kXRegSize); // jssp now point to args[0], load and drop args[0] + receiver. Register arg = argc; __ Ldr(arg, MemOperand(jssp, 2 * kPointerSize, PostIndex)); argc = NoReg; Register argument = x2; Label not_cached, argument_is_string; __ LookupNumberStringCache(arg, // Input. argument, // Result. x10, // Scratch. x11, // Scratch. x12, // Scratch. ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1, x10, x11); __ Bind(&argument_is_string); // ----------- S t a t e ------------- // -- x2 : argument converted to string // -- x1 : constructor function // -- lr : return address // ----------------------------------- Label gc_required; Register new_obj = x0; __ Allocate(JSValue::kSize, new_obj, x10, x11, &gc_required, TAG_OBJECT); // Initialize the String object. Register map = x3; __ LoadGlobalFunctionInitialMap(function, map, x10); if (FLAG_debug_code) { __ Ldrb(x4, FieldMemOperand(map, Map::kInstanceSizeOffset)); __ Cmp(x4, JSValue::kSize >> kPointerSizeLog2); __ Assert(eq, kUnexpectedStringWrapperInstanceSize); __ Ldrb(x4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); __ Cmp(x4, 0); __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper); } __ Str(map, FieldMemOperand(new_obj, HeapObject::kMapOffset)); Register empty = x3; __ LoadRoot(empty, Heap::kEmptyFixedArrayRootIndex); __ Str(empty, FieldMemOperand(new_obj, JSObject::kPropertiesOffset)); __ Str(empty, FieldMemOperand(new_obj, JSObject::kElementsOffset)); __ Str(argument, FieldMemOperand(new_obj, JSValue::kValueOffset)); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == (4 * kPointerSize)); __ Ret(); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ Bind(¬_cached); __ JumpIfSmi(arg, &convert_argument); // Is it a String? __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(x11, FieldMemOperand(x10, Map::kInstanceTypeOffset)); __ Tbnz(x11, MaskToBit(kIsNotStringMask), &convert_argument); __ Mov(argument, arg); __ IncrementCounter(counters->string_ctor_string_value(), 1, x10, x11); __ B(&argument_is_string); // Invoke the conversion builtin and put the result into x2. __ Bind(&convert_argument); __ Push(function); // Preserve the function. __ IncrementCounter(counters->string_ctor_conversions(), 1, x10, x11); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(arg); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); } __ Pop(function); __ Mov(argument, x0); __ B(&argument_is_string); // Load the empty string into x2, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ Bind(&no_arguments); __ LoadRoot(argument, Heap::kempty_stringRootIndex); __ Drop(1); __ B(&argument_is_string); // At this point the argument is already a string. Call runtime to create a // string wrapper. __ Bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1, x10, x11); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(argument); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ Ret(); } static void CallRuntimePassFunction(MacroAssembler* masm, Runtime::FunctionId function_id) { FrameScope scope(masm, StackFrame::INTERNAL); // - Push a copy of the function onto the stack. // - Push another copy as a parameter to the runtime call. __ Push(x1, x1); __ CallRuntime(function_id, 1); // - Restore receiver. __ Pop(x1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset)); __ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag); __ Br(x2); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ Add(x0, x0, Code::kHeaderSize - kHeapObjectTag); __ Br(x0); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, not // checking may delay installing ready functions, and always checking would be // quite expensive. A good compromise is to first check against stack limit as // a cue for an interrupt signal. Label ok; __ CompareRoot(masm->StackPointer(), Heap::kStackLimitRootIndex); __ B(hs, &ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ Bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_memento) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- x2 : allocation site or undefined // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_JSConstructStubHelper"); // Should never create mementos for api functions. DCHECK(!is_api_function || !create_memento); Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the three incoming parameters on the stack. if (create_memento) { __ AssertUndefinedOrAllocationSite(x2, x10); __ Push(x2); } Register argc = x0; Register constructor = x1; // x1: constructor function __ SmiTag(argc); __ Push(argc, constructor); // sp[0] : Constructor function. // sp[1]: number of arguments (smi-tagged) // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ Mov(x2, Operand(debug_step_in_fp)); __ Ldr(x2, MemOperand(x2)); __ Cbnz(x2, &rt_call); // Load the initial map and verify that it is in fact a map. Register init_map = x2; __ Ldr(init_map, FieldMemOperand(constructor, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(init_map, &rt_call); __ JumpIfNotObjectType(init_map, x10, x11, MAP_TYPE, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the initial // map's instance type would be JS_FUNCTION_TYPE. __ CompareInstanceType(init_map, x10, JS_FUNCTION_TYPE); __ B(eq, &rt_call); Register constructon_count = x14; if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(init_map, Map::kBitField3Offset); // Check if slack tracking is enabled. __ Ldr(x4, bit_field3); __ DecodeField<Map::ConstructionCount>(constructon_count, x4); __ Cmp(constructon_count, Operand(JSFunction::kNoSlackTracking)); __ B(eq, &allocate); // Decrease generous allocation count. __ Subs(x4, x4, Operand(1 << Map::ConstructionCount::kShift)); __ Str(x4, bit_field3); __ Cmp(constructon_count, Operand(JSFunction::kFinishSlackTracking)); __ B(ne, &allocate); // Push the constructor and map to the stack, and the constructor again // as argument to the runtime call. __ Push(constructor, init_map, constructor); __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ Pop(init_map, constructor); __ Mov(constructon_count, Operand(JSFunction::kNoSlackTracking)); __ Bind(&allocate); } // Now allocate the JSObject on the heap. Register obj_size = x3; Register new_obj = x4; __ Ldrb(obj_size, FieldMemOperand(init_map, Map::kInstanceSizeOffset)); if (create_memento) { __ Add(x7, obj_size, Operand(AllocationMemento::kSize / kPointerSize)); __ Allocate(x7, new_obj, x10, x11, &rt_call, SIZE_IN_WORDS); } else { __ Allocate(obj_size, new_obj, x10, x11, &rt_call, SIZE_IN_WORDS); } // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // NB. the object pointer is not tagged, so MemOperand is used. Register empty = x5; __ LoadRoot(empty, Heap::kEmptyFixedArrayRootIndex); __ Str(init_map, MemOperand(new_obj, JSObject::kMapOffset)); STATIC_ASSERT(JSObject::kElementsOffset == (JSObject::kPropertiesOffset + kPointerSize)); __ Stp(empty, empty, MemOperand(new_obj, JSObject::kPropertiesOffset)); Register first_prop = x5; __ Add(first_prop, new_obj, JSObject::kHeaderSize); // Fill all of the in-object properties with the appropriate filler. Register filler = x7; __ LoadRoot(filler, Heap::kUndefinedValueRootIndex); // Obtain number of pre-allocated property fields and in-object // properties. Register prealloc_fields = x10; Register inobject_props = x11; Register inst_sizes = x11; __ Ldr(inst_sizes, FieldMemOperand(init_map, Map::kInstanceSizesOffset)); __ Ubfx(prealloc_fields, inst_sizes, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ Ubfx(inobject_props, inst_sizes, Map::kInObjectPropertiesByte * kBitsPerByte, kBitsPerByte); // Calculate number of property fields in the object. Register prop_fields = x6; __ Sub(prop_fields, obj_size, JSObject::kHeaderSize / kPointerSize); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ Cmp(constructon_count, Operand(JSFunction::kNoSlackTracking)); __ B(eq, &no_inobject_slack_tracking); constructon_count = NoReg; // Fill the pre-allocated fields with undef. __ FillFields(first_prop, prealloc_fields, filler); // Update first_prop register to be the offset of the first field after // pre-allocated fields. __ Add(first_prop, first_prop, Operand(prealloc_fields, LSL, kPointerSizeLog2)); if (FLAG_debug_code) { Register obj_end = x14; __ Add(obj_end, new_obj, Operand(obj_size, LSL, kPointerSizeLog2)); __ Cmp(first_prop, obj_end); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); } // Fill the remaining fields with one pointer filler map. __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex); __ Sub(prop_fields, prop_fields, prealloc_fields); __ bind(&no_inobject_slack_tracking); } if (create_memento) { // Fill the pre-allocated fields with undef. __ FillFields(first_prop, prop_fields, filler); __ Add(first_prop, new_obj, Operand(obj_size, LSL, kPointerSizeLog2)); __ LoadRoot(x14, Heap::kAllocationMementoMapRootIndex); DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset); __ Str(x14, MemOperand(first_prop, kPointerSize, PostIndex)); // Load the AllocationSite __ Peek(x14, 2 * kXRegSize); DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset); __ Str(x14, MemOperand(first_prop, kPointerSize, PostIndex)); first_prop = NoReg; } else { // Fill all of the property fields with undef. __ FillFields(first_prop, prop_fields, filler); first_prop = NoReg; prop_fields = NoReg; } // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. __ Add(new_obj, new_obj, kHeapObjectTag); // Check if a non-empty properties array is needed. Continue with // allocated object if not, or fall through to runtime call if it is. Register element_count = x3; __ Ldrb(element_count, FieldMemOperand(init_map, Map::kUnusedPropertyFieldsOffset)); // The field instance sizes contains both pre-allocated property fields // and in-object properties. __ Add(element_count, element_count, prealloc_fields); __ Subs(element_count, element_count, inobject_props); // Done if no extra properties are to be allocated. __ B(eq, &allocated); __ Assert(pl, kPropertyAllocationCountFailed); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. Register new_array = x5; Register array_size = x6; __ Add(array_size, element_count, FixedArray::kHeaderSize / kPointerSize); __ Allocate(array_size, new_array, x11, x12, &undo_allocation, static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); Register array_map = x10; __ LoadRoot(array_map, Heap::kFixedArrayMapRootIndex); __ Str(array_map, MemOperand(new_array, FixedArray::kMapOffset)); __ SmiTag(x0, element_count); __ Str(x0, MemOperand(new_array, FixedArray::kLengthOffset)); // Initialize the fields to undefined. Register elements = x10; __ Add(elements, new_array, FixedArray::kHeaderSize); __ FillFields(elements, element_count, filler); // Store the initialized FixedArray into the properties field of the // JSObject. __ Add(new_array, new_array, kHeapObjectTag); __ Str(new_array, FieldMemOperand(new_obj, JSObject::kPropertiesOffset)); // Continue with JSObject being successfully allocated. __ B(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. __ Bind(&undo_allocation); __ UndoAllocationInNewSpace(new_obj, x14); } // Allocate the new receiver object using the runtime call. __ Bind(&rt_call); Label count_incremented; if (create_memento) { // Get the cell or allocation site. __ Peek(x4, 2 * kXRegSize); __ Push(x4); __ Push(constructor); // Argument for Runtime_NewObject. __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2); __ Mov(x4, x0); // If we ended up using the runtime, and we want a memento, then the // runtime call made it for us, and we shouldn't do create count // increment. __ jmp(&count_incremented); } else { __ Push(constructor); // Argument for Runtime_NewObject. __ CallRuntime(Runtime::kNewObject, 1); __ Mov(x4, x0); } // Receiver for constructor call allocated. // x4: JSObject __ Bind(&allocated); if (create_memento) { __ Peek(x10, 2 * kXRegSize); __ JumpIfRoot(x10, Heap::kUndefinedValueRootIndex, &count_incremented); // r2 is an AllocationSite. We are creating a memento from it, so we // need to increment the memento create count. __ Ldr(x5, FieldMemOperand(x10, AllocationSite::kPretenureCreateCountOffset)); __ Add(x5, x5, Operand(Smi::FromInt(1))); __ Str(x5, FieldMemOperand(x10, AllocationSite::kPretenureCreateCountOffset)); __ bind(&count_incremented); } __ Push(x4, x4); // Reload the number of arguments from the stack. // Set it up in x0 for the function call below. // jssp[0]: receiver // jssp[1]: receiver // jssp[2]: constructor function // jssp[3]: number of arguments (smi-tagged) __ Peek(constructor, 2 * kXRegSize); // Load constructor. __ Peek(argc, 3 * kXRegSize); // Load number of arguments. __ SmiUntag(argc); // Set up pointer to last argument. __ Add(x2, fp, StandardFrameConstants::kCallerSPOffset); // Copy arguments and receiver to the expression stack. // Copy 2 values every loop to use ldp/stp. // x0: number of arguments // x1: constructor function // x2: address of last argument (caller sp) // jssp[0]: receiver // jssp[1]: receiver // jssp[2]: constructor function // jssp[3]: number of arguments (smi-tagged) // Compute the start address of the copy in x3. __ Add(x3, x2, Operand(argc, LSL, kPointerSizeLog2)); Label loop, entry, done_copying_arguments; __ B(&entry); __ Bind(&loop); __ Ldp(x10, x11, MemOperand(x3, -2 * kPointerSize, PreIndex)); __ Push(x11, x10); __ Bind(&entry); __ Cmp(x3, x2); __ B(gt, &loop); // Because we copied values 2 by 2 we may have copied one extra value. // Drop it if that is the case. __ B(eq, &done_copying_arguments); __ Drop(1); __ Bind(&done_copying_arguments); // Call the function. // x0: number of arguments // x1: constructor function if (is_api_function) { __ Ldr(cp, FieldMemOperand(constructor, JSFunction::kContextOffset)); Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(argc); __ InvokeFunction(constructor, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore the context from the frame. // x0: result // jssp[0]: receiver // jssp[1]: constructor function // jssp[2]: number of arguments (smi-tagged) __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // x0: result // jssp[0]: receiver (newly allocated object) // jssp[1]: constructor function // jssp[2]: number of arguments (smi-tagged) __ JumpIfSmi(x0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ JumpIfObjectType(x0, x1, x3, FIRST_SPEC_OBJECT_TYPE, &exit, ge); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ Bind(&use_receiver); __ Peek(x0, 0); // Remove the receiver from the stack, remove caller arguments, and // return. __ Bind(&exit); // x0: result // jssp[0]: receiver (newly allocated object) // jssp[1]: constructor function // jssp[2]: number of arguments (smi-tagged) __ Peek(x1, 2 * kXRegSize); // Leave construct frame. } __ DropBySMI(x1); __ Drop(1); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, x1, x2); __ Ret(); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } // Input: // x0: code entry. // x1: function. // x2: receiver. // x3: argc. // x4: argv. // Output: // x0: result. static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody(). Register function = x1; Register receiver = x2; Register argc = x3; Register argv = x4; ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ Mov(cp, 0); { // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Set up the context from the function argument. __ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ Push(function, receiver); // Copy arguments to the stack in a loop, in reverse order. // x3: argc. // x4: argv. Label loop, entry; // Compute the copy end address. __ Add(x10, argv, Operand(argc, LSL, kPointerSizeLog2)); __ B(&entry); __ Bind(&loop); __ Ldr(x11, MemOperand(argv, kPointerSize, PostIndex)); __ Ldr(x12, MemOperand(x11)); // Dereference the handle. __ Push(x12); // Push the argument. __ Bind(&entry); __ Cmp(x10, argv); __ B(ne, &loop); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. // The original values have been saved in JSEntryStub::GenerateBody(). __ LoadRoot(x19, Heap::kUndefinedValueRootIndex); __ Mov(x20, x19); __ Mov(x21, x19); __ Mov(x22, x19); __ Mov(x23, x19); __ Mov(x24, x19); __ Mov(x25, x19); // Don't initialize the reserved registers. // x26 : root register (root). // x27 : context pointer (cp). // x28 : JS stack pointer (jssp). // x29 : frame pointer (fp). __ Mov(x0, argc); if (is_construct) { // No type feedback cell is available. __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(x0); __ InvokeFunction(function, actual, CALL_FUNCTION, NullCallWrapper()); } // Exit the JS internal frame and remove the parameters (except function), // and return. } // Result is in x0. Return. __ Ret(); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameScope scope(masm, StackFrame::INTERNAL); Register function = x1; // Preserve function. At the same time, push arguments for // kCompileOptimized. __ LoadObject(x10, masm->isolate()->factory()->ToBoolean(concurrent)); __ Push(function, function, x10); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ Pop(function); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code fast, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // The following caller-saved registers must be saved and restored when // calling through to the runtime: // x0 - The address from which to resume execution. // x1 - isolate // lr - The return address for the JSFunction itself. It has not yet been // preserved on the stack because the frame setup code was replaced // with a call to this stub, to handle code ageing. { FrameScope scope(masm, StackFrame::MANUAL); __ Push(x0, x1, fp, lr); __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ Pop(lr, fp, x1, x0); } // The calling function has been made young again, so return to execute the // real frame set-up code. __ Br(x0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // The following caller-saved registers must be saved and restored when // calling through to the runtime: // x0 - The address from which to resume execution. // x1 - isolate // lr - The return address for the JSFunction itself. It has not yet been // preserved on the stack because the frame setup code was replaced // with a call to this stub, to handle code ageing. { FrameScope scope(masm, StackFrame::MANUAL); __ Push(x0, x1, fp, lr); __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function( masm->isolate()), 2); __ Pop(lr, fp, x1, x0); // Perform prologue operations usually performed by the young code stub. __ EmitFrameSetupForCodeAgePatching(masm); } // Jump to point after the code-age stub. __ Add(x0, x0, kNoCodeAgeSequenceLength); __ Br(x0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. // TODO(jbramley): Is it correct (and appropriate) to use safepoint // registers here? According to the comment above, we should only need to // preserve the registers with parameters. __ PushXRegList(kSafepointSavedRegisters); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ PopXRegList(kSafepointSavedRegisters); } // Ignore state (pushed by Deoptimizer::EntryGenerator::Generate). __ Drop(1); // Jump to the miss handler. Deoptimizer::EntryGenerator::Generate loads this // into lr before it jumps here. __ Br(lr); } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the deoptimization type to the runtime system. __ Mov(x0, Smi::FromInt(static_cast<int>(type))); __ Push(x0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it. Register state = x6; __ Peek(state, 0); __ SmiUntag(state); // Switch on the state. Label with_tos_register, unknown_state; __ CompareAndBranch( state, FullCodeGenerator::NO_REGISTERS, ne, &with_tos_register); __ Drop(1); // Remove state. __ Ret(); __ Bind(&with_tos_register); // Reload TOS register. __ Peek(x0, kPointerSize); __ CompareAndBranch(state, FullCodeGenerator::TOS_REG, ne, &unknown_state); __ Drop(2); // Remove state and TOS. __ Ret(); __ Bind(&unknown_state); __ Abort(kInvalidFullCodegenState); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ Push(x0); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. Label skip; __ CompareAndBranch(x0, Smi::FromInt(0), ne, &skip); __ Ret(); __ Bind(&skip); // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ Ldr(x1, MemOperand(x0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ Ldrsw(w1, UntagSmiFieldMemOperand(x1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ Add(x0, x0, x1); __ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ CompareRoot(jssp, Heap::kStackLimitRootIndex); __ B(hs, &ok); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ Bind(&ok); __ Ret(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { enum { call_type_JS_func = 0, call_type_func_proxy = 1, call_type_non_func = 2 }; Register argc = x0; Register function = x1; Register call_type = x4; Register scratch1 = x10; Register scratch2 = x11; Register receiver_type = x13; ASM_LOCATION("Builtins::Generate_FunctionCall"); // 1. Make sure we have at least one argument. { Label done; __ Cbnz(argc, &done); __ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex); __ Push(scratch1); __ Mov(argc, 1); __ Bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. Label slow, non_function; __ Peek(function, Operand(argc, LSL, kXRegSizeLog2)); __ JumpIfSmi(function, &non_function); __ JumpIfNotObjectType(function, scratch1, receiver_type, JS_FUNCTION_TYPE, &slow); // 3a. Patch the first argument if necessary when calling a function. Label shift_arguments; __ Mov(call_type, static_cast<int>(call_type_JS_func)); { Label convert_to_object, use_global_proxy, patch_receiver; // Change context eagerly in case we need the global receiver. __ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. // Also do not transform the receiver for native (Compilerhints already in // x3). __ Ldr(scratch1, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(scratch2.W(), FieldMemOperand(scratch1, SharedFunctionInfo::kCompilerHintsOffset)); __ TestAndBranchIfAnySet( scratch2.W(), (1 << SharedFunctionInfo::kStrictModeFunction) | (1 << SharedFunctionInfo::kNative), &shift_arguments); // Compute the receiver in sloppy mode. Register receiver = x2; __ Sub(scratch1, argc, 1); __ Peek(receiver, Operand(scratch1, LSL, kXRegSizeLog2)); __ JumpIfSmi(receiver, &convert_to_object); __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &use_global_proxy); __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &use_global_proxy); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ JumpIfObjectType(receiver, scratch1, scratch2, FIRST_SPEC_OBJECT_TYPE, &shift_arguments, ge); __ Bind(&convert_to_object); { // Enter an internal frame in order to preserve argument count. FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(argc); __ Push(argc, receiver); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ Mov(receiver, x0); __ Pop(argc); __ SmiUntag(argc); // Exit the internal frame. } // Restore the function and flag in the registers. __ Peek(function, Operand(argc, LSL, kXRegSizeLog2)); __ Mov(call_type, static_cast<int>(call_type_JS_func)); __ B(&patch_receiver); __ Bind(&use_global_proxy); __ Ldr(receiver, GlobalObjectMemOperand()); __ Ldr(receiver, FieldMemOperand(receiver, GlobalObject::kGlobalProxyOffset)); __ Bind(&patch_receiver); __ Sub(scratch1, argc, 1); __ Poke(receiver, Operand(scratch1, LSL, kXRegSizeLog2)); __ B(&shift_arguments); } // 3b. Check for function proxy. __ Bind(&slow); __ Mov(call_type, static_cast<int>(call_type_func_proxy)); __ Cmp(receiver_type, JS_FUNCTION_PROXY_TYPE); __ B(eq, &shift_arguments); __ Bind(&non_function); __ Mov(call_type, static_cast<int>(call_type_non_func)); // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. // call type (0: JS function, 1: function proxy, 2: non-function) __ Sub(scratch1, argc, 1); __ Poke(function, Operand(scratch1, LSL, kXRegSizeLog2)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // call type (0: JS function, 1: function proxy, 2: non-function) __ Bind(&shift_arguments); { Label loop; // Calculate the copy start address (destination). Copy end address is jssp. __ Add(scratch2, jssp, Operand(argc, LSL, kPointerSizeLog2)); __ Sub(scratch1, scratch2, kPointerSize); __ Bind(&loop); __ Ldr(x12, MemOperand(scratch1, -kPointerSize, PostIndex)); __ Str(x12, MemOperand(scratch2, -kPointerSize, PostIndex)); __ Cmp(scratch1, jssp); __ B(ge, &loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Sub(argc, argc, 1); __ Drop(1); } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. // call type (0: JS function, 1: function proxy, 2: non-function) { Label js_function, non_proxy; __ Cbz(call_type, &js_function); // Expected number of arguments is 0 for CALL_NON_FUNCTION. __ Mov(x2, 0); __ Cmp(call_type, static_cast<int>(call_type_func_proxy)); __ B(ne, &non_proxy); __ Push(function); // Re-add proxy object as additional argument. __ Add(argc, argc, 1); __ GetBuiltinFunction(function, Builtins::CALL_FUNCTION_PROXY); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ Bind(&non_proxy); __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ Bind(&js_function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. __ Ldr(x3, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ Ldrsw(x2, FieldMemOperand(x3, SharedFunctionInfo::kFormalParameterCountOffset)); Label dont_adapt_args; __ Cmp(x2, argc); // Check formal and actual parameter counts. __ B(eq, &dont_adapt_args); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ Bind(&dont_adapt_args); __ Ldr(x3, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); ParameterCount expected(0); __ InvokeCode(x3, expected, expected, JUMP_FUNCTION, NullCallWrapper()); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_FunctionApply"); const int kIndexOffset = StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize); const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize); const int kArgsOffset = 2 * kPointerSize; const int kReceiverOffset = 3 * kPointerSize; const int kFunctionOffset = 4 * kPointerSize; { FrameScope frame_scope(masm, StackFrame::INTERNAL); Register args = x12; Register receiver = x14; Register function = x15; // Get the length of the arguments via a builtin call. __ Ldr(function, MemOperand(fp, kFunctionOffset)); __ Ldr(args, MemOperand(fp, kArgsOffset)); __ Push(function, args); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); Register argc = x0; // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. Label enough_stack_space; __ LoadRoot(x10, Heap::kRealStackLimitRootIndex); __ Ldr(function, MemOperand(fp, kFunctionOffset)); // Make x10 the space we have left. The stack might already be overflowed // here which will cause x10 to become negative. // TODO(jbramley): Check that the stack usage here is safe. __ Sub(x10, jssp, x10); // Check if the arguments will overflow the stack. __ Cmp(x10, Operand::UntagSmiAndScale(argc, kPointerSizeLog2)); __ B(gt, &enough_stack_space); // There is not enough stack space, so use a builtin to throw an appropriate // error. __ Push(function, argc); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); // We should never return from the APPLY_OVERFLOW builtin. if (__ emit_debug_code()) { __ Unreachable(); } __ Bind(&enough_stack_space); // Push current limit and index. __ Mov(x1, 0); // Initial index. __ Push(argc, x1); Label push_receiver; __ Ldr(receiver, MemOperand(fp, kReceiverOffset)); // Check that the function is a JS function. Otherwise it must be a proxy. // When it is not the function proxy will be invoked later. __ JumpIfNotObjectType(function, x10, x11, JS_FUNCTION_TYPE, &push_receiver); // Change context eagerly to get the right global object if necessary. __ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); // Load the shared function info. __ Ldr(x2, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); // Compute and push the receiver. // Do not transform the receiver for strict mode functions. Label convert_receiver_to_object, use_global_proxy; __ Ldr(w10, FieldMemOperand(x2, SharedFunctionInfo::kCompilerHintsOffset)); __ Tbnz(x10, SharedFunctionInfo::kStrictModeFunction, &push_receiver); // Do not transform the receiver for native functions. __ Tbnz(x10, SharedFunctionInfo::kNative, &push_receiver); // Compute the receiver in sloppy mode. __ JumpIfSmi(receiver, &convert_receiver_to_object); __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &use_global_proxy); __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &use_global_proxy); // Check if the receiver is already a JavaScript object. STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ JumpIfObjectType(receiver, x10, x11, FIRST_SPEC_OBJECT_TYPE, &push_receiver, ge); // Call a builtin to convert the receiver to a regular object. __ Bind(&convert_receiver_to_object); __ Push(receiver); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ Mov(receiver, x0); __ B(&push_receiver); __ Bind(&use_global_proxy); __ Ldr(x10, GlobalObjectMemOperand()); __ Ldr(receiver, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset)); // Push the receiver __ Bind(&push_receiver); __ Push(receiver); // Copy all arguments from the array to the stack. Label entry, loop; Register current = x0; __ Ldr(current, MemOperand(fp, kIndexOffset)); __ B(&entry); __ Bind(&loop); // Load the current argument from the arguments array and push it. // TODO(all): Couldn't we optimize this for JS arrays? __ Ldr(x1, MemOperand(fp, kArgsOffset)); __ Push(x1, current); // Call the runtime to access the property in the arguments array. __ CallRuntime(Runtime::kGetProperty, 2); __ Push(x0); // Use inline caching to access the arguments. __ Ldr(current, MemOperand(fp, kIndexOffset)); __ Add(current, current, Smi::FromInt(1)); __ Str(current, MemOperand(fp, kIndexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ Bind(&entry); __ Ldr(x1, MemOperand(fp, kLimitOffset)); __ Cmp(current, x1); __ B(ne, &loop); // At the end of the loop, the number of arguments is stored in 'current', // represented as a smi. function = x1; // From now on we want the function to be kept in x1; __ Ldr(function, MemOperand(fp, kFunctionOffset)); // Call the function. Label call_proxy; ParameterCount actual(current); __ SmiUntag(current); __ JumpIfNotObjectType(function, x10, x11, JS_FUNCTION_TYPE, &call_proxy); __ InvokeFunction(function, actual, CALL_FUNCTION, NullCallWrapper()); frame_scope.GenerateLeaveFrame(); __ Drop(3); __ Ret(); // Call the function proxy. __ Bind(&call_proxy); // x0 : argc // x1 : function __ Push(function); // Add function proxy as last argument. __ Add(x0, x0, 1); __ Mov(x2, 0); __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY); __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } __ Drop(3); __ Ret(); } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- x0 : actual number of arguments // -- x1 : function (passed through to callee) // -- x2 : expected number of arguments // ----------------------------------- // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. Label enough_stack_space; __ LoadRoot(x10, Heap::kRealStackLimitRootIndex); // Make x10 the space we have left. The stack might already be overflowed // here which will cause x10 to become negative. __ Sub(x10, jssp, x10); // Check if the arguments will overflow the stack. __ Cmp(x10, Operand(x2, LSL, kPointerSizeLog2)); __ B(le, stack_overflow); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(x10, x0); __ Mov(x11, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ Push(lr, fp); __ Push(x11, x1, x10); __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then drop the parameters and the receiver. __ Ldr(x10, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ Mov(jssp, fp); __ Pop(fp, lr); __ DropBySMI(x10, kXRegSize); __ Drop(1); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline"); // ----------- S t a t e ------------- // -- x0 : actual number of arguments // -- x1 : function (passed through to callee) // -- x2 : expected number of arguments // ----------------------------------- Label stack_overflow; ArgumentAdaptorStackCheck(masm, &stack_overflow); Register argc_actual = x0; // Excluding the receiver. Register argc_expected = x2; // Excluding the receiver. Register function = x1; Register code_entry = x3; Label invoke, dont_adapt_arguments; Label enough, too_few; __ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); __ Cmp(argc_actual, argc_expected); __ B(lt, &too_few); __ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ B(eq, &dont_adapt_arguments); { // Enough parameters: actual >= expected EnterArgumentsAdaptorFrame(masm); Register copy_start = x10; Register copy_end = x11; Register copy_to = x12; Register scratch1 = x13, scratch2 = x14; __ Lsl(argc_expected, argc_expected, kPointerSizeLog2); // Adjust for fp, lr, and the receiver. __ Add(copy_start, fp, 3 * kPointerSize); __ Add(copy_start, copy_start, Operand(argc_actual, LSL, kPointerSizeLog2)); __ Sub(copy_end, copy_start, argc_expected); __ Sub(copy_end, copy_end, kPointerSize); __ Mov(copy_to, jssp); // Claim space for the arguments, the receiver, and one extra slot. // The extra slot ensures we do not write under jssp. It will be popped // later. __ Add(scratch1, argc_expected, 2 * kPointerSize); __ Claim(scratch1, 1); // Copy the arguments (including the receiver) to the new stack frame. Label copy_2_by_2; __ Bind(©_2_by_2); __ Ldp(scratch1, scratch2, MemOperand(copy_start, - 2 * kPointerSize, PreIndex)); __ Stp(scratch1, scratch2, MemOperand(copy_to, - 2 * kPointerSize, PreIndex)); __ Cmp(copy_start, copy_end); __ B(hi, ©_2_by_2); // Correct the space allocated for the extra slot. __ Drop(1); __ B(&invoke); } { // Too few parameters: Actual < expected __ Bind(&too_few); EnterArgumentsAdaptorFrame(masm); Register copy_from = x10; Register copy_end = x11; Register copy_to = x12; Register scratch1 = x13, scratch2 = x14; __ Lsl(argc_expected, argc_expected, kPointerSizeLog2); __ Lsl(argc_actual, argc_actual, kPointerSizeLog2); // Adjust for fp, lr, and the receiver. __ Add(copy_from, fp, 3 * kPointerSize); __ Add(copy_from, copy_from, argc_actual); __ Mov(copy_to, jssp); __ Sub(copy_end, copy_to, 1 * kPointerSize); // Adjust for the receiver. __ Sub(copy_end, copy_end, argc_actual); // Claim space for the arguments, the receiver, and one extra slot. // The extra slot ensures we do not write under jssp. It will be popped // later. __ Add(scratch1, argc_expected, 2 * kPointerSize); __ Claim(scratch1, 1); // Copy the arguments (including the receiver) to the new stack frame. Label copy_2_by_2; __ Bind(©_2_by_2); __ Ldp(scratch1, scratch2, MemOperand(copy_from, - 2 * kPointerSize, PreIndex)); __ Stp(scratch1, scratch2, MemOperand(copy_to, - 2 * kPointerSize, PreIndex)); __ Cmp(copy_to, copy_end); __ B(hi, ©_2_by_2); __ Mov(copy_to, copy_end); // Fill the remaining expected arguments with undefined. __ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex); __ Add(copy_end, jssp, kPointerSize); Label fill; __ Bind(&fill); __ Stp(scratch1, scratch1, MemOperand(copy_to, - 2 * kPointerSize, PreIndex)); __ Cmp(copy_to, copy_end); __ B(hi, &fill); // Correct the space allocated for the extra slot. __ Drop(1); } // Arguments have been adapted. Now call the entry point. __ Bind(&invoke); __ Call(code_entry); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // Call the entry point without adapting the arguments. __ Bind(&dont_adapt_arguments); __ Jump(code_entry); __ Bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); __ Unreachable(); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM