// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen.h" #include "src/safepoint-table.h" namespace v8 { namespace internal { const int Deoptimizer::table_entry_size_ = 8; int Deoptimizer::patch_size() { const int kCallInstructionSizeInWords = 3; return kCallInstructionSizeInWords * Assembler::kInstrSize; } void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { Address code_start_address = code->instruction_start(); // Invalidate the relocation information, as it will become invalid by the // code patching below, and is not needed any more. code->InvalidateRelocation(); if (FLAG_zap_code_space) { // Fail hard and early if we enter this code object again. byte* pointer = code->FindCodeAgeSequence(); if (pointer != NULL) { pointer += kNoCodeAgeSequenceLength; } else { pointer = code->instruction_start(); } CodePatcher patcher(pointer, 1); patcher.masm()->bkpt(0); DeoptimizationInputData* data = DeoptimizationInputData::cast(code->deoptimization_data()); int osr_offset = data->OsrPcOffset()->value(); if (osr_offset > 0) { CodePatcher osr_patcher(code->instruction_start() + osr_offset, 1); osr_patcher.masm()->bkpt(0); } } DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); #ifdef DEBUG Address prev_call_address = NULL; #endif // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; Address call_address = code_start_address + deopt_data->Pc(i)->value(); Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY); // We need calls to have a predictable size in the unoptimized code, but // this is optimized code, so we don't have to have a predictable size. int call_size_in_bytes = MacroAssembler::CallSizeNotPredictableCodeSize(isolate, deopt_entry, RelocInfo::NONE32); int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize; DCHECK(call_size_in_bytes % Assembler::kInstrSize == 0); DCHECK(call_size_in_bytes <= patch_size()); CodePatcher patcher(call_address, call_size_in_words); patcher.masm()->Call(deopt_entry, RelocInfo::NONE32); DCHECK(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); DCHECK(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } } void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { // Set the register values. The values are not important as there are no // callee saved registers in JavaScript frames, so all registers are // spilled. Registers fp and sp are set to the correct values though. for (int i = 0; i < Register::kNumRegisters; i++) { input_->SetRegister(i, i * 4); } input_->SetRegister(sp.code(), reinterpret_cast<intptr_t>(frame->sp())); input_->SetRegister(fp.code(), reinterpret_cast<intptr_t>(frame->fp())); for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) { input_->SetDoubleRegister(i, 0.0); } // Fill the frame content from the actual data on the frame. for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); } } void Deoptimizer::SetPlatformCompiledStubRegisters( FrameDescription* output_frame, CodeStubDescriptor* descriptor) { ApiFunction function(descriptor->deoptimization_handler()); ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_); intptr_t handler = reinterpret_cast<intptr_t>(xref.address()); int params = descriptor->GetHandlerParameterCount(); output_frame->SetRegister(r0.code(), params); output_frame->SetRegister(r1.code(), handler); } void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } } bool Deoptimizer::HasAlignmentPadding(JSFunction* function) { // There is no dynamic alignment padding on ARM in the input frame. return false; } #define __ masm()-> // This code tries to be close to ia32 code so that any changes can be // easily ported. void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); // Save all general purpose registers before messing with them. const int kNumberOfRegisters = Register::kNumRegisters; // Everything but pc, lr and ip which will be saved but not restored. RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit(); const int kDoubleRegsSize = kDoubleSize * DwVfpRegister::kMaxNumAllocatableRegisters; // Save all allocatable VFP registers before messing with them. DCHECK(kDoubleRegZero.code() == 14); DCHECK(kScratchDoubleReg.code() == 15); // Check CPU flags for number of registers, setting the Z condition flag. __ CheckFor32DRegs(ip); // Push registers d0-d13, and possibly d16-d31, on the stack. // If d16-d31 are not pushed, decrease the stack pointer instead. __ vstm(db_w, sp, d16, d31, ne); __ sub(sp, sp, Operand(16 * kDoubleSize), LeaveCC, eq); __ vstm(db_w, sp, d0, d13); // Push all 16 registers (needed to populate FrameDescription::registers_). // TODO(1588) Note that using pc with stm is deprecated, so we should perhaps // handle this a bit differently. __ stm(db_w, sp, restored_regs | sp.bit() | lr.bit() | pc.bit()); const int kSavedRegistersAreaSize = (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize; // Get the bailout id from the stack. __ ldr(r2, MemOperand(sp, kSavedRegistersAreaSize)); // Get the address of the location in the code object (r3) (return // address for lazy deoptimization) and compute the fp-to-sp delta in // register r4. __ mov(r3, lr); // Correct one word for bailout id. __ add(r4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); __ sub(r4, fp, r4); // Allocate a new deoptimizer object. // Pass four arguments in r0 to r3 and fifth argument on stack. __ PrepareCallCFunction(6, r5); __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(r1, Operand(type())); // bailout type, // r2: bailout id already loaded. // r3: code address or 0 already loaded. __ str(r4, MemOperand(sp, 0 * kPointerSize)); // Fp-to-sp delta. __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); __ str(r5, MemOperand(sp, 1 * kPointerSize)); // Isolate. // Call Deoptimizer::New(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); } // Preserve "deoptimizer" object in register r0 and get the input // frame descriptor pointer to r1 (deoptimizer->input_); __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset())); // Copy core registers into FrameDescription::registers_[kNumRegisters]. DCHECK(Register::kNumRegisters == kNumberOfRegisters); for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ ldr(r2, MemOperand(sp, i * kPointerSize)); __ str(r2, MemOperand(r1, offset)); } // Copy VFP registers to // double_registers_[DoubleRegister::kMaxNumAllocatableRegisters] int double_regs_offset = FrameDescription::double_registers_offset(); for (int i = 0; i < DwVfpRegister::kMaxNumAllocatableRegisters; ++i) { int dst_offset = i * kDoubleSize + double_regs_offset; int src_offset = i * kDoubleSize + kNumberOfRegisters * kPointerSize; __ vldr(d0, sp, src_offset); __ vstr(d0, r1, dst_offset); } // Remove the bailout id and the saved registers from the stack. __ add(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); // Compute a pointer to the unwinding limit in register r2; that is // the first stack slot not part of the input frame. __ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset())); __ add(r2, r2, sp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ add(r3, r1, Operand(FrameDescription::frame_content_offset())); Label pop_loop; Label pop_loop_header; __ b(&pop_loop_header); __ bind(&pop_loop); __ pop(r4); __ str(r4, MemOperand(r3, 0)); __ add(r3, r3, Operand(sizeof(uint32_t))); __ bind(&pop_loop_header); __ cmp(r2, sp); __ b(ne, &pop_loop); // Compute the output frame in the deoptimizer. __ push(r0); // Preserve deoptimizer object across call. // r0: deoptimizer object; r1: scratch. __ PrepareCallCFunction(1, r1); // Call Deoptimizer::ComputeOutputFrames(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate()), 1); } __ pop(r0); // Restore deoptimizer object (class Deoptimizer). // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: r4 = current "FrameDescription** output_", // r1 = one past the last FrameDescription**. __ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset())); __ ldr(r4, MemOperand(r0, Deoptimizer::output_offset())); // r4 is output_. __ add(r1, r4, Operand(r1, LSL, 2)); __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: r2 = current FrameDescription*, r3 = loop index. __ ldr(r2, MemOperand(r4, 0)); // output_[ix] __ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ sub(r3, r3, Operand(sizeof(uint32_t))); __ add(r6, r2, Operand(r3)); __ ldr(r6, MemOperand(r6, FrameDescription::frame_content_offset())); __ push(r6); __ bind(&inner_loop_header); __ cmp(r3, Operand::Zero()); __ b(ne, &inner_push_loop); // test for gt? __ add(r4, r4, Operand(kPointerSize)); __ bind(&outer_loop_header); __ cmp(r4, r1); __ b(lt, &outer_push_loop); // Check CPU flags for number of registers, setting the Z condition flag. __ CheckFor32DRegs(ip); __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset())); int src_offset = FrameDescription::double_registers_offset(); for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) { if (i == kDoubleRegZero.code()) continue; if (i == kScratchDoubleReg.code()) continue; const DwVfpRegister reg = DwVfpRegister::from_code(i); __ vldr(reg, r1, src_offset, i < 16 ? al : ne); src_offset += kDoubleSize; } // Push state, pc, and continuation from the last output frame. __ ldr(r6, MemOperand(r2, FrameDescription::state_offset())); __ push(r6); __ ldr(r6, MemOperand(r2, FrameDescription::pc_offset())); __ push(r6); __ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset())); __ push(r6); // Push the registers from the last output frame. for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ ldr(r6, MemOperand(r2, offset)); __ push(r6); } // Restore the registers from the stack. __ ldm(ia_w, sp, restored_regs); // all but pc registers. __ pop(ip); // remove sp __ pop(ip); // remove lr __ InitializeRootRegister(); __ pop(ip); // remove pc __ pop(ip); // get continuation, leave pc on stack __ pop(lr); __ Jump(ip); __ stop("Unreachable."); } void Deoptimizer::TableEntryGenerator::GeneratePrologue() { // Create a sequence of deoptimization entries. // Note that registers are still live when jumping to an entry. Label done; for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ mov(ip, Operand(i)); __ b(&done); DCHECK(masm()->pc_offset() - start == table_entry_size_); } __ bind(&done); __ push(ip); } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) { DCHECK(FLAG_enable_ool_constant_pool); SetFrameSlot(offset, value); } #undef __ } } // namespace v8::internal