/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkData.h" #include "SkEndian.h" #include "SkImageInfo.h" #include "SkTextureCompressor.h" #include "Test.h" // TODO: Create separate tests for RGB and RGBA data once // ASTC and ETC1 decompression is implemented. static bool decompresses_a8(SkTextureCompressor::Format fmt) { switch (fmt) { case SkTextureCompressor::kLATC_Format: case SkTextureCompressor::kR11_EAC_Format: return true; default: return false; } } static bool compresses_a8(SkTextureCompressor::Format fmt) { switch (fmt) { case SkTextureCompressor::kLATC_Format: case SkTextureCompressor::kR11_EAC_Format: case SkTextureCompressor::kASTC_12x12_Format: return true; default: return false; } } /** * Make sure that we properly fail when we don't have multiple of four image dimensions. */ DEF_TEST(CompressAlphaFailDimensions, reporter) { SkBitmap bitmap; static const int kWidth = 17; static const int kHeight = 17; SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight); // R11_EAC and LATC are both dimensions of 4, so we need to make sure that we // are violating those assumptions. And if we are, then we're also violating the // assumptions of ASTC, which is 12x12 since any number not divisible by 4 is // also not divisible by 12. Our dimensions are prime, so any block dimension // larger than 1 should fail. REPORTER_ASSERT(reporter, kWidth % 4 != 0); REPORTER_ASSERT(reporter, kHeight % 4 != 0); bool setInfoSuccess = bitmap.setInfo(info); REPORTER_ASSERT(reporter, setInfoSuccess); bitmap.allocPixels(info); bitmap.unlockPixels(); for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); if (!compresses_a8(fmt)) { continue; } SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(bitmap, fmt)); REPORTER_ASSERT(reporter, NULL == data); } } /** * Make sure that we properly fail when we don't have the correct bitmap type. * compressed textures can (currently) only be created from A8 bitmaps. */ DEF_TEST(CompressAlphaFailColorType, reporter) { SkBitmap bitmap; static const int kWidth = 12; static const int kHeight = 12; SkImageInfo info = SkImageInfo::MakeN32Premul(kWidth, kHeight); // ASTC is at most 12x12, and any dimension divisible by 12 is also divisible // by 4, which is the dimensions of R11_EAC and LATC. In the future, we might // support additional variants of ASTC, such as 5x6 and 8x8, in which case this would // need to be updated. REPORTER_ASSERT(reporter, kWidth % 12 == 0); REPORTER_ASSERT(reporter, kHeight % 12 == 0); bool setInfoSuccess = bitmap.setInfo(info); REPORTER_ASSERT(reporter, setInfoSuccess); bitmap.allocPixels(info); bitmap.unlockPixels(); for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); if (!compresses_a8(fmt)) { continue; } SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(bitmap, fmt)); REPORTER_ASSERT(reporter, NULL == data); } } /** * Make sure that if you compress a texture with alternating black/white pixels, and * then decompress it, you get what you started with. */ DEF_TEST(CompressCheckerboard, reporter) { SkBitmap bitmap; static const int kWidth = 48; // We need the number to be divisible by both static const int kHeight = 48; // 12 (ASTC) and 16 (ARM NEON R11 EAC). SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight); // ASTC is at most 12x12, and any dimension divisible by 12 is also divisible // by 4, which is the dimensions of R11_EAC and LATC. In the future, we might // support additional variants of ASTC, such as 5x6 and 8x8, in which case this would // need to be updated. Additionally, ARM NEON and SSE code paths support up to // four blocks of R11 EAC at once, so they operate on 16-wide blocks. Hence, the // valid width and height is going to be the LCM of 12 and 16 which is 4*4*3 = 48 REPORTER_ASSERT(reporter, kWidth % 48 == 0); REPORTER_ASSERT(reporter, kHeight % 48 == 0); bool setInfoSuccess = bitmap.setInfo(info); REPORTER_ASSERT(reporter, setInfoSuccess); bitmap.allocPixels(info); bitmap.unlockPixels(); // Populate bitmap { SkAutoLockPixels alp(bitmap); uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels()); REPORTER_ASSERT(reporter, pixels); if (NULL == pixels) { return; } for (int y = 0; y < kHeight; ++y) { for (int x = 0; x < kWidth; ++x) { if ((x ^ y) & 1) { pixels[x] = 0xFF; } else { pixels[x] = 0; } } pixels += bitmap.rowBytes(); } } SkAutoMalloc decompMemory(kWidth*kHeight); uint8_t* decompBuffer = reinterpret_cast<uint8_t*>(decompMemory.get()); REPORTER_ASSERT(reporter, decompBuffer); if (NULL == decompBuffer) { return; } for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); // Ignore formats for RGBA data, since the decompressed buffer // won't match the size and contents of the original. if (!decompresses_a8(fmt) || !compresses_a8(fmt)) { continue; } SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(bitmap, fmt)); REPORTER_ASSERT(reporter, data); if (NULL == data) { continue; } bool decompResult = SkTextureCompressor::DecompressBufferFromFormat( decompBuffer, kWidth, data->bytes(), kWidth, kHeight, fmt); REPORTER_ASSERT(reporter, decompResult); SkAutoLockPixels alp(bitmap); uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels()); REPORTER_ASSERT(reporter, pixels); if (NULL == pixels) { continue; } for (int y = 0; y < kHeight; ++y) { for (int x = 0; x < kWidth; ++x) { bool ok = pixels[y*bitmap.rowBytes() + x] == decompBuffer[y*kWidth + x]; REPORTER_ASSERT(reporter, ok); } } } } /** * Make sure that if we pass in a solid color bitmap that we get the appropriate results */ DEF_TEST(CompressLATC, reporter) { const SkTextureCompressor::Format kLATCFormat = SkTextureCompressor::kLATC_Format; static const int kLATCEncodedBlockSize = 8; SkBitmap bitmap; static const int kWidth = 8; static const int kHeight = 8; SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight); bool setInfoSuccess = bitmap.setInfo(info); REPORTER_ASSERT(reporter, setInfoSuccess); bitmap.allocPixels(info); bitmap.unlockPixels(); int latcDimX, latcDimY; SkTextureCompressor::GetBlockDimensions(kLATCFormat, &latcDimX, &latcDimY); REPORTER_ASSERT(reporter, kWidth % latcDimX == 0); REPORTER_ASSERT(reporter, kHeight % latcDimY == 0); const size_t kSizeToBe = SkTextureCompressor::GetCompressedDataSize(kLATCFormat, kWidth, kHeight); REPORTER_ASSERT(reporter, kSizeToBe == ((kWidth*kHeight*kLATCEncodedBlockSize)/16)); REPORTER_ASSERT(reporter, (kSizeToBe % kLATCEncodedBlockSize) == 0); for (int lum = 0; lum < 256; ++lum) { bitmap.lockPixels(); uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels()); REPORTER_ASSERT(reporter, pixels); if (NULL == pixels) { bitmap.unlockPixels(); continue; } for (int i = 0; i < kWidth*kHeight; ++i) { pixels[i] = lum; } bitmap.unlockPixels(); SkAutoDataUnref latcData( SkTextureCompressor::CompressBitmapToFormat(bitmap, kLATCFormat)); REPORTER_ASSERT(reporter, latcData); if (NULL == latcData) { continue; } REPORTER_ASSERT(reporter, kSizeToBe == latcData->size()); // Make sure that it all matches a given block encoding. Since we have // COMPRESS_LATC_FAST defined in SkTextureCompressor_LATC.cpp, we are using // an approximation scheme that optimizes for speed against coverage maps. // That means that each palette in the encoded block is exactly the same, // and that the three bits saved per pixel are computed from the top three // bits of the luminance value. const uint64_t kIndexEncodingMap[8] = { 1, 7, 6, 5, 4, 3, 2, 0 }; // Quantize to three bits in the same way that we do our LATC compression: // 1. Divide by two // 2. Add 9 // 3. Divide by two // 4. Approximate division by three twice uint32_t quant = static_cast<uint32_t>(lum); quant >>= 1; // 1 quant += 9; // 2 quant >>= 1; // 3 uint32_t a, b, c, ar, br, cr; // First division by three a = quant >> 2; ar = (quant & 0x3) << 4; b = quant >> 4; br = (quant & 0xF) << 2; c = quant >> 6; cr = (quant & 0x3F); quant = (a + b + c) + ((ar + br + cr) >> 6); // Second division by three a = quant >> 2; ar = (quant & 0x3) << 4; b = quant >> 4; br = (quant & 0xF) << 2; c = quant >> 6; cr = (quant & 0x3F); quant = (a + b + c) + ((ar + br + cr) >> 6); const uint64_t kIndex = kIndexEncodingMap[quant]; const uint64_t kConstColorEncoding = SkEndian_SwapLE64( 255 | (kIndex << 16) | (kIndex << 19) | (kIndex << 22) | (kIndex << 25) | (kIndex << 28) | (kIndex << 31) | (kIndex << 34) | (kIndex << 37) | (kIndex << 40) | (kIndex << 43) | (kIndex << 46) | (kIndex << 49) | (kIndex << 52) | (kIndex << 55) | (kIndex << 58) | (kIndex << 61)); const uint64_t* blockPtr = reinterpret_cast<const uint64_t*>(latcData->data()); for (size_t i = 0; i < (kSizeToBe/8); ++i) { REPORTER_ASSERT(reporter, blockPtr[i] == kConstColorEncoding); } } }