// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM #include "src/codegen.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen.h" #include "src/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- r0 : number of arguments excluding receiver // -- r1 : called function (only guaranteed when // extra_args requires it) // -- cp : context // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument (argc == r0) // -- sp[4 * argc] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(r1); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects r0 to contain the number of arguments // including the receiver and the extra arguments. __ add(r0, r0, Operand(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ ldr(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the Array function from the native context. __ ldr(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, r1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(r2); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, r1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(r2); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. // tail call a stub __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1, r2, r3); Register function = r1; if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2); __ cmp(function, Operand(r2)); __ Assert(eq, kUnexpectedStringFunction); } // Load the first arguments in r0 and get rid of the rest. Label no_arguments; __ cmp(r0, Operand::Zero()); __ b(eq, &no_arguments); // First args = sp[(argc - 1) * 4]. __ sub(r0, r0, Operand(1)); __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex)); // sp now point to args[0], drop args[0] + receiver. __ Drop(2); Register argument = r2; Label not_cached, argument_is_string; __ LookupNumberStringCache(r0, // Input. argument, // Result. r3, // Scratch. r4, // Scratch. r5, // Scratch. ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1, r3, r4); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- r2 : argument converted to string // -- r1 : constructor function // -- lr : return address // ----------------------------------- Label gc_required; __ Allocate(JSValue::kSize, r0, // Result. r3, // Scratch. r4, // Scratch. &gc_required, TAG_OBJECT); // Initialising the String Object. Register map = r3; __ LoadGlobalFunctionInitialMap(function, map, r4); if (FLAG_debug_code) { __ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset)); __ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2)); __ Assert(eq, kUnexpectedStringWrapperInstanceSize); __ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); __ cmp(r4, Operand::Zero()); __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper); } __ str(map, FieldMemOperand(r0, HeapObject::kMapOffset)); __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); __ str(argument, FieldMemOperand(r0, JSValue::kValueOffset)); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); __ JumpIfSmi(r0, &convert_argument); // Is it a String? __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ tst(r3, Operand(kIsNotStringMask)); __ b(ne, &convert_argument); __ mov(argument, r0); __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4); __ b(&argument_is_string); // Invoke the conversion builtin and put the result into r2. __ bind(&convert_argument); __ push(function); // Preserve the function. __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(r0); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); } __ pop(function); __ mov(argument, r0); __ b(&argument_is_string); // Load the empty string into r2, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ LoadRoot(argument, Heap::kempty_stringRootIndex); __ Drop(1); __ b(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1, r3, r4); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(argument); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ Ret(); } static void CallRuntimePassFunction( MacroAssembler* masm, Runtime::FunctionId function_id) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(r1); // Push function as parameter to the runtime call. __ Push(r1); __ CallRuntime(function_id, 1); // Restore receiver. __ pop(r1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset)); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r0); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_memento) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- r2 : allocation site or undefined // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- // Should never create mementos for api functions. DCHECK(!is_api_function || !create_memento); Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); if (create_memento) { __ AssertUndefinedOrAllocationSite(r2, r3); __ push(r2); } // Preserve the two incoming parameters on the stack. __ SmiTag(r0); __ push(r0); // Smi-tagged arguments count. __ push(r1); // Constructor function. // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ mov(r2, Operand(debug_step_in_fp)); __ ldr(r2, MemOperand(r2)); __ tst(r2, r2); __ b(ne, &rt_call); // Load the initial map and verify that it is in fact a map. // r1: constructor function __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r2, &rt_call); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ b(ne, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // r1: constructor function // r2: initial map __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE); __ b(eq, &rt_call); if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(r2, Map::kBitField3Offset); // Check if slack tracking is enabled. __ ldr(r4, bit_field3); __ DecodeField<Map::ConstructionCount>(r3, r4); __ cmp(r3, Operand(JSFunction::kNoSlackTracking)); __ b(eq, &allocate); // Decrease generous allocation count. __ sub(r4, r4, Operand(1 << Map::ConstructionCount::kShift)); __ str(r4, bit_field3); __ cmp(r3, Operand(JSFunction::kFinishSlackTracking)); __ b(ne, &allocate); __ push(r1); __ Push(r2, r1); // r1 = constructor __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(r2); __ pop(r1); __ bind(&allocate); } // Now allocate the JSObject on the heap. // r1: constructor function // r2: initial map __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset)); if (create_memento) { __ add(r3, r3, Operand(AllocationMemento::kSize / kPointerSize)); } __ Allocate(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // r1: constructor function // r2: initial map // r3: object size (not including memento if create_memento) // r4: JSObject (not tagged) __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ mov(r5, r4); DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); // Fill all the in-object properties with the appropriate filler. // r1: constructor function // r2: initial map // r3: object size (in words, including memento if create_memento) // r4: JSObject (not tagged) // r5: First in-object property of JSObject (not tagged) DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize); __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ ldr(ip, FieldMemOperand(r2, Map::kBitField3Offset)); __ DecodeField<Map::ConstructionCount>(ip); __ cmp(ip, Operand(JSFunction::kNoSlackTracking)); __ b(eq, &no_inobject_slack_tracking); // Allocate object with a slack. __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset)); __ Ubfx(r0, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2)); // r0: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ add(ip, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object. __ cmp(r0, ip); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); } __ InitializeFieldsWithFiller(r5, r0, r6); // To allow for truncation. __ LoadRoot(r6, Heap::kOnePointerFillerMapRootIndex); // Fill the remaining fields with one pointer filler map. __ bind(&no_inobject_slack_tracking); } if (create_memento) { __ sub(ip, r3, Operand(AllocationMemento::kSize / kPointerSize)); __ add(r0, r4, Operand(ip, LSL, kPointerSizeLog2)); // End of object. __ InitializeFieldsWithFiller(r5, r0, r6); // Fill in memento fields. // r5: points to the allocated but uninitialized memento. __ LoadRoot(r6, Heap::kAllocationMementoMapRootIndex); DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); // Load the AllocationSite __ ldr(r6, MemOperand(sp, 2 * kPointerSize)); DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); } else { __ add(r0, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object. __ InitializeFieldsWithFiller(r5, r0, r6); } // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. __ add(r4, r4, Operand(kHeapObjectTag)); // Check if a non-empty properties array is needed. Continue with // allocated object if not fall through to runtime call if it is. // r1: constructor function // r4: JSObject // r5: start of next object (not tagged) __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset)); // The field instance sizes contains both pre-allocated property fields // and in-object properties. __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset)); __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ add(r3, r3, Operand(r6)); __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * kBitsPerByte, kBitsPerByte); __ sub(r3, r3, Operand(r6), SetCC); // Done if no extra properties are to be allocated. __ b(eq, &allocated); __ Assert(pl, kPropertyAllocationCountFailed); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // r1: constructor // r3: number of elements in properties array // r4: JSObject // r5: start of next object __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize)); __ Allocate( r0, r5, r6, r2, &undo_allocation, static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); // Initialize the FixedArray. // r1: constructor // r3: number of elements in properties array // r4: JSObject // r5: FixedArray (not tagged) __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex); __ mov(r2, r5); DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset); __ str(r6, MemOperand(r2, kPointerSize, PostIndex)); DCHECK_EQ(1 * kPointerSize, FixedArray::kLengthOffset); __ SmiTag(r0, r3); __ str(r0, MemOperand(r2, kPointerSize, PostIndex)); // Initialize the fields to undefined. // r1: constructor function // r2: First element of FixedArray (not tagged) // r3: number of elements in properties array // r4: JSObject // r5: FixedArray (not tagged) __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2)); // End of object. DCHECK_EQ(2 * kPointerSize, FixedArray::kHeaderSize); { Label loop, entry; __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ b(&entry); __ bind(&loop); __ str(r0, MemOperand(r2, kPointerSize, PostIndex)); __ bind(&entry); __ cmp(r2, r6); __ b(lt, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // r1: constructor function // r4: JSObject // r5: FixedArray (not tagged) __ add(r5, r5, Operand(kHeapObjectTag)); // Add the heap tag. __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset)); // Continue with JSObject being successfully allocated // r1: constructor function // r4: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // r4: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(r4, r5); } // Allocate the new receiver object using the runtime call. // r1: constructor function __ bind(&rt_call); if (create_memento) { // Get the cell or allocation site. __ ldr(r2, MemOperand(sp, 2 * kPointerSize)); __ push(r2); } __ push(r1); // argument for Runtime_NewObject if (create_memento) { __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2); } else { __ CallRuntime(Runtime::kNewObject, 1); } __ mov(r4, r0); // If we ended up using the runtime, and we want a memento, then the // runtime call made it for us, and we shouldn't do create count // increment. Label count_incremented; if (create_memento) { __ jmp(&count_incremented); } // Receiver for constructor call allocated. // r4: JSObject __ bind(&allocated); if (create_memento) { __ ldr(r2, MemOperand(sp, kPointerSize * 2)); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ cmp(r2, r5); __ b(eq, &count_incremented); // r2 is an AllocationSite. We are creating a memento from it, so we // need to increment the memento create count. __ ldr(r3, FieldMemOperand(r2, AllocationSite::kPretenureCreateCountOffset)); __ add(r3, r3, Operand(Smi::FromInt(1))); __ str(r3, FieldMemOperand(r2, AllocationSite::kPretenureCreateCountOffset)); __ bind(&count_incremented); } __ push(r4); __ push(r4); // Reload the number of arguments and the constructor from the stack. // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); __ ldr(r3, MemOperand(sp, 3 * kPointerSize)); // Set up pointer to last argument. __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Set up number of arguments for function call below __ SmiUntag(r0, r3); // Copy arguments and receiver to the expression stack. // r0: number of arguments // r1: constructor function // r2: address of last argument (caller sp) // r3: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) Label loop, entry; __ b(&entry); __ bind(&loop); __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1)); __ push(ip); __ bind(&entry); __ sub(r3, r3, Operand(2), SetCC); __ b(ge, &loop); // Call the function. // r0: number of arguments // r1: constructor function if (is_api_function) { __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(r0); __ InvokeFunction(r1, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. // r0: result // sp[0]: receiver // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // r0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(r0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CompareObjectType(r0, r1, r3, FIRST_SPEC_OBJECT_TYPE); __ b(ge, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ ldr(r0, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // r0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1)); __ add(sp, sp, Operand(kPointerSize)); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2); __ Jump(lr); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv // r5-r6, r8 (if not FLAG_enable_ool_constant_pool) and cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ mov(cp, Operand::Zero()); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Set up the context from the function argument. __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ push(r1); __ push(r2); // Copy arguments to the stack in a loop. // r1: function // r3: argc // r4: argv, i.e. points to first arg Label loop, entry; __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2)); // r2 points past last arg. __ b(&entry); __ bind(&loop); __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter __ ldr(r0, MemOperand(r0)); // dereference handle __ push(r0); // push parameter __ bind(&entry); __ cmp(r4, r2); __ b(ne, &loop); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ mov(r5, Operand(r4)); __ mov(r6, Operand(r4)); if (!FLAG_enable_ool_constant_pool) { __ mov(r8, Operand(r4)); } if (kR9Available == 1) { __ mov(r9, Operand(r4)); } // Invoke the code and pass argc as r0. __ mov(r0, Operand(r3)); if (is_construct) { // No type feedback cell is available __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(r0); __ InvokeFunction(r1, actual, CALL_FUNCTION, NullCallWrapper()); } // Exit the JS frame and remove the parameters (except function), and // return. // Respect ABI stack constraint. } __ Jump(lr); // r0: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(r1); // Push function as parameter to the runtime call. __ Push(r1); // Whether to compile in a background thread. __ Push(masm->isolate()->factory()->ToBoolean(concurrent)); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ pop(r1); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // The following registers must be saved and restored when calling through to // the runtime: // r0 - contains return address (beginning of patch sequence) // r1 - isolate FrameScope scope(masm, StackFrame::MANUAL); __ stm(db_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); __ PrepareCallCFunction(2, 0, r2); __ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ ldm(ia_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); __ mov(pc, r0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // The following registers must be saved and restored when calling through to // the runtime: // r0 - contains return address (beginning of patch sequence) // r1 - isolate FrameScope scope(masm, StackFrame::MANUAL); __ stm(db_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); __ PrepareCallCFunction(2, 0, r2); __ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction(ExternalReference::get_mark_code_as_executed_function( masm->isolate()), 2); __ ldm(ia_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); // Perform prologue operations usually performed by the young code stub. __ PushFixedFrame(r1); __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Jump to point after the code-age stub. __ add(r0, r0, Operand(kNoCodeAgeSequenceLength)); __ mov(pc, r0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ stm(db_w, sp, kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved); } __ add(sp, sp, Operand(kPointerSize)); // Ignore state __ mov(pc, lr); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ mov(r0, Operand(Smi::FromInt(static_cast<int>(type)))); __ push(r0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> r6. __ ldr(r6, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(r6); // Switch on the state. Label with_tos_register, unknown_state; __ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS)); __ b(ne, &with_tos_register); __ add(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ Ret(); __ bind(&with_tos_register); __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); __ cmp(r6, Operand(FullCodeGenerator::TOS_REG)); __ b(ne, &unknown_state); __ add(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ Ret(); __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r0); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. Label skip; __ cmp(r0, Operand(Smi::FromInt(0))); __ b(ne, &skip); __ Ret(); __ bind(&skip); // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset)); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); if (FLAG_enable_ool_constant_pool) { __ ldr(pp, FieldMemOperand(r0, Code::kConstantPoolOffset)); } // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ add(r0, r0, Operand::SmiUntag(r1)); __ add(lr, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // And "return" to the OSR entry point of the function. __ Ret(); } } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &ok); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ Ret(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r0: actual number of arguments { Label done; __ cmp(r0, Operand::Zero()); __ b(ne, &done); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ push(r2); __ add(r0, r0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. // r0: actual number of arguments Label slow, non_function; __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); __ JumpIfSmi(r1, &non_function); __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); __ b(ne, &slow); // 3a. Patch the first argument if necessary when calling a function. // r0: actual number of arguments // r1: function Label shift_arguments; __ mov(r4, Operand::Zero()); // indicate regular JS_FUNCTION { Label convert_to_object, use_global_proxy, patch_receiver; // Change context eagerly in case we need the global receiver. __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset)); __ tst(r3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ b(ne, &shift_arguments); // Do not transform the receiver for native (Compilerhints already in r3). __ tst(r3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ b(ne, &shift_arguments); // Compute the receiver in sloppy mode. __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); __ ldr(r2, MemOperand(r2, -kPointerSize)); // r0: actual number of arguments // r1: function // r2: first argument __ JumpIfSmi(r2, &convert_to_object); __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); __ cmp(r2, r3); __ b(eq, &use_global_proxy); __ LoadRoot(r3, Heap::kNullValueRootIndex); __ cmp(r2, r3); __ b(eq, &use_global_proxy); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CompareObjectType(r2, r3, r3, FIRST_SPEC_OBJECT_TYPE); __ b(ge, &shift_arguments); __ bind(&convert_to_object); { // Enter an internal frame in order to preserve argument count. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r0); __ push(r0); __ push(r2); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(r2, r0); __ pop(r0); __ SmiUntag(r0); // Exit the internal frame. } // Restore the function to r1, and the flag to r4. __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); __ mov(r4, Operand::Zero()); __ jmp(&patch_receiver); __ bind(&use_global_proxy); __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset)); __ bind(&patch_receiver); __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2)); __ str(r2, MemOperand(r3, -kPointerSize)); __ jmp(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ mov(r4, Operand(1, RelocInfo::NONE32)); // indicate function proxy __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE)); __ b(eq, &shift_arguments); __ bind(&non_function); __ mov(r4, Operand(2, RelocInfo::NONE32)); // indicate non-function // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. // r0: actual number of arguments // r1: function // r4: call type (0: JS function, 1: function proxy, 2: non-function) __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); __ str(r1, MemOperand(r2, -kPointerSize)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r0: actual number of arguments // r1: function // r4: call type (0: JS function, 1: function proxy, 2: non-function) __ bind(&shift_arguments); { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); __ bind(&loop); __ ldr(ip, MemOperand(r2, -kPointerSize)); __ str(ip, MemOperand(r2)); __ sub(r2, r2, Operand(kPointerSize)); __ cmp(r2, sp); __ b(ne, &loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ sub(r0, r0, Operand(1)); __ pop(); } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. // r0: actual number of arguments // r1: function // r4: call type (0: JS function, 1: function proxy, 2: non-function) { Label function, non_proxy; __ tst(r4, r4); __ b(eq, &function); // Expected number of arguments is 0 for CALL_NON_FUNCTION. __ mov(r2, Operand::Zero()); __ cmp(r4, Operand(1)); __ b(ne, &non_proxy); __ push(r1); // re-add proxy object as additional argument __ add(r0, r0, Operand(1)); __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. // r0: actual number of arguments // r1: function __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(r2); __ cmp(r2, r0); // Check formal and actual parameter counts. __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET, ne); __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); ParameterCount expected(0); __ InvokeCode(r3, expected, expected, JUMP_FUNCTION, NullCallWrapper()); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { const int kIndexOffset = StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize); const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize); const int kArgsOffset = 2 * kPointerSize; const int kRecvOffset = 3 * kPointerSize; const int kFunctionOffset = 4 * kPointerSize; { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); __ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function __ push(r0); __ ldr(r0, MemOperand(fp, kArgsOffset)); // get the args array __ push(r0); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); // Make r2 the space we have left. The stack might already be overflowed // here which will cause r2 to become negative. __ sub(r2, sp, r2); // Check if the arguments will overflow the stack. __ cmp(r2, Operand::PointerOffsetFromSmiKey(r0)); __ b(gt, &okay); // Signed comparison. // Out of stack space. __ ldr(r1, MemOperand(fp, kFunctionOffset)); __ Push(r1, r0); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); // End of stack check. // Push current limit and index. __ bind(&okay); __ push(r0); // limit __ mov(r1, Operand::Zero()); // initial index __ push(r1); // Get the receiver. __ ldr(r0, MemOperand(fp, kRecvOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver; __ ldr(r1, MemOperand(fp, kFunctionOffset)); __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); __ b(ne, &push_receiver); // Change context eagerly to get the right global object if necessary. __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Load the shared function info while the function is still in r1. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); // Compute the receiver. // Do not transform the receiver for strict mode functions. Label call_to_object, use_global_proxy; __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset)); __ tst(r2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ b(ne, &push_receiver); // Do not transform the receiver for strict mode functions. __ tst(r2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ b(ne, &push_receiver); // Compute the receiver in sloppy mode. __ JumpIfSmi(r0, &call_to_object); __ LoadRoot(r1, Heap::kNullValueRootIndex); __ cmp(r0, r1); __ b(eq, &use_global_proxy); __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); __ cmp(r0, r1); __ b(eq, &use_global_proxy); // Check if the receiver is already a JavaScript object. // r0: receiver STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE); __ b(ge, &push_receiver); // Convert the receiver to a regular object. // r0: receiver __ bind(&call_to_object); __ push(r0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ b(&push_receiver); __ bind(&use_global_proxy); __ ldr(r0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalProxyOffset)); // Push the receiver. // r0: receiver __ bind(&push_receiver); __ push(r0); // Copy all arguments from the array to the stack. Label entry, loop; __ ldr(r0, MemOperand(fp, kIndexOffset)); __ b(&entry); // Load the current argument from the arguments array and push it to the // stack. // r0: current argument index __ bind(&loop); __ ldr(r1, MemOperand(fp, kArgsOffset)); __ Push(r1, r0); // Call the runtime to access the property in the arguments array. __ CallRuntime(Runtime::kGetProperty, 2); __ push(r0); // Use inline caching to access the arguments. __ ldr(r0, MemOperand(fp, kIndexOffset)); __ add(r0, r0, Operand(1 << kSmiTagSize)); __ str(r0, MemOperand(fp, kIndexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ ldr(r1, MemOperand(fp, kLimitOffset)); __ cmp(r0, r1); __ b(ne, &loop); // Call the function. Label call_proxy; ParameterCount actual(r0); __ SmiUntag(r0); __ ldr(r1, MemOperand(fp, kFunctionOffset)); __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); __ b(ne, &call_proxy); __ InvokeFunction(r1, actual, CALL_FUNCTION, NullCallWrapper()); frame_scope.GenerateLeaveFrame(); __ add(sp, sp, Operand(3 * kPointerSize)); __ Jump(lr); // Call the function proxy. __ bind(&call_proxy); __ push(r1); // add function proxy as last argument __ add(r0, r0, Operand(1)); __ mov(r2, Operand::Zero()); __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY); __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ add(sp, sp, Operand(3 * kPointerSize)); __ Jump(lr); } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- r0 : actual number of arguments // -- r1 : function (passed through to callee) // -- r2 : expected number of arguments // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(r5, Heap::kRealStackLimitRootIndex); // Make r5 the space we have left. The stack might already be overflowed // here which will cause r5 to become negative. __ sub(r5, sp, r5); // Check if the arguments will overflow the stack. __ cmp(r5, Operand(r2, LSL, kPointerSizeLog2)); __ b(le, stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r0); __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | (FLAG_enable_ool_constant_pool ? pp.bit() : 0) | fp.bit() | lr.bit()); __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ ldr(r1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR); __ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1)); __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : actual number of arguments // -- r1 : function (passed through to callee) // -- r2 : expected number of arguments // ----------------------------------- Label stack_overflow; ArgumentAdaptorStackCheck(masm, &stack_overflow); Label invoke, dont_adapt_arguments; Label enough, too_few; __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); __ cmp(r0, r2); __ b(lt, &too_few); __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ b(eq, &dont_adapt_arguments); { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r0 and copy end address into r2. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: code entry to call __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); // adjust for return address and receiver __ add(r0, r0, Operand(2 * kPointerSize)); __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2)); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: copy end address // r3: code entry to call Label copy; __ bind(©); __ ldr(ip, MemOperand(r0, 0)); __ push(ip); __ cmp(r0, r2); // Compare before moving to next argument. __ sub(r0, r0, Operand(kPointerSize)); __ b(ne, ©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r0 and copy end address is fp. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: code entry to call __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: expected number of arguments // r3: code entry to call Label copy; __ bind(©); // Adjust load for return address and receiver. __ ldr(ip, MemOperand(r0, 2 * kPointerSize)); __ push(ip); __ cmp(r0, fp); // Compare before moving to next argument. __ sub(r0, r0, Operand(kPointerSize)); __ b(ne, ©); // Fill the remaining expected arguments with undefined. // r1: function // r2: expected number of arguments // r3: code entry to call __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2)); // Adjust for frame. __ sub(r2, r2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ push(ip); __ cmp(sp, r2); __ b(ne, &fill); } // Call the entry point. __ bind(&invoke); __ Call(r3); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Jump(lr); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ Jump(r3); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); __ bkpt(0); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM