// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_ARM_ASSEMBLER_ARM_INL_H_ #define V8_ARM_ASSEMBLER_ARM_INL_H_ #include "src/arm/assembler-arm.h" #include "src/assembler.h" #include "src/debug.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsCrankshaft() { return IsSupported(VFP3); } int Register::NumAllocatableRegisters() { return kMaxNumAllocatableRegisters; } int DwVfpRegister::NumRegisters() { return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16; } int DwVfpRegister::NumReservedRegisters() { return kNumReservedRegisters; } int DwVfpRegister::NumAllocatableRegisters() { return NumRegisters() - kNumReservedRegisters; } int DwVfpRegister::ToAllocationIndex(DwVfpRegister reg) { DCHECK(!reg.is(kDoubleRegZero)); DCHECK(!reg.is(kScratchDoubleReg)); if (reg.code() > kDoubleRegZero.code()) { return reg.code() - kNumReservedRegisters; } return reg.code(); } DwVfpRegister DwVfpRegister::FromAllocationIndex(int index) { DCHECK(index >= 0 && index < NumAllocatableRegisters()); DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() == kNumReservedRegisters - 1); if (index >= kDoubleRegZero.code()) { return from_code(index + kNumReservedRegisters); } return from_code(index); } void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) { if (RelocInfo::IsInternalReference(rmode_)) { // absolute code pointer inside code object moves with the code object. int32_t* p = reinterpret_cast<int32_t*>(pc_); *p += delta; // relocate entry } // We do not use pc relative addressing on ARM, so there is // nothing else to do. } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); if (FLAG_enable_ool_constant_pool || Assembler::IsMovW(Memory::int32_at(pc_))) { // We return the PC for ool constant pool since this function is used by the // serializerer and expects the address to reside within the code object. return reinterpret_cast<Address>(pc_); } else { DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_))); return constant_pool_entry_address(); } } Address RelocInfo::constant_pool_entry_address() { DCHECK(IsInConstantPool()); return Assembler::constant_pool_entry_address(pc_, host_->constant_pool()); } int RelocInfo::target_address_size() { return kPointerSize; } void RelocInfo::set_target_address(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } Object* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); } Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Handle<Object>(reinterpret_cast<Object**>( Assembler::target_address_at(pc_, host_))); } void RelocInfo::set_target_object(Object* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(pc_, host_, reinterpret_cast<Address>(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && target->IsHeapObject()) { host()->GetHeap()->incremental_marking()->RecordWrite( host(), &Memory::Object_at(pc_), HeapObject::cast(target)); } } Address RelocInfo::target_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) set_target_address(target, write_barrier_mode, icache_flush_mode); } Handle<Cell> RelocInfo::target_cell_handle() { DCHECK(rmode_ == RelocInfo::CELL); Address address = Memory::Address_at(pc_); return Handle<Cell>(reinterpret_cast<Cell**>(address)); } Cell* RelocInfo::target_cell() { DCHECK(rmode_ == RelocInfo::CELL); return Cell::FromValueAddress(Memory::Address_at(pc_)); } void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CELL); Address address = cell->address() + Cell::kValueOffset; Memory::Address_at(pc_) = address; if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { // TODO(1550) We are passing NULL as a slot because cell can never be on // evacuation candidate. host()->GetHeap()->incremental_marking()->RecordWrite( host(), NULL, cell); } } static const int kNoCodeAgeSequenceLength = 3 * Assembler::kInstrSize; Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { UNREACHABLE(); // This should never be reached on Arm. return Handle<Object>(); } Code* RelocInfo::code_age_stub() { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); return Code::GetCodeFromTargetAddress( Memory::Address_at(pc_ + (kNoCodeAgeSequenceLength - Assembler::kInstrSize))); } void RelocInfo::set_code_age_stub(Code* stub, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); Memory::Address_at(pc_ + (kNoCodeAgeSequenceLength - Assembler::kInstrSize)) = stub->instruction_start(); } Address RelocInfo::call_address() { // The 2 instructions offset assumes patched debug break slot or return // sequence. DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize); } void RelocInfo::set_call_address(Address target) { DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target; if (host() != NULL) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } Object* RelocInfo::call_object() { return *call_object_address(); } void RelocInfo::set_call_object(Object* target) { *call_object_address() = target; } Object** RelocInfo::call_object_address() { DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize); } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_)); Assembler::set_target_address_at(pc_, host_, NULL); } bool RelocInfo::IsPatchedReturnSequence() { Instr current_instr = Assembler::instr_at(pc_); Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize); // A patched return sequence is: // ldr ip, [pc, #0] // blx ip return Assembler::IsLdrPcImmediateOffset(current_instr) && Assembler::IsBlxReg(next_instr); } bool RelocInfo::IsPatchedDebugBreakSlotSequence() { Instr current_instr = Assembler::instr_at(pc_); return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP); } void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(this); } else if (RelocInfo::IsCodeTarget(mode)) { visitor->VisitCodeTarget(this); } else if (mode == RelocInfo::CELL) { visitor->VisitCell(this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { visitor->VisitCodeAgeSequence(this); } else if (((RelocInfo::IsJSReturn(mode) && IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence())) && isolate->debug()->has_break_points()) { visitor->VisitDebugTarget(this); } else if (RelocInfo::IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(this); } } template<typename StaticVisitor> void RelocInfo::Visit(Heap* heap) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { StaticVisitor::VisitEmbeddedPointer(heap, this); } else if (RelocInfo::IsCodeTarget(mode)) { StaticVisitor::VisitCodeTarget(heap, this); } else if (mode == RelocInfo::CELL) { StaticVisitor::VisitCell(heap, this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { StaticVisitor::VisitExternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { StaticVisitor::VisitCodeAgeSequence(heap, this); } else if (heap->isolate()->debug()->has_break_points() && ((RelocInfo::IsJSReturn(mode) && IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()))) { StaticVisitor::VisitDebugTarget(heap, this); } else if (RelocInfo::IsRuntimeEntry(mode)) { StaticVisitor::VisitRuntimeEntry(this); } } Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) { rm_ = no_reg; imm32_ = immediate; rmode_ = rmode; } Operand::Operand(const ExternalReference& f) { rm_ = no_reg; imm32_ = reinterpret_cast<int32_t>(f.address()); rmode_ = RelocInfo::EXTERNAL_REFERENCE; } Operand::Operand(Smi* value) { rm_ = no_reg; imm32_ = reinterpret_cast<intptr_t>(value); rmode_ = RelocInfo::NONE32; } Operand::Operand(Register rm) { rm_ = rm; rs_ = no_reg; shift_op_ = LSL; shift_imm_ = 0; } bool Operand::is_reg() const { return rm_.is_valid() && rs_.is(no_reg) && shift_op_ == LSL && shift_imm_ == 0; } void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } if (pc_offset() >= next_buffer_check_) { CheckConstPool(false, true); } } void Assembler::emit(Instr x) { CheckBuffer(); *reinterpret_cast<Instr*>(pc_) = x; pc_ += kInstrSize; } Address Assembler::target_address_from_return_address(Address pc) { // Returns the address of the call target from the return address that will // be returned to after a call. // Call sequence on V7 or later is: // movw ip, #... @ call address low 16 // movt ip, #... @ call address high 16 // blx ip // @ return address // For V6 when the constant pool is unavailable, it is: // mov ip, #... @ call address low 8 // orr ip, ip, #... @ call address 2nd 8 // orr ip, ip, #... @ call address 3rd 8 // orr ip, ip, #... @ call address high 8 // blx ip // @ return address // In cases that need frequent patching, the address is in the // constant pool. It could be a small constant pool load: // ldr ip, [pc / pp, #...] @ call address // blx ip // @ return address // Or an extended constant pool load (ARMv7): // movw ip, #... // movt ip, #... // ldr ip, [pc, ip] @ call address // blx ip // @ return address // Or an extended constant pool load (ARMv6): // mov ip, #... // orr ip, ip, #... // orr ip, ip, #... // orr ip, ip, #... // ldr ip, [pc, ip] @ call address // blx ip // @ return address Address candidate = pc - 2 * Assembler::kInstrSize; Instr candidate_instr(Memory::int32_at(candidate)); if (IsLdrPcImmediateOffset(candidate_instr) | IsLdrPpImmediateOffset(candidate_instr)) { return candidate; } else { if (IsLdrPpRegOffset(candidate_instr)) { candidate -= Assembler::kInstrSize; } if (CpuFeatures::IsSupported(ARMv7)) { candidate -= 1 * Assembler::kInstrSize; DCHECK(IsMovW(Memory::int32_at(candidate)) && IsMovT(Memory::int32_at(candidate + Assembler::kInstrSize))); } else { candidate -= 3 * Assembler::kInstrSize; DCHECK( IsMovImmed(Memory::int32_at(candidate)) && IsOrrImmed(Memory::int32_at(candidate + Assembler::kInstrSize)) && IsOrrImmed(Memory::int32_at(candidate + 2 * Assembler::kInstrSize)) && IsOrrImmed(Memory::int32_at(candidate + 3 * Assembler::kInstrSize))); } return candidate; } } Address Assembler::break_address_from_return_address(Address pc) { return pc - Assembler::kPatchDebugBreakSlotReturnOffset; } Address Assembler::return_address_from_call_start(Address pc) { if (IsLdrPcImmediateOffset(Memory::int32_at(pc)) | IsLdrPpImmediateOffset(Memory::int32_at(pc))) { // Load from constant pool, small section. return pc + kInstrSize * 2; } else { if (CpuFeatures::IsSupported(ARMv7)) { DCHECK(IsMovW(Memory::int32_at(pc))); DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize))); if (IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize))) { // Load from constant pool, extended section. return pc + kInstrSize * 4; } else { // A movw / movt load immediate. return pc + kInstrSize * 3; } } else { DCHECK(IsMovImmed(Memory::int32_at(pc))); DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize))); DCHECK(IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize))); DCHECK(IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize))); if (IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize))) { // Load from constant pool, extended section. return pc + kInstrSize * 6; } else { // A mov / orr load immediate. return pc + kInstrSize * 5; } } } } void Assembler::deserialization_set_special_target_at( Address constant_pool_entry, Code* code, Address target) { if (FLAG_enable_ool_constant_pool) { set_target_address_at(constant_pool_entry, code, target); } else { Memory::Address_at(constant_pool_entry) = target; } } bool Assembler::is_constant_pool_load(Address pc) { if (CpuFeatures::IsSupported(ARMv7)) { return !Assembler::IsMovW(Memory::int32_at(pc)) || (FLAG_enable_ool_constant_pool && Assembler::IsLdrPpRegOffset( Memory::int32_at(pc + 2 * Assembler::kInstrSize))); } else { return !Assembler::IsMovImmed(Memory::int32_at(pc)) || (FLAG_enable_ool_constant_pool && Assembler::IsLdrPpRegOffset( Memory::int32_at(pc + 4 * Assembler::kInstrSize))); } } Address Assembler::constant_pool_entry_address( Address pc, ConstantPoolArray* constant_pool) { if (FLAG_enable_ool_constant_pool) { DCHECK(constant_pool != NULL); int cp_offset; if (!CpuFeatures::IsSupported(ARMv7) && IsMovImmed(Memory::int32_at(pc))) { DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)) && IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize))); // This is an extended constant pool lookup (ARMv6). Instr mov_instr = instr_at(pc); Instr orr_instr_1 = instr_at(pc + kInstrSize); Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize); Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize); cp_offset = DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) | DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3); } else if (IsMovW(Memory::int32_at(pc))) { DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)) && IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize))); // This is an extended constant pool lookup (ARMv7). Instruction* movw_instr = Instruction::At(pc); Instruction* movt_instr = Instruction::At(pc + kInstrSize); cp_offset = (movt_instr->ImmedMovwMovtValue() << 16) | movw_instr->ImmedMovwMovtValue(); } else { // This is a small constant pool lookup. DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc))); cp_offset = GetLdrRegisterImmediateOffset(Memory::int32_at(pc)); } return reinterpret_cast<Address>(constant_pool) + cp_offset; } else { DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc))); Instr instr = Memory::int32_at(pc); return pc + GetLdrRegisterImmediateOffset(instr) + kPcLoadDelta; } } Address Assembler::target_address_at(Address pc, ConstantPoolArray* constant_pool) { if (is_constant_pool_load(pc)) { // This is a constant pool lookup. Return the value in the constant pool. return Memory::Address_at(constant_pool_entry_address(pc, constant_pool)); } else if (CpuFeatures::IsSupported(ARMv7)) { // This is an movw / movt immediate load. Return the immediate. DCHECK(IsMovW(Memory::int32_at(pc)) && IsMovT(Memory::int32_at(pc + kInstrSize))); Instruction* movw_instr = Instruction::At(pc); Instruction* movt_instr = Instruction::At(pc + kInstrSize); return reinterpret_cast<Address>( (movt_instr->ImmedMovwMovtValue() << 16) | movw_instr->ImmedMovwMovtValue()); } else { // This is an mov / orr immediate load. Return the immediate. DCHECK(IsMovImmed(Memory::int32_at(pc)) && IsOrrImmed(Memory::int32_at(pc + kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize))); Instr mov_instr = instr_at(pc); Instr orr_instr_1 = instr_at(pc + kInstrSize); Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize); Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize); Address ret = reinterpret_cast<Address>( DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) | DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3)); return ret; } } void Assembler::set_target_address_at(Address pc, ConstantPoolArray* constant_pool, Address target, ICacheFlushMode icache_flush_mode) { if (is_constant_pool_load(pc)) { // This is a constant pool lookup. Update the entry in the constant pool. Memory::Address_at(constant_pool_entry_address(pc, constant_pool)) = target; // Intuitively, we would think it is necessary to always flush the // instruction cache after patching a target address in the code as follows: // CpuFeatures::FlushICache(pc, sizeof(target)); // However, on ARM, no instruction is actually patched in the case // of embedded constants of the form: // ldr ip, [pp, #...] // since the instruction accessing this address in the constant pool remains // unchanged. } else if (CpuFeatures::IsSupported(ARMv7)) { // This is an movw / movt immediate load. Patch the immediate embedded in // the instructions. DCHECK(IsMovW(Memory::int32_at(pc))); DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize))); uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc); uint32_t immediate = reinterpret_cast<uint32_t>(target); instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF); instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16); DCHECK(IsMovW(Memory::int32_at(pc))); DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize))); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { CpuFeatures::FlushICache(pc, 2 * kInstrSize); } } else { // This is an mov / orr immediate load. Patch the immediate embedded in // the instructions. DCHECK(IsMovImmed(Memory::int32_at(pc)) && IsOrrImmed(Memory::int32_at(pc + kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize))); uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc); uint32_t immediate = reinterpret_cast<uint32_t>(target); instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask); instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8)); instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16)); instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24)); DCHECK(IsMovImmed(Memory::int32_at(pc)) && IsOrrImmed(Memory::int32_at(pc + kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) && IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize))); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { CpuFeatures::FlushICache(pc, 4 * kInstrSize); } } } } } // namespace v8::internal #endif // V8_ARM_ASSEMBLER_ARM_INL_H_