/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTextureCompressor_ASTC.h" #include "SkTextureCompressor_Blitter.h" #include "SkBlitter.h" #include "SkEndian.h" #include "SkMath.h" // This table contains the weight values for each texel. This is used in determining // how to convert a 12x12 grid of alpha values into a 6x5 grid of index values. Since // we have a 6x5 grid, that gives 30 values that we have to compute. For each index, // we store up to 20 different triplets of values. In order the triplets are: // weight, texel-x, texel-y // The weight value corresponds to the amount that this index contributes to the final // index value of the given texel. Hence, we need to reconstruct the 6x5 index grid // from their relative contribution to the 12x12 texel grid. // // The algorithm is something like this: // foreach index i: // total-weight = 0; // total-alpha = 0; // for w = 1 to 20: // weight = table[i][w*3]; // texel-x = table[i][w*3 + 1]; // texel-y = table[i][w*3 + 2]; // if weight >= 0: // total-weight += weight; // total-alpha += weight * alphas[texel-x][texel-y]; // // total-alpha /= total-weight; // index = top three bits of total-alpha // // If the associated index does not contribute to 20 different texels (e.g. it's in // a corner), then the extra texels are stored with -1's in the table. static const int8_t k6x5To12x12Table[30][60] = { { 16, 0, 0, 9, 1, 0, 1, 2, 0, 10, 0, 1, 6, 1, 1, 1, 2, 1, 4, 0, 2, 2, 1, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 7, 1, 0, 15, 2, 0, 10, 3, 0, 3, 4, 0, 4, 1, 1, 9, 2, 1, 6, 3, 1, 2, 4, 1, 2, 1, 2, 4, 2, 2, 3, 3, 2, 1, 4, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 6, 3, 0, 13, 4, 0, 12, 5, 0, 4, 6, 0, 4, 3, 1, 8, 4, 1, 8, 5, 1, 3, 6, 1, 1, 3, 2, 3, 4, 2, 3, 5, 2, 1, 6, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 4, 5, 0, 12, 6, 0, 13, 7, 0, 6, 8, 0, 2, 5, 1, 7, 6, 1, 8, 7, 1, 4, 8, 1, 1, 5, 2, 3, 6, 2, 3, 7, 2, 2, 8, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 3, 7, 0, 10, 8, 0, 15, 9, 0, 7, 10, 0, 2, 7, 1, 6, 8, 1, 9, 9, 1, 4, 10, 1, 1, 7, 2, 2, 8, 2, 4, 9, 2, 2, 10, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 1, 9, 0, 9, 10, 0, 16, 11, 0, 1, 9, 1, 6, 10, 1, 10, 11, 1, 2, 10, 2, 4, 11, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 6, 0, 1, 3, 1, 1, 12, 0, 2, 7, 1, 2, 1, 2, 2, 15, 0, 3, 8, 1, 3, 1, 2, 3, 9, 0, 4, 5, 1, 4, 1, 2, 4, 3, 0, 5, 2, 1, 5, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 3, 1, 1, 6, 2, 1, 4, 3, 1, 1, 4, 1, 5, 1, 2, 11, 2, 2, 7, 3, 2, 2, 4, 2, 7, 1, 3, 14, 2, 3, 9, 3, 3, 3, 4, 3, 4, 1, 4, 8, 2, 4, 6, 3, 4, 2, 4, 4, 1, 1, 5, 3, 2, 5, 2, 3, 5, 1, 4, 5}, // n = 20 { 2, 3, 1, 5, 4, 1, 4, 5, 1, 1, 6, 1, 5, 3, 2, 10, 4, 2, 9, 5, 2, 3, 6, 2, 6, 3, 3, 12, 4, 3, 11, 5, 3, 4, 6, 3, 3, 3, 4, 7, 4, 4, 7, 5, 4, 2, 6, 4, 1, 3, 5, 2, 4, 5, 2, 5, 5, 1, 6, 5}, // n = 20 { 2, 5, 1, 5, 6, 1, 5, 7, 1, 2, 8, 1, 3, 5, 2, 9, 6, 2, 10, 7, 2, 4, 8, 2, 4, 5, 3, 11, 6, 3, 12, 7, 3, 6, 8, 3, 2, 5, 4, 7, 6, 4, 7, 7, 4, 3, 8, 4, 1, 5, 5, 2, 6, 5, 2, 7, 5, 1, 8, 5}, // n = 20 { 1, 7, 1, 4, 8, 1, 6, 9, 1, 3, 10, 1, 2, 7, 2, 8, 8, 2, 11, 9, 2, 5, 10, 2, 3, 7, 3, 9, 8, 3, 14, 9, 3, 7, 10, 3, 2, 7, 4, 6, 8, 4, 8, 9, 4, 4, 10, 4, 1, 7, 5, 2, 8, 5, 3, 9, 5, 1, 10, 5}, // n = 20 { 3, 10, 1, 6, 11, 1, 1, 9, 2, 7, 10, 2, 12, 11, 2, 1, 9, 3, 8, 10, 3, 15, 11, 3, 1, 9, 4, 5, 10, 4, 9, 11, 4, 2, 10, 5, 3, 11, 5, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 1, 0, 3, 1, 1, 3, 7, 0, 4, 4, 1, 4, 13, 0, 5, 7, 1, 5, 1, 2, 5, 13, 0, 6, 7, 1, 6, 1, 2, 6, 7, 0, 7, 4, 1, 7, 1, 0, 8, 1, 1, 8, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 1, 2, 3, 1, 3, 3, 3, 1, 4, 7, 2, 4, 4, 3, 4, 1, 4, 4, 6, 1, 5, 12, 2, 5, 8, 3, 5, 2, 4, 5, 6, 1, 6, 12, 2, 6, 8, 3, 6, 2, 4, 6, 3, 1, 7, 7, 2, 7, 4, 3, 7, 1, 4, 7, 1, 2, 8, 1, 3, 8}, // n = 20 { 1, 4, 3, 1, 5, 3, 3, 3, 4, 6, 4, 4, 5, 5, 4, 2, 6, 4, 5, 3, 5, 11, 4, 5, 10, 5, 5, 3, 6, 5, 5, 3, 6, 11, 4, 6, 10, 5, 6, 3, 6, 6, 3, 3, 7, 6, 4, 7, 5, 5, 7, 2, 6, 7, 1, 4, 8, 1, 5, 8}, // n = 20 { 1, 6, 3, 1, 7, 3, 2, 5, 4, 5, 6, 4, 6, 7, 4, 3, 8, 4, 3, 5, 5, 10, 6, 5, 11, 7, 5, 5, 8, 5, 3, 5, 6, 10, 6, 6, 11, 7, 6, 5, 8, 6, 2, 5, 7, 5, 6, 7, 6, 7, 7, 3, 8, 7, 1, 6, 8, 1, 7, 8}, // n = 20 { 1, 8, 3, 1, 9, 3, 1, 7, 4, 4, 8, 4, 7, 9, 4, 3, 10, 4, 2, 7, 5, 8, 8, 5, 12, 9, 5, 6, 10, 5, 2, 7, 6, 8, 8, 6, 12, 9, 6, 6, 10, 6, 1, 7, 7, 4, 8, 7, 7, 9, 7, 3, 10, 7, 1, 8, 8, 1, 9, 8}, // n = 20 { 1, 10, 3, 1, 11, 3, 4, 10, 4, 7, 11, 4, 1, 9, 5, 7, 10, 5, 13, 11, 5, 1, 9, 6, 7, 10, 6, 13, 11, 6, 4, 10, 7, 7, 11, 7, 1, 10, 8, 1, 11, 8, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 3, 0, 6, 2, 1, 6, 9, 0, 7, 5, 1, 7, 1, 2, 7, 15, 0, 8, 8, 1, 8, 1, 2, 8, 12, 0, 9, 7, 1, 9, 1, 2, 9, 6, 0, 10, 3, 1, 10, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 1, 1, 6, 3, 2, 6, 2, 3, 6, 1, 4, 6, 4, 1, 7, 8, 2, 7, 6, 3, 7, 2, 4, 7, 7, 1, 8, 14, 2, 8, 9, 3, 8, 3, 4, 8, 5, 1, 9, 11, 2, 9, 8, 3, 9, 2, 4, 9, 3, 1, 10, 6, 2, 10, 4, 3, 10, 1, 4, 10}, // n = 20 { 1, 3, 6, 2, 4, 6, 2, 5, 6, 1, 6, 6, 3, 3, 7, 7, 4, 7, 7, 5, 7, 2, 6, 7, 6, 3, 8, 12, 4, 8, 11, 5, 8, 4, 6, 8, 4, 3, 9, 10, 4, 9, 9, 5, 9, 3, 6, 9, 2, 3, 10, 5, 4, 10, 5, 5, 10, 2, 6, 10}, // n = 20 { 1, 5, 6, 2, 6, 6, 2, 7, 6, 1, 8, 6, 2, 5, 7, 7, 6, 7, 7, 7, 7, 3, 8, 7, 4, 5, 8, 11, 6, 8, 12, 7, 8, 6, 8, 8, 3, 5, 9, 9, 6, 9, 10, 7, 9, 5, 8, 9, 1, 5, 10, 4, 6, 10, 5, 7, 10, 2, 8, 10}, // n = 20 { 1, 7, 6, 2, 8, 6, 3, 9, 6, 1, 10, 6, 2, 7, 7, 6, 8, 7, 8, 9, 7, 4, 10, 7, 3, 7, 8, 9, 8, 8, 14, 9, 8, 7, 10, 8, 2, 7, 9, 7, 8, 9, 11, 9, 9, 5, 10, 9, 1, 7, 10, 4, 8, 10, 6, 9, 10, 3, 10, 10}, // n = 20 { 2, 10, 6, 3, 11, 6, 1, 9, 7, 5, 10, 7, 9, 11, 7, 1, 9, 8, 8, 10, 8, 15, 11, 8, 1, 9, 9, 7, 10, 9, 12, 11, 9, 3, 10, 10, 6, 11, 10, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 4, 0, 9, 2, 1, 9, 10, 0, 10, 6, 1, 10, 1, 2, 10, 16, 0, 11, 9, 1, 11, 1, 2, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 2, 1, 9, 4, 2, 9, 2, 3, 9, 1, 4, 9, 4, 1, 10, 9, 2, 10, 6, 3, 10, 2, 4, 10, 7, 1, 11, 15, 2, 11, 10, 3, 11, 3, 4, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 2, 3, 9, 3, 4, 9, 3, 5, 9, 1, 6, 9, 4, 3, 10, 8, 4, 10, 7, 5, 10, 2, 6, 10, 6, 3, 11, 13, 4, 11, 12, 5, 11, 4, 6, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 1, 5, 9, 3, 6, 9, 3, 7, 9, 1, 8, 9, 3, 5, 10, 8, 6, 10, 8, 7, 10, 4, 8, 10, 4, 5, 11, 12, 6, 11, 13, 7, 11, 6, 8, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 1, 7, 9, 3, 8, 9, 4, 9, 9, 2, 10, 9, 2, 7, 10, 6, 8, 10, 9, 9, 10, 4, 10, 10, 3, 7, 11, 10, 8, 11, 15, 9, 11, 7, 10, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 { 2, 10, 9, 4, 11, 9, 1, 9, 10, 6, 10, 10, 10, 11, 10, 1, 9, 11, 9, 10, 11, 16, 11, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0} // n = 20 }; // Returns the alpha value of a texel at position (x, y) from src. // (x, y) are assumed to be in the range [0, 12). inline uint8_t GetAlpha(const uint8_t *src, size_t rowBytes, int x, int y) { SkASSERT(x >= 0 && x < 12); SkASSERT(y >= 0 && y < 12); SkASSERT(rowBytes >= 12); return *(src + y*rowBytes + x); } inline uint8_t GetAlphaTranspose(const uint8_t *src, size_t rowBytes, int x, int y) { return GetAlpha(src, rowBytes, y, x); } // Output the 16 bytes stored in top and bottom and advance the pointer. The bytes // are stored as the integers are represented in memory, so they should be swapped // if necessary. static inline void send_packing(uint8_t** dst, const uint64_t top, const uint64_t bottom) { uint64_t* dst64 = reinterpret_cast<uint64_t*>(*dst); dst64[0] = top; dst64[1] = bottom; *dst += 16; } // Compresses an ASTC block, by looking up the proper contributions from // k6x5To12x12Table and computing an index from the associated values. typedef uint8_t (*GetAlphaProc)(const uint8_t* src, size_t rowBytes, int x, int y); template<GetAlphaProc getAlphaProc> static void compress_a8_astc_block(uint8_t** dst, const uint8_t* src, size_t rowBytes) { // Check for single color bool constant = true; const uint32_t firstInt = *(reinterpret_cast<const uint32_t*>(src)); for (int i = 0; i < 12; ++i) { const uint32_t *rowInt = reinterpret_cast<const uint32_t *>(src + i*rowBytes); constant = constant && (rowInt[0] == firstInt); constant = constant && (rowInt[1] == firstInt); constant = constant && (rowInt[2] == firstInt); } if (constant) { if (0 == firstInt) { // All of the indices are set to zero, and the colors are // v0 = 0, v1 = 255, so everything will be transparent. send_packing(dst, SkTEndian_SwapLE64(0x0000000001FE000173ULL), 0); return; } else if (0xFFFFFFFF == firstInt) { // All of the indices are set to zero, and the colors are // v0 = 255, v1 = 0, so everything will be opaque. send_packing(dst, SkTEndian_SwapLE64(0x000000000001FE0173ULL), 0); return; } } uint8_t indices[30]; // 6x5 index grid for (int idx = 0; idx < 30; ++idx) { int weightTot = 0; int alphaTot = 0; for (int w = 0; w < 20; ++w) { const int8_t weight = k6x5To12x12Table[idx][w*3]; if (weight > 0) { const int x = k6x5To12x12Table[idx][w*3 + 1]; const int y = k6x5To12x12Table[idx][w*3 + 2]; weightTot += weight; alphaTot += weight * getAlphaProc(src, rowBytes, x, y); } else { // In our table, not every entry has 20 weights, and all // of them are nonzero. Once we hit a negative weight, we // know that all of the other weights are not valid either. break; } } indices[idx] = (alphaTot / weightTot) >> 5; } // Pack indices... The ASTC block layout is fairly complicated. An extensive // description can be found here: // https://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt // // Here is a summary of the options that we've chosen: // 1. Block mode: 0b00101110011 // - 6x5 texel grid // - Single plane // - Low-precision index values // - Index range 0-7 (three bits per index) // 2. Partitions: 0b00 // - One partition // 3. Color Endpoint Mode: 0b0000 // - Direct luminance -- e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF); // 4. 8-bit endpoints: // v0 = 0, v1 = 255 // // The rest of the block contains the 30 index values from before, which // are currently stored in the indices variable. uint64_t top = 0x0000000001FE000173ULL; uint64_t bottom = 0; for (int idx = 0; idx <= 20; ++idx) { const uint8_t index = indices[idx]; bottom |= static_cast<uint64_t>(index) << (61-(idx*3)); } // index 21 straddles top and bottom { const uint8_t index = indices[21]; bottom |= index & 1; top |= static_cast<uint64_t>((index >> 2) | (index & 2)) << 62; } for (int idx = 22; idx < 30; ++idx) { const uint8_t index = indices[idx]; top |= static_cast<uint64_t>(index) << (59-(idx-22)*3); } // Reverse each 3-bit index since indices are read in reverse order... uint64_t t = (bottom ^ (bottom >> 2)) & 0x2492492492492492ULL; bottom = bottom ^ t ^ (t << 2); t = (top ^ (top >> 2)) & 0x0924924000000000ULL; top = top ^ t ^ (t << 2); send_packing(dst, SkEndian_SwapLE64(top), SkEndian_SwapLE64(bottom)); } inline void CompressA8ASTCBlockVertical(uint8_t* dst, const uint8_t* src) { compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12); } //////////////////////////////////////////////////////////////////////////////// // // ASTC Decoder // // Full details available in the spec: // http://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt // //////////////////////////////////////////////////////////////////////////////// // Enable this to assert whenever a decoded block has invalid ASTC values. Otherwise, // each invalid block will result in a disgusting magenta color. #define ASSERT_ASTC_DECODE_ERROR 0 // Reverse 64-bit integer taken from TAOCP 4a, although it's better // documented at this site: // http://matthewarcus.wordpress.com/2012/11/18/reversing-a-64-bit-word/ template <typename T, T m, int k> static inline T swap_bits(T p) { T q = ((p>>k)^p) & m; return p^q^(q<<k); } static inline uint64_t reverse64(uint64_t n) { static const uint64_t m0 = 0x5555555555555555ULL; static const uint64_t m1 = 0x0300c0303030c303ULL; static const uint64_t m2 = 0x00c0300c03f0003fULL; static const uint64_t m3 = 0x00000ffc00003fffULL; n = ((n>>1)&m0) | (n&m0)<<1; n = swap_bits<uint64_t, m1, 4>(n); n = swap_bits<uint64_t, m2, 8>(n); n = swap_bits<uint64_t, m3, 20>(n); n = (n >> 34) | (n << 30); return n; } // An ASTC block is 128 bits. We represent it as two 64-bit integers in order // to efficiently operate on the block using bitwise operations. struct ASTCBlock { uint64_t fLow; uint64_t fHigh; // Reverses the bits of an ASTC block, making the LSB of the // 128 bit block the MSB. inline void reverse() { const uint64_t newLow = reverse64(this->fHigh); this->fHigh = reverse64(this->fLow); this->fLow = newLow; } }; // Writes the given color to every pixel in the block. This is used by void-extent // blocks (a special constant-color encoding of a block) and by the error function. static inline void write_constant_color(uint8_t* dst, int blockDimX, int blockDimY, int dstRowBytes, SkColor color) { for (int y = 0; y < blockDimY; ++y) { SkColor *dstColors = reinterpret_cast<SkColor*>(dst); for (int x = 0; x < blockDimX; ++x) { dstColors[x] = color; } dst += dstRowBytes; } } // Sets the entire block to the ASTC "error" color, a disgusting magenta // that's not supposed to appear in natural images. static inline void write_error_color(uint8_t* dst, int blockDimX, int blockDimY, int dstRowBytes) { static const SkColor kASTCErrorColor = SkColorSetRGB(0xFF, 0, 0xFF); #if ASSERT_ASTC_DECODE_ERROR SkDEBUGFAIL("ASTC decoding error!\n"); #endif write_constant_color(dst, blockDimX, blockDimY, dstRowBytes, kASTCErrorColor); } // Reads up to 64 bits of the ASTC block starting from bit // 'from' and going up to but not including bit 'to'. 'from' starts // counting from the LSB, counting up to the MSB. Returns -1 on // error. static uint64_t read_astc_bits(const ASTCBlock &block, int from, int to) { SkASSERT(0 <= from && from <= 128); SkASSERT(0 <= to && to <= 128); const int nBits = to - from; if (0 == nBits) { return 0; } if (nBits < 0 || 64 <= nBits) { SkDEBUGFAIL("ASTC -- shouldn't read more than 64 bits"); return -1; } // Remember, the 'to' bit isn't read. uint64_t result = 0; if (to <= 64) { // All desired bits are in the low 64-bits. result = (block.fLow >> from) & ((1ULL << nBits) - 1); } else if (from >= 64) { // All desired bits are in the high 64-bits. result = (block.fHigh >> (from - 64)) & ((1ULL << nBits) - 1); } else { // from < 64 && to > 64 SkASSERT(nBits > (64 - from)); const int nLow = 64 - from; const int nHigh = nBits - nLow; result = ((block.fLow >> from) & ((1ULL << nLow) - 1)) | ((block.fHigh & ((1ULL << nHigh) - 1)) << nLow); } return result; } // Returns the number of bits needed to represent a number // in the given power-of-two range (excluding the power of two itself). static inline int bits_for_range(int x) { SkASSERT(SkIsPow2(x)); SkASSERT(0 != x); // Since we know it's a power of two, there should only be one bit set, // meaning the number of trailing zeros is 31 minus the number of leading // zeros. return 31 - SkCLZ(x); } // Clamps an integer to the range [0, 255] static inline int clamp_byte(int x) { return SkClampMax(x, 255); } // Helper function defined in the ASTC spec, section C.2.14 // It transfers a few bits of precision from one value to another. static inline void bit_transfer_signed(int *a, int *b) { *b >>= 1; *b |= *a & 0x80; *a >>= 1; *a &= 0x3F; if ( (*a & 0x20) != 0 ) { *a -= 0x40; } } // Helper function defined in the ASTC spec, section C.2.14 // It uses the value in the blue channel to tint the red and green static inline SkColor blue_contract(int a, int r, int g, int b) { return SkColorSetARGB(a, (r + b) >> 1, (g + b) >> 1, b); } // Helper function that decodes two colors from eight values. If isRGB is true, // then the pointer 'v' contains six values and the last two are considered to be // 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This // corresponds to the decode procedure for the following endpoint modes: // kLDR_RGB_Direct_ColorEndpointMode // kLDR_RGBA_Direct_ColorEndpointMode static inline void decode_rgba_direct(const int *v, SkColor *endpoints, bool isRGB) { int v6 = 0xFF; int v7 = 0xFF; if (!isRGB) { v6 = v[6]; v7 = v[7]; } const int s0 = v[0] + v[2] + v[4]; const int s1 = v[1] + v[3] + v[5]; if (s1 >= s0) { endpoints[0] = SkColorSetARGB(v6, v[0], v[2], v[4]); endpoints[1] = SkColorSetARGB(v7, v[1], v[3], v[5]); } else { endpoints[0] = blue_contract(v7, v[1], v[3], v[5]); endpoints[1] = blue_contract(v6, v[0], v[2], v[4]); } } // Helper function that decodes two colors from six values. If isRGB is true, // then the pointer 'v' contains four values and the last two are considered to be // 0xFF. If isRGB is false, then all six values come from the pointer 'v'. This // corresponds to the decode procedure for the following endpoint modes: // kLDR_RGB_BaseScale_ColorEndpointMode // kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode static inline void decode_rgba_basescale(const int *v, SkColor *endpoints, bool isRGB) { int v4 = 0xFF; int v5 = 0xFF; if (!isRGB) { v4 = v[4]; v5 = v[5]; } endpoints[0] = SkColorSetARGB(v4, (v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8); endpoints[1] = SkColorSetARGB(v5, v[0], v[1], v[2]); } // Helper function that decodes two colors from eight values. If isRGB is true, // then the pointer 'v' contains six values and the last two are considered to be // 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This // corresponds to the decode procedure for the following endpoint modes: // kLDR_RGB_BaseOffset_ColorEndpointMode // kLDR_RGBA_BaseOffset_ColorEndpointMode // // If isRGB is true, then treat this as if v6 and v7 are meant to encode full alpha values. static inline void decode_rgba_baseoffset(const int *v, SkColor *endpoints, bool isRGB) { int v0 = v[0]; int v1 = v[1]; int v2 = v[2]; int v3 = v[3]; int v4 = v[4]; int v5 = v[5]; int v6 = isRGB ? 0xFF : v[6]; // The 0 is here because this is an offset, not a direct value int v7 = isRGB ? 0 : v[7]; bit_transfer_signed(&v1, &v0); bit_transfer_signed(&v3, &v2); bit_transfer_signed(&v5, &v4); if (!isRGB) { bit_transfer_signed(&v7, &v6); } int c[2][4]; if ((v1 + v3 + v5) >= 0) { c[0][0] = v6; c[0][1] = v0; c[0][2] = v2; c[0][3] = v4; c[1][0] = v6 + v7; c[1][1] = v0 + v1; c[1][2] = v2 + v3; c[1][3] = v4 + v5; } else { c[0][0] = v6 + v7; c[0][1] = (v0 + v1 + v4 + v5) >> 1; c[0][2] = (v2 + v3 + v4 + v5) >> 1; c[0][3] = v4 + v5; c[1][0] = v6; c[1][1] = (v0 + v4) >> 1; c[1][2] = (v2 + v4) >> 1; c[1][3] = v4; } endpoints[0] = SkColorSetARGB(clamp_byte(c[0][0]), clamp_byte(c[0][1]), clamp_byte(c[0][2]), clamp_byte(c[0][3])); endpoints[1] = SkColorSetARGB(clamp_byte(c[1][0]), clamp_byte(c[1][1]), clamp_byte(c[1][2]), clamp_byte(c[1][3])); } // A helper class used to decode bit values from standard integer values. // We can't use this class with ASTCBlock because then it would need to // handle multi-value ranges, and it's non-trivial to lookup a range of bits // that splits across two different ints. template <typename T> class SkTBits { public: SkTBits(const T val) : fVal(val) { } // Returns the bit at the given position T operator [](const int idx) const { return (fVal >> idx) & 1; } // Returns the bits in the given range, inclusive T operator ()(const int end, const int start) const { SkASSERT(end >= start); return (fVal >> start) & ((1ULL << ((end - start) + 1)) - 1); } private: const T fVal; }; // This algorithm matches the trit block decoding in the spec (Table C.2.14) static void decode_trit_block(int* dst, int nBits, const uint64_t &block) { SkTBits<uint64_t> blockBits(block); // According to the spec, a trit block, which contains five values, // has the following layout: // // 27 26 25 24 23 22 21 20 19 18 17 16 // ----------------------------------------------- // |T7 | m4 |T6 T5 | m3 |T4 | // ----------------------------------------------- // // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // -------------------------------------------------------------- // | m2 |T3 T2 | m1 |T1 T0 | m0 | // -------------------------------------------------------------- // // Where the m's are variable width depending on the number of bits used // to encode the values (anywhere from 0 to 6). Since 3^5 = 243, the extra // byte labeled T (whose bits are interleaved where 0 is the LSB and 7 is // the MSB), contains five trit values. To decode the trit values, the spec // says that we need to follow the following algorithm: // // if T[4:2] = 111 // C = { T[7:5], T[1:0] }; t4 = t3 = 2 // else // C = T[4:0] // // if T[6:5] = 11 // t4 = 2; t3 = T[7] // else // t4 = T[7]; t3 = T[6:5] // // if C[1:0] = 11 // t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] } // else if C[3:2] = 11 // t2 = 2; t1 = 2; t0 = C[1:0] // else // t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] } // // The following C++ code is meant to mirror this layout and algorithm as // closely as possible. int m[5]; if (0 == nBits) { memset(m, 0, sizeof(m)); } else { SkASSERT(nBits < 8); m[0] = static_cast<int>(blockBits(nBits - 1, 0)); m[1] = static_cast<int>(blockBits(2*nBits - 1 + 2, nBits + 2)); m[2] = static_cast<int>(blockBits(3*nBits - 1 + 4, 2*nBits + 4)); m[3] = static_cast<int>(blockBits(4*nBits - 1 + 5, 3*nBits + 5)); m[4] = static_cast<int>(blockBits(5*nBits - 1 + 7, 4*nBits + 7)); } int T = static_cast<int>(blockBits(nBits + 1, nBits)) | (static_cast<int>(blockBits(2*nBits + 2 + 1, 2*nBits + 2)) << 2) | (static_cast<int>(blockBits[3*nBits + 4] << 4)) | (static_cast<int>(blockBits(4*nBits + 5 + 1, 4*nBits + 5)) << 5) | (static_cast<int>(blockBits[5*nBits + 7] << 7)); int t[5]; int C; SkTBits<int> Tbits(T); if (0x7 == Tbits(4, 2)) { C = (Tbits(7, 5) << 2) | Tbits(1, 0); t[3] = t[4] = 2; } else { C = Tbits(4, 0); if (Tbits(6, 5) == 0x3) { t[4] = 2; t[3] = Tbits[7]; } else { t[4] = Tbits[7]; t[3] = Tbits(6, 5); } } SkTBits<int> Cbits(C); if (Cbits(1, 0) == 0x3) { t[2] = 2; t[1] = Cbits[4]; t[0] = (Cbits[3] << 1) | (Cbits[2] & (0x1 & ~(Cbits[3]))); } else if (Cbits(3, 2) == 0x3) { t[2] = 2; t[1] = 2; t[0] = Cbits(1, 0); } else { t[2] = Cbits[4]; t[1] = Cbits(3, 2); t[0] = (Cbits[1] << 1) | (Cbits[0] & (0x1 & ~(Cbits[1]))); } #ifdef SK_DEBUG // Make sure all of the decoded values have a trit less than three // and a bit value within the range of the allocated bits. for (int i = 0; i < 5; ++i) { SkASSERT(t[i] < 3); SkASSERT(m[i] < (1 << nBits)); } #endif for (int i = 0; i < 5; ++i) { *dst = (t[i] << nBits) + m[i]; ++dst; } } // This algorithm matches the quint block decoding in the spec (Table C.2.15) static void decode_quint_block(int* dst, int nBits, const uint64_t &block) { SkTBits<uint64_t> blockBits(block); // According to the spec, a quint block, which contains three values, // has the following layout: // // // 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // -------------------------------------------------------------------------- // |Q6 Q5 | m2 |Q4 Q3 | m1 |Q2 Q1 Q0 | m0 | // -------------------------------------------------------------------------- // // Where the m's are variable width depending on the number of bits used // to encode the values (anywhere from 0 to 4). Since 5^3 = 125, the extra // 7-bit value labeled Q (whose bits are interleaved where 0 is the LSB and 6 is // the MSB), contains three quint values. To decode the quint values, the spec // says that we need to follow the following algorithm: // // if Q[2:1] = 11 and Q[6:5] = 00 // q2 = { Q[0], Q[4]&~Q[0], Q[3]&~Q[0] }; q1 = q0 = 4 // else // if Q[2:1] = 11 // q2 = 4; C = { Q[4:3], ~Q[6:5], Q[0] } // else // q2 = T[6:5]; C = Q[4:0] // // if C[2:0] = 101 // q1 = 4; q0 = C[4:3] // else // q1 = C[4:3]; q0 = C[2:0] // // The following C++ code is meant to mirror this layout and algorithm as // closely as possible. int m[3]; if (0 == nBits) { memset(m, 0, sizeof(m)); } else { SkASSERT(nBits < 8); m[0] = static_cast<int>(blockBits(nBits - 1, 0)); m[1] = static_cast<int>(blockBits(2*nBits - 1 + 3, nBits + 3)); m[2] = static_cast<int>(blockBits(3*nBits - 1 + 5, 2*nBits + 5)); } int Q = static_cast<int>(blockBits(nBits + 2, nBits)) | (static_cast<int>(blockBits(2*nBits + 3 + 1, 2*nBits + 3)) << 3) | (static_cast<int>(blockBits(3*nBits + 5 + 1, 3*nBits + 5)) << 5); int q[3]; SkTBits<int> Qbits(Q); // quantum? if (Qbits(2, 1) == 0x3 && Qbits(6, 5) == 0) { const int notBitZero = (0x1 & ~(Qbits[0])); q[2] = (Qbits[0] << 2) | ((Qbits[4] & notBitZero) << 1) | (Qbits[3] & notBitZero); q[1] = 4; q[0] = 4; } else { int C; if (Qbits(2, 1) == 0x3) { q[2] = 4; C = (Qbits(4, 3) << 3) | ((0x3 & ~(Qbits(6, 5))) << 1) | Qbits[0]; } else { q[2] = Qbits(6, 5); C = Qbits(4, 0); } SkTBits<int> Cbits(C); if (Cbits(2, 0) == 0x5) { q[1] = 4; q[0] = Cbits(4, 3); } else { q[1] = Cbits(4, 3); q[0] = Cbits(2, 0); } } #ifdef SK_DEBUG for (int i = 0; i < 3; ++i) { SkASSERT(q[i] < 5); SkASSERT(m[i] < (1 << nBits)); } #endif for (int i = 0; i < 3; ++i) { *dst = (q[i] << nBits) + m[i]; ++dst; } } // Function that decodes a sequence of integers stored as an ISE (Integer // Sequence Encoding) bit stream. The full details of this function are outlined // in section C.2.12 of the ASTC spec. A brief overview is as follows: // // - Each integer in the sequence is bounded by a specific range r. // - The range of each value determines the way the bit stream is interpreted, // - If the range is a power of two, then the sequence is a sequence of bits // - If the range is of the form 3*2^n, then the sequence is stored as a // sequence of blocks, each block contains 5 trits and 5 bit sequences, which // decodes into 5 values. // - Similarly, if the range is of the form 5*2^n, then the sequence is stored as a // sequence of blocks, each block contains 3 quints and 3 bit sequences, which // decodes into 3 values. static bool decode_integer_sequence( int* dst, // The array holding the destination bits int dstSize, // The maximum size of the array int nVals, // The number of values that we'd like to decode const ASTCBlock &block, // The block that we're decoding from int startBit, // The bit from which we're going to do the reading int endBit, // The bit at which we stop reading (not inclusive) bool bReadForward, // If true, then read LSB -> MSB, else read MSB -> LSB int nBits, // The number of bits representing this encoding int nTrits, // The number of trits representing this encoding int nQuints // The number of quints representing this encoding ) { // If we want more values than we have, then fail. if (nVals > dstSize) { return false; } ASTCBlock src = block; if (!bReadForward) { src.reverse(); startBit = 128 - startBit; endBit = 128 - endBit; } while (nVals > 0) { if (nTrits > 0) { SkASSERT(0 == nQuints); int endBlockBit = startBit + 8 + 5*nBits; if (endBlockBit > endBit) { endBlockBit = endBit; } // Trit blocks are three values large. int trits[5]; decode_trit_block(trits, nBits, read_astc_bits(src, startBit, endBlockBit)); memcpy(dst, trits, SkMin32(nVals, 5)*sizeof(int)); dst += 5; nVals -= 5; startBit = endBlockBit; } else if (nQuints > 0) { SkASSERT(0 == nTrits); int endBlockBit = startBit + 7 + 3*nBits; if (endBlockBit > endBit) { endBlockBit = endBit; } // Quint blocks are three values large int quints[3]; decode_quint_block(quints, nBits, read_astc_bits(src, startBit, endBlockBit)); memcpy(dst, quints, SkMin32(nVals, 3)*sizeof(int)); dst += 3; nVals -= 3; startBit = endBlockBit; } else { // Just read the bits, but don't read more than we have... int endValBit = startBit + nBits; if (endValBit > endBit) { endValBit = endBit; } SkASSERT(endValBit - startBit < 31); *dst = static_cast<int>(read_astc_bits(src, startBit, endValBit)); ++dst; --nVals; startBit = endValBit; } } return true; } // Helper function that unquantizes some (seemingly random) generated // numbers... meant to match the ASTC hardware. This function is used // to unquantize both colors (Table C.2.16) and weights (Table C.2.26) static inline int unquantize_value(unsigned mask, int A, int B, int C, int D) { int T = D * C + B; T = T ^ A; T = (A & mask) | (T >> 2); SkASSERT(T < 256); return T; } // Helper function to replicate the bits in x that represents an oldPrec // precision integer into a prec precision integer. For example: // 255 == replicate_bits(7, 3, 8); static inline int replicate_bits(int x, int oldPrec, int prec) { while (oldPrec < prec) { const int toShift = SkMin32(prec-oldPrec, oldPrec); x = (x << toShift) | (x >> (oldPrec - toShift)); oldPrec += toShift; } // Make sure that no bits are set outside the desired precision. SkASSERT((-(1 << prec) & x) == 0); return x; } // Returns the unquantized value of a color that's represented only as // a set of bits. static inline int unquantize_bits_color(int val, int nBits) { return replicate_bits(val, nBits, 8); } // Returns the unquantized value of a color that's represented as a // trit followed by nBits bits. This algorithm follows the sequence // defined in section C.2.13 of the ASTC spec. static inline int unquantize_trit_color(int val, int nBits) { SkASSERT(nBits > 0); SkASSERT(nBits < 7); const int D = (val >> nBits) & 0x3; SkASSERT(D < 3); const int A = -(val & 0x1) & 0x1FF; static const int Cvals[6] = { 204, 93, 44, 22, 11, 5 }; const int C = Cvals[nBits - 1]; int B = 0; const SkTBits<int> valBits(val); switch (nBits) { case 1: B = 0; break; case 2: { const int b = valBits[1]; B = (b << 1) | (b << 2) | (b << 4) | (b << 8); } break; case 3: { const int cb = valBits(2, 1); B = cb | (cb << 2) | (cb << 7); } break; case 4: { const int dcb = valBits(3, 1); B = dcb | (dcb << 6); } break; case 5: { const int edcb = valBits(4, 1); B = (edcb << 5) | (edcb >> 2); } break; case 6: { const int fedcb = valBits(5, 1); B = (fedcb << 4) | (fedcb >> 4); } break; } return unquantize_value(0x80, A, B, C, D); } // Returns the unquantized value of a color that's represented as a // quint followed by nBits bits. This algorithm follows the sequence // defined in section C.2.13 of the ASTC spec. static inline int unquantize_quint_color(int val, int nBits) { const int D = (val >> nBits) & 0x7; SkASSERT(D < 5); const int A = -(val & 0x1) & 0x1FF; static const int Cvals[5] = { 113, 54, 26, 13, 6 }; SkASSERT(nBits > 0); SkASSERT(nBits < 6); const int C = Cvals[nBits - 1]; int B = 0; const SkTBits<int> valBits(val); switch (nBits) { case 1: B = 0; break; case 2: { const int b = valBits[1]; B = (b << 2) | (b << 3) | (b << 8); } break; case 3: { const int cb = valBits(2, 1); B = (cb >> 1) | (cb << 1) | (cb << 7); } break; case 4: { const int dcb = valBits(3, 1); B = (dcb >> 1) | (dcb << 6); } break; case 5: { const int edcb = valBits(4, 1); B = (edcb << 5) | (edcb >> 3); } break; } return unquantize_value(0x80, A, B, C, D); } // This algorithm takes a list of integers, stored in vals, and unquantizes them // in place. This follows the algorithm laid out in section C.2.13 of the ASTC spec. static void unquantize_colors(int *vals, int nVals, int nBits, int nTrits, int nQuints) { for (int i = 0; i < nVals; ++i) { if (nTrits > 0) { SkASSERT(nQuints == 0); vals[i] = unquantize_trit_color(vals[i], nBits); } else if (nQuints > 0) { SkASSERT(nTrits == 0); vals[i] = unquantize_quint_color(vals[i], nBits); } else { SkASSERT(nQuints == 0 && nTrits == 0); vals[i] = unquantize_bits_color(vals[i], nBits); } } } // Returns an interpolated value between c0 and c1 based on the weight. This // follows the algorithm laid out in section C.2.19 of the ASTC spec. static int interpolate_channel(int c0, int c1, int weight) { SkASSERT(0 <= c0 && c0 < 256); SkASSERT(0 <= c1 && c1 < 256); c0 = (c0 << 8) | c0; c1 = (c1 << 8) | c1; const int result = ((c0*(64 - weight) + c1*weight + 32) / 64) >> 8; if (result > 255) { return 255; } SkASSERT(result >= 0); return result; } // Returns an interpolated color between the two endpoints based on the weight. static SkColor interpolate_endpoints(const SkColor endpoints[2], int weight) { return SkColorSetARGB( interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight), interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight), interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight), interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight)); } // Returns an interpolated color between the two endpoints based on the weight. // It uses separate weights for the channel depending on the value of the 'plane' // variable. By default, all channels will use weight 0, and the value of plane // means that weight1 will be used for: // 0: red // 1: green // 2: blue // 3: alpha static SkColor interpolate_dual_endpoints( const SkColor endpoints[2], int weight0, int weight1, int plane) { int a = interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight0); int r = interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight0); int g = interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight0); int b = interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight0); switch (plane) { case 0: r = interpolate_channel( SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight1); break; case 1: g = interpolate_channel( SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight1); break; case 2: b = interpolate_channel( SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight1); break; case 3: a = interpolate_channel( SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight1); break; default: SkDEBUGFAIL("Plane should be 0-3"); break; } return SkColorSetARGB(a, r, g, b); } // A struct of decoded values that we use to carry around information // about the block. dimX and dimY are the dimension in texels of the block, // for which there is only a limited subset of valid values: // // 4x4, 5x4, 5x5, 6x5, 6x6, 8x5, 8x6, 8x8, 10x5, 10x6, 10x8, 10x10, 12x10, 12x12 struct ASTCDecompressionData { ASTCDecompressionData(int dimX, int dimY) : fDimX(dimX), fDimY(dimY) { } const int fDimX; // the X dimension of the decompressed block const int fDimY; // the Y dimension of the decompressed block ASTCBlock fBlock; // the block data int fBlockMode; // the block header that contains the block mode. bool fDualPlaneEnabled; // is this block compressing dual weight planes? int fDualPlane; // the independent plane in dual plane mode. bool fVoidExtent; // is this block a single color? bool fError; // does this block have an error encoding? int fWeightDimX; // the x dimension of the weight grid int fWeightDimY; // the y dimension of the weight grid int fWeightBits; // the number of bits used for each weight value int fWeightTrits; // the number of trits used for each weight value int fWeightQuints; // the number of quints used for each weight value int fPartCount; // the number of partitions in this block int fPartIndex; // the partition index: only relevant if fPartCount > 0 // CEM values can be anything in the range 0-15, and each corresponds to a different // mode that represents the color data. We only support LDR modes. enum ColorEndpointMode { kLDR_Luminance_Direct_ColorEndpointMode = 0, kLDR_Luminance_BaseOffset_ColorEndpointMode = 1, kHDR_Luminance_LargeRange_ColorEndpointMode = 2, kHDR_Luminance_SmallRange_ColorEndpointMode = 3, kLDR_LuminanceAlpha_Direct_ColorEndpointMode = 4, kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode = 5, kLDR_RGB_BaseScale_ColorEndpointMode = 6, kHDR_RGB_BaseScale_ColorEndpointMode = 7, kLDR_RGB_Direct_ColorEndpointMode = 8, kLDR_RGB_BaseOffset_ColorEndpointMode = 9, kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode = 10, kHDR_RGB_ColorEndpointMode = 11, kLDR_RGBA_Direct_ColorEndpointMode = 12, kLDR_RGBA_BaseOffset_ColorEndpointMode = 13, kHDR_RGB_LDRAlpha_ColorEndpointMode = 14, kHDR_RGB_HDRAlpha_ColorEndpointMode = 15 }; static const int kMaxColorEndpointModes = 16; // the color endpoint modes for this block. static const int kMaxPartitions = 4; ColorEndpointMode fCEM[kMaxPartitions]; int fColorStartBit; // The bit position of the first bit of the color data int fColorEndBit; // The bit position of the last *possible* bit of the color data // Returns the number of partitions for this block. int numPartitions() const { return fPartCount; } // Returns the total number of weight values that are stored in this block int numWeights() const { return fWeightDimX * fWeightDimY * (fDualPlaneEnabled ? 2 : 1); } #ifdef SK_DEBUG // Returns the maximum value that any weight can take. We really only use // this function for debugging. int maxWeightValue() const { int maxVal = (1 << fWeightBits); if (fWeightTrits > 0) { SkASSERT(0 == fWeightQuints); maxVal *= 3; } else if (fWeightQuints > 0) { SkASSERT(0 == fWeightTrits); maxVal *= 5; } return maxVal - 1; } #endif // The number of bits needed to represent the texel weight data. This // comes from the 'data size determination' section of the ASTC spec (C.2.22) int numWeightBits() const { const int nWeights = this->numWeights(); return ((nWeights*8*fWeightTrits + 4) / 5) + ((nWeights*7*fWeightQuints + 2) / 3) + (nWeights*fWeightBits); } // Returns the number of color values stored in this block. The number of // values stored is directly a function of the color endpoint modes. int numColorValues() const { int numValues = 0; for (int i = 0; i < this->numPartitions(); ++i) { int cemInt = static_cast<int>(fCEM[i]); numValues += ((cemInt >> 2) + 1) * 2; } return numValues; } // Figures out the number of bits available for color values, and fills // in the maximum encoding that will fit the number of color values that // we need. Returns false on error. (See section C.2.22 of the spec) bool getColorValueEncoding(int *nBits, int *nTrits, int *nQuints) const { if (NULL == nBits || NULL == nTrits || NULL == nQuints) { return false; } const int nColorVals = this->numColorValues(); if (nColorVals <= 0) { return false; } const int colorBits = fColorEndBit - fColorStartBit; SkASSERT(colorBits > 0); // This is the minimum amount of accuracy required by the spec. if (colorBits < ((13 * nColorVals + 4) / 5)) { return false; } // Values can be represented as at most 8-bit values. // !SPEED! place this in a lookup table based on colorBits and nColorVals for (int i = 255; i > 0; --i) { int range = i + 1; int bits = 0, trits = 0, quints = 0; bool valid = false; if (SkIsPow2(range)) { bits = bits_for_range(range); valid = true; } else if ((range % 3) == 0 && SkIsPow2(range/3)) { trits = 1; bits = bits_for_range(range/3); valid = true; } else if ((range % 5) == 0 && SkIsPow2(range/5)) { quints = 1; bits = bits_for_range(range/5); valid = true; } if (valid) { const int actualColorBits = ((nColorVals*8*trits + 4) / 5) + ((nColorVals*7*quints + 2) / 3) + (nColorVals*bits); if (actualColorBits <= colorBits) { *nTrits = trits; *nQuints = quints; *nBits = bits; return true; } } } return false; } // Converts the sequence of color values into endpoints. The algorithm here // corresponds to the values determined by section C.2.14 of the ASTC spec void colorEndpoints(SkColor endpoints[4][2], const int* colorValues) const { for (int i = 0; i < this->numPartitions(); ++i) { switch (fCEM[i]) { case kLDR_Luminance_Direct_ColorEndpointMode: { const int* v = colorValues; endpoints[i][0] = SkColorSetARGB(0xFF, v[0], v[0], v[0]); endpoints[i][1] = SkColorSetARGB(0xFF, v[1], v[1], v[1]); colorValues += 2; } break; case kLDR_Luminance_BaseOffset_ColorEndpointMode: { const int* v = colorValues; const int L0 = (v[0] >> 2) | (v[1] & 0xC0); const int L1 = clamp_byte(L0 + (v[1] & 0x3F)); endpoints[i][0] = SkColorSetARGB(0xFF, L0, L0, L0); endpoints[i][1] = SkColorSetARGB(0xFF, L1, L1, L1); colorValues += 2; } break; case kLDR_LuminanceAlpha_Direct_ColorEndpointMode: { const int* v = colorValues; endpoints[i][0] = SkColorSetARGB(v[2], v[0], v[0], v[0]); endpoints[i][1] = SkColorSetARGB(v[3], v[1], v[1], v[1]); colorValues += 4; } break; case kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode: { int v0 = colorValues[0]; int v1 = colorValues[1]; int v2 = colorValues[2]; int v3 = colorValues[3]; bit_transfer_signed(&v1, &v0); bit_transfer_signed(&v3, &v2); endpoints[i][0] = SkColorSetARGB(v2, v0, v0, v0); endpoints[i][1] = SkColorSetARGB( clamp_byte(v3+v2), clamp_byte(v1+v0), clamp_byte(v1+v0), clamp_byte(v1+v0)); colorValues += 4; } break; case kLDR_RGB_BaseScale_ColorEndpointMode: { decode_rgba_basescale(colorValues, endpoints[i], true); colorValues += 4; } break; case kLDR_RGB_Direct_ColorEndpointMode: { decode_rgba_direct(colorValues, endpoints[i], true); colorValues += 6; } break; case kLDR_RGB_BaseOffset_ColorEndpointMode: { decode_rgba_baseoffset(colorValues, endpoints[i], true); colorValues += 6; } break; case kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode: { decode_rgba_basescale(colorValues, endpoints[i], false); colorValues += 6; } break; case kLDR_RGBA_Direct_ColorEndpointMode: { decode_rgba_direct(colorValues, endpoints[i], false); colorValues += 8; } break; case kLDR_RGBA_BaseOffset_ColorEndpointMode: { decode_rgba_baseoffset(colorValues, endpoints[i], false); colorValues += 8; } break; default: SkDEBUGFAIL("HDR mode unsupported! This should be caught sooner."); break; } } } // Follows the procedure from section C.2.17 of the ASTC specification int unquantizeWeight(int x) const { SkASSERT(x <= this->maxWeightValue()); const int D = (x >> fWeightBits) & 0x7; const int A = -(x & 0x1) & 0x7F; SkTBits<int> xbits(x); int T = 0; if (fWeightTrits > 0) { SkASSERT(0 == fWeightQuints); switch (fWeightBits) { case 0: { // x is a single trit SkASSERT(x < 3); static const int kUnquantizationTable[3] = { 0, 32, 63 }; T = kUnquantizationTable[x]; } break; case 1: { const int B = 0; const int C = 50; T = unquantize_value(0x20, A, B, C, D); } break; case 2: { const int b = xbits[1]; const int B = b | (b << 2) | (b << 6); const int C = 23; T = unquantize_value(0x20, A, B, C, D); } break; case 3: { const int cb = xbits(2, 1); const int B = cb | (cb << 5); const int C = 11; T = unquantize_value(0x20, A, B, C, D); } break; default: SkDEBUGFAIL("Too many bits for trit encoding"); break; } } else if (fWeightQuints > 0) { SkASSERT(0 == fWeightTrits); switch (fWeightBits) { case 0: { // x is a single quint SkASSERT(x < 5); static const int kUnquantizationTable[5] = { 0, 16, 32, 47, 63 }; T = kUnquantizationTable[x]; } break; case 1: { const int B = 0; const int C = 28; T = unquantize_value(0x20, A, B, C, D); } break; case 2: { const int b = xbits[1]; const int B = (b << 1) | (b << 6); const int C = 13; T = unquantize_value(0x20, A, B, C, D); } break; default: SkDEBUGFAIL("Too many bits for quint encoding"); break; } } else { SkASSERT(0 == fWeightTrits); SkASSERT(0 == fWeightQuints); T = replicate_bits(x, fWeightBits, 6); } // This should bring the value within [0, 63].. SkASSERT(T <= 63); if (T > 32) { T += 1; } SkASSERT(T <= 64); return T; } // Returns the weight at the associated index. If the index is out of bounds, it // returns zero. It also chooses the weight appropriately based on the given dual // plane. int getWeight(const int* unquantizedWeights, int idx, bool dualPlane) const { const int maxIdx = (fDualPlaneEnabled ? 2 : 1) * fWeightDimX * fWeightDimY - 1; if (fDualPlaneEnabled) { const int effectiveIdx = 2*idx + (dualPlane ? 1 : 0); if (effectiveIdx > maxIdx) { return 0; } return unquantizedWeights[effectiveIdx]; } SkASSERT(!dualPlane); if (idx > maxIdx) { return 0; } else { return unquantizedWeights[idx]; } } // This computes the effective weight at location (s, t) of the block. This // weight is computed by sampling the texel weight grid (it's usually not 1-1), and // then applying a bilerp. The algorithm outlined here follows the algorithm // defined in section C.2.18 of the ASTC spec. int infillWeight(const int* unquantizedValues, int s, int t, bool dualPlane) const { const int Ds = (1024 + fDimX/2) / (fDimX - 1); const int Dt = (1024 + fDimY/2) / (fDimY - 1); const int cs = Ds * s; const int ct = Dt * t; const int gs = (cs*(fWeightDimX - 1) + 32) >> 6; const int gt = (ct*(fWeightDimY - 1) + 32) >> 6; const int js = gs >> 4; const int jt = gt >> 4; const int fs = gs & 0xF; const int ft = gt & 0xF; const int idx = js + jt*fWeightDimX; const int p00 = this->getWeight(unquantizedValues, idx, dualPlane); const int p01 = this->getWeight(unquantizedValues, idx + 1, dualPlane); const int p10 = this->getWeight(unquantizedValues, idx + fWeightDimX, dualPlane); const int p11 = this->getWeight(unquantizedValues, idx + fWeightDimX + 1, dualPlane); const int w11 = (fs*ft + 8) >> 4; const int w10 = ft - w11; const int w01 = fs - w11; const int w00 = 16 - fs - ft + w11; const int weight = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; SkASSERT(weight <= 64); return weight; } // Unquantizes the decoded texel weights as described in section C.2.17 of // the ASTC specification. Additionally, it populates texelWeights with // the expanded weight grid, which is computed according to section C.2.18 void texelWeights(int texelWeights[2][12][12], const int* texelValues) const { // Unquantized texel weights... int unquantizedValues[144*2]; // 12x12 blocks with dual plane decoding... SkASSERT(this->numWeights() <= 144*2); // Unquantize the weights and cache them for (int j = 0; j < this->numWeights(); ++j) { unquantizedValues[j] = this->unquantizeWeight(texelValues[j]); } // Do weight infill... for (int y = 0; y < fDimY; ++y) { for (int x = 0; x < fDimX; ++x) { texelWeights[0][x][y] = this->infillWeight(unquantizedValues, x, y, false); if (fDualPlaneEnabled) { texelWeights[1][x][y] = this->infillWeight(unquantizedValues, x, y, true); } } } } // Returns the partition for the texel located at position (x, y). // Adapted from C.2.21 of the ASTC specification int getPartition(int x, int y) const { const int partitionCount = this->numPartitions(); int seed = fPartIndex; if ((fDimX * fDimY) < 31) { x <<= 1; y <<= 1; } seed += (partitionCount - 1) * 1024; uint32_t p = seed; p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; p ^= p << 6; p ^= p >> 17; uint32_t rnum = p; uint8_t seed1 = rnum & 0xF; uint8_t seed2 = (rnum >> 4) & 0xF; uint8_t seed3 = (rnum >> 8) & 0xF; uint8_t seed4 = (rnum >> 12) & 0xF; uint8_t seed5 = (rnum >> 16) & 0xF; uint8_t seed6 = (rnum >> 20) & 0xF; uint8_t seed7 = (rnum >> 24) & 0xF; uint8_t seed8 = (rnum >> 28) & 0xF; uint8_t seed9 = (rnum >> 18) & 0xF; uint8_t seed10 = (rnum >> 22) & 0xF; uint8_t seed11 = (rnum >> 26) & 0xF; uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; seed1 *= seed1; seed2 *= seed2; seed3 *= seed3; seed4 *= seed4; seed5 *= seed5; seed6 *= seed6; seed7 *= seed7; seed8 *= seed8; seed9 *= seed9; seed10 *= seed10; seed11 *= seed11; seed12 *= seed12; int sh1, sh2, sh3; if (0 != (seed & 1)) { sh1 = (0 != (seed & 2))? 4 : 5; sh2 = (partitionCount == 3)? 6 : 5; } else { sh1 = (partitionCount==3)? 6 : 5; sh2 = (0 != (seed & 2))? 4 : 5; } sh3 = (0 != (seed & 0x10))? sh1 : sh2; seed1 >>= sh1; seed2 >>= sh2; seed3 >>= sh1; seed4 >>= sh2; seed5 >>= sh1; seed6 >>= sh2; seed7 >>= sh1; seed8 >>= sh2; seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3; const int z = 0; int a = seed1*x + seed2*y + seed11*z + (rnum >> 14); int b = seed3*x + seed4*y + seed12*z + (rnum >> 10); int c = seed5*x + seed6*y + seed9 *z + (rnum >> 6); int d = seed7*x + seed8*y + seed10*z + (rnum >> 2); a &= 0x3F; b &= 0x3F; c &= 0x3F; d &= 0x3F; if (partitionCount < 4) { d = 0; } if (partitionCount < 3) { c = 0; } if (a >= b && a >= c && a >= d) { return 0; } else if (b >= c && b >= d) { return 1; } else if (c >= d) { return 2; } else { return 3; } } // Performs the proper interpolation of the texel based on the // endpoints and weights. SkColor getTexel(const SkColor endpoints[4][2], const int weights[2][12][12], int x, int y) const { int part = 0; if (this->numPartitions() > 1) { part = this->getPartition(x, y); } SkColor result; if (fDualPlaneEnabled) { result = interpolate_dual_endpoints( endpoints[part], weights[0][x][y], weights[1][x][y], fDualPlane); } else { result = interpolate_endpoints(endpoints[part], weights[0][x][y]); } #if 1 // !FIXME! if we're writing directly to a bitmap, then we don't need // to swap the red and blue channels, but since we're usually being used // by the SkImageDecoder_astc module, the results are expected to be in RGBA. result = SkColorSetARGB( SkColorGetA(result), SkColorGetB(result), SkColorGetG(result), SkColorGetR(result)); #endif return result; } void decode() { // First decode the block mode. this->decodeBlockMode(); // Now we can decode the partition information. fPartIndex = static_cast<int>(read_astc_bits(fBlock, 11, 23)); fPartCount = (fPartIndex & 0x3) + 1; fPartIndex >>= 2; // This is illegal if (fDualPlaneEnabled && this->numPartitions() == 4) { fError = true; return; } // Based on the partition info, we can decode the color information. this->decodeColorData(); } // Decodes the dual plane based on the given bit location. The final // location, if the dual plane is enabled, is also the end of our color data. // This function is only meant to be used from this->decodeColorData() void decodeDualPlane(int bitLoc) { if (fDualPlaneEnabled) { fDualPlane = static_cast<int>(read_astc_bits(fBlock, bitLoc - 2, bitLoc)); fColorEndBit = bitLoc - 2; } else { fColorEndBit = bitLoc; } } // Decodes the color information based on the ASTC spec. void decodeColorData() { // By default, the last color bit is at the end of the texel weights const int lastWeight = 128 - this->numWeightBits(); // If we have a dual plane then it will be at this location, too. int dualPlaneBitLoc = lastWeight; // If there's only one partition, then our job is (relatively) easy. if (this->numPartitions() == 1) { fCEM[0] = static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 13, 17)); fColorStartBit = 17; // Handle dual plane mode... this->decodeDualPlane(dualPlaneBitLoc); return; } // If we have more than one partition, then we need to make // room for the partition index. fColorStartBit = 29; // Read the base CEM. If it's zero, then we have no additional // CEM data and the endpoints for each partition share the same CEM. const int baseCEM = static_cast<int>(read_astc_bits(fBlock, 23, 25)); if (0 == baseCEM) { const ColorEndpointMode sameCEM = static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 25, 29)); for (int i = 0; i < kMaxPartitions; ++i) { fCEM[i] = sameCEM; } // Handle dual plane mode... this->decodeDualPlane(dualPlaneBitLoc); return; } // Move the dual plane selector bits down based on how many // partitions the block contains. switch (this->numPartitions()) { case 2: dualPlaneBitLoc -= 2; break; case 3: dualPlaneBitLoc -= 5; break; case 4: dualPlaneBitLoc -= 8; break; default: SkDEBUGFAIL("Internal ASTC decoding error."); break; } // The rest of the CEM config will be between the dual plane bit selector // and the texel weight grid. const int lowCEM = static_cast<int>(read_astc_bits(fBlock, 23, 29)); SkASSERT(lastWeight >= dualPlaneBitLoc); SkASSERT(lastWeight - dualPlaneBitLoc < 31); int fullCEM = static_cast<int>(read_astc_bits(fBlock, dualPlaneBitLoc, lastWeight)); // Attach the config at the end of the weight grid to the CEM values // in the beginning of the block. fullCEM = (fullCEM << 6) | lowCEM; // Ignore the two least significant bits, since those are our baseCEM above. fullCEM = fullCEM >> 2; int C[kMaxPartitions]; // Next, decode C and M from the spec (Table C.2.12) for (int i = 0; i < this->numPartitions(); ++i) { C[i] = fullCEM & 1; fullCEM = fullCEM >> 1; } int M[kMaxPartitions]; for (int i = 0; i < this->numPartitions(); ++i) { M[i] = fullCEM & 0x3; fullCEM = fullCEM >> 2; } // Construct our CEMs.. SkASSERT(baseCEM > 0); for (int i = 0; i < this->numPartitions(); ++i) { int cem = (baseCEM - 1) * 4; cem += (0 == C[i])? 0 : 4; cem += M[i]; SkASSERT(cem < 16); fCEM[i] = static_cast<ColorEndpointMode>(cem); } // Finally, if we have dual plane mode, then read the plane selector. this->decodeDualPlane(dualPlaneBitLoc); } // Decodes the block mode. This function determines whether or not we use // dual plane encoding, the size of the texel weight grid, and the number of // bits, trits and quints that are used to encode it. For more information, // see section C.2.10 of the ASTC spec. // // For 2D blocks, the Block Mode field is laid out as follows: // // ------------------------------------------------------------------------- // 10 9 8 7 6 5 4 3 2 1 0 Width Height Notes // ------------------------------------------------------------------------- // D H B A R0 0 0 R2 R1 B+4 A+2 // D H B A R0 0 1 R2 R1 B+8 A+2 // D H B A R0 1 0 R2 R1 A+2 B+8 // D H 0 B A R0 1 1 R2 R1 A+2 B+6 // D H 1 B A R0 1 1 R2 R1 B+2 A+2 // D H 0 0 A R0 R2 R1 0 0 12 A+2 // D H 0 1 A R0 R2 R1 0 0 A+2 12 // D H 1 1 0 0 R0 R2 R1 0 0 6 10 // D H 1 1 0 1 R0 R2 R1 0 0 10 6 // B 1 0 A R0 R2 R1 0 0 A+6 B+6 D=0, H=0 // x x 1 1 1 1 1 1 1 0 0 - - Void-extent // x x 1 1 1 x x x x 0 0 - - Reserved* // x x x x x x x 0 0 0 0 - - Reserved // ------------------------------------------------------------------------- // // D - dual plane enabled // H, R - used to determine the number of bits/trits/quints in texel weight encoding // R is a three bit value whose LSB is R0 and MSB is R1 // Width, Height - dimensions of the texel weight grid (determined by A and B) void decodeBlockMode() { const int blockMode = static_cast<int>(read_astc_bits(fBlock, 0, 11)); // Check for special void extent encoding fVoidExtent = (blockMode & 0x1FF) == 0x1FC; // Check for reserved block modes fError = ((blockMode & 0x1C3) == 0x1C0) || ((blockMode & 0xF) == 0); // Neither reserved nor void-extent, decode as usual // This code corresponds to table C.2.8 of the ASTC spec bool highPrecision = false; int R = 0; if ((blockMode & 0x3) == 0) { R = ((0xC & blockMode) >> 1) | ((0x10 & blockMode) >> 4); const int bitsSevenAndEight = (blockMode & 0x180) >> 7; SkASSERT(0 <= bitsSevenAndEight && bitsSevenAndEight < 4); const int A = (blockMode >> 5) & 0x3; const int B = (blockMode >> 9) & 0x3; fDualPlaneEnabled = (blockMode >> 10) & 0x1; highPrecision = (blockMode >> 9) & 0x1; switch (bitsSevenAndEight) { default: case 0: fWeightDimX = 12; fWeightDimY = A + 2; break; case 1: fWeightDimX = A + 2; fWeightDimY = 12; break; case 2: fWeightDimX = A + 6; fWeightDimY = B + 6; fDualPlaneEnabled = false; highPrecision = false; break; case 3: if (0 == A) { fWeightDimX = 6; fWeightDimY = 10; } else { fWeightDimX = 10; fWeightDimY = 6; } break; } } else { // (blockMode & 0x3) != 0 R = ((blockMode & 0x3) << 1) | ((blockMode & 0x10) >> 4); const int bitsTwoAndThree = (blockMode >> 2) & 0x3; SkASSERT(0 <= bitsTwoAndThree && bitsTwoAndThree < 4); const int A = (blockMode >> 5) & 0x3; const int B = (blockMode >> 7) & 0x3; fDualPlaneEnabled = (blockMode >> 10) & 0x1; highPrecision = (blockMode >> 9) & 0x1; switch (bitsTwoAndThree) { case 0: fWeightDimX = B + 4; fWeightDimY = A + 2; break; case 1: fWeightDimX = B + 8; fWeightDimY = A + 2; break; case 2: fWeightDimX = A + 2; fWeightDimY = B + 8; break; case 3: if ((B & 0x2) == 0) { fWeightDimX = A + 2; fWeightDimY = (B & 1) + 6; } else { fWeightDimX = (B & 1) + 2; fWeightDimY = A + 2; } break; } } // We should have set the values of R and highPrecision // from decoding the block mode, these are used to determine // the proper dimensions of our weight grid. if ((R & 0x6) == 0) { fError = true; } else { static const int kBitAllocationTable[2][6][3] = { { { 1, 0, 0 }, { 0, 1, 0 }, { 2, 0, 0 }, { 0, 0, 1 }, { 1, 1, 0 }, { 3, 0, 0 } }, { { 1, 0, 1 }, { 2, 1, 0 }, { 4, 0, 0 }, { 2, 0, 1 }, { 3, 1, 0 }, { 5, 0, 0 } } }; fWeightBits = kBitAllocationTable[highPrecision][R - 2][0]; fWeightTrits = kBitAllocationTable[highPrecision][R - 2][1]; fWeightQuints = kBitAllocationTable[highPrecision][R - 2][2]; } } }; // Reads an ASTC block from the given pointer. static inline void read_astc_block(ASTCDecompressionData *dst, const uint8_t* src) { const uint64_t* qword = reinterpret_cast<const uint64_t*>(src); dst->fBlock.fLow = SkEndian_SwapLE64(qword[0]); dst->fBlock.fHigh = SkEndian_SwapLE64(qword[1]); dst->decode(); } // Take a known void-extent block, and write out the values as a constant color. static void decompress_void_extent(uint8_t* dst, int dstRowBytes, const ASTCDecompressionData &data) { // The top 64 bits contain 4 16-bit RGBA values. int a = (static_cast<int>(read_astc_bits(data.fBlock, 112, 128)) + 255) >> 8; int b = (static_cast<int>(read_astc_bits(data.fBlock, 96, 112)) + 255) >> 8; int g = (static_cast<int>(read_astc_bits(data.fBlock, 80, 96)) + 255) >> 8; int r = (static_cast<int>(read_astc_bits(data.fBlock, 64, 80)) + 255) >> 8; write_constant_color(dst, data.fDimX, data.fDimY, dstRowBytes, SkColorSetARGB(a, r, g, b)); } // Decompresses a single ASTC block. It's assumed that data.fDimX and data.fDimY are // set and that the block has already been decoded (i.e. data.decode() has been called) static void decompress_astc_block(uint8_t* dst, int dstRowBytes, const ASTCDecompressionData &data) { if (data.fError) { write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); return; } if (data.fVoidExtent) { decompress_void_extent(dst, dstRowBytes, data); return; } // According to the spec, any more than 64 values is illegal. (C.2.24) static const int kMaxTexelValues = 64; // Decode the texel weights. int texelValues[kMaxTexelValues]; bool success = decode_integer_sequence( texelValues, kMaxTexelValues, data.numWeights(), // texel data goes to the end of the 128 bit block. data.fBlock, 128, 128 - data.numWeightBits(), false, data.fWeightBits, data.fWeightTrits, data.fWeightQuints); if (!success) { write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); return; } // Decode the color endpoints int colorBits, colorTrits, colorQuints; if (!data.getColorValueEncoding(&colorBits, &colorTrits, &colorQuints)) { write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); return; } // According to the spec, any more than 18 color values is illegal. (C.2.24) static const int kMaxColorValues = 18; int colorValues[kMaxColorValues]; success = decode_integer_sequence( colorValues, kMaxColorValues, data.numColorValues(), data.fBlock, data.fColorStartBit, data.fColorEndBit, true, colorBits, colorTrits, colorQuints); if (!success) { write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); return; } // Unquantize the color values after they've been decoded. unquantize_colors(colorValues, data.numColorValues(), colorBits, colorTrits, colorQuints); // Decode the colors into the appropriate endpoints. SkColor endpoints[4][2]; data.colorEndpoints(endpoints, colorValues); // Do texel infill and decode the texel values. int texelWeights[2][12][12]; data.texelWeights(texelWeights, texelValues); // Write the texels by interpolating them based on the information // stored in the block. dst += data.fDimY * dstRowBytes; for (int y = 0; y < data.fDimY; ++y) { dst -= dstRowBytes; SkColor* colorPtr = reinterpret_cast<SkColor*>(dst); for (int x = 0; x < data.fDimX; ++x) { colorPtr[x] = data.getTexel(endpoints, texelWeights, x, y); } } } //////////////////////////////////////////////////////////////////////////////// // // ASTC Comrpession Struct // //////////////////////////////////////////////////////////////////////////////// // This is the type passed as the CompressorType argument of the compressed // blitter for the ASTC format. The static functions required to be in this // struct are documented in SkTextureCompressor_Blitter.h struct CompressorASTC { static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) { compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12); } static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes) { compress_a8_astc_block<GetAlpha>(&dst, src, srcRowBytes); } #if PEDANTIC_BLIT_RECT static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes, const uint8_t* mask) { // TODO: krajcevski // This is kind of difficult for ASTC because the weight values are calculated // as an average of the actual weights. The best we can do is decompress the // weights and recalculate them based on the new texel values. This should // be "not too bad" since we know that anytime we hit this function, we're // compressing 12x12 block dimension alpha-only, and we know the layout // of the block SkFAIL("Implement me!"); } #endif }; //////////////////////////////////////////////////////////////////////////////// namespace SkTextureCompressor { bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src, int width, int height, size_t rowBytes) { if (width < 0 || ((width % 12) != 0) || height < 0 || ((height % 12) != 0)) { return false; } uint8_t** dstPtr = &dst; for (int y = 0; y < height; y += 12) { for (int x = 0; x < width; x += 12) { compress_a8_astc_block<GetAlpha>(dstPtr, src + y*rowBytes + x, rowBytes); } } return true; } SkBlitter* CreateASTCBlitter(int width, int height, void* outputBuffer, SkTBlitterAllocator* allocator) { if ((width % 12) != 0 || (height % 12) != 0) { return NULL; } // Memset the output buffer to an encoding that decodes to zero. We must do this // in order to avoid having uninitialized values in the buffer if the blitter // decides not to write certain scanlines (and skip entire rows of blocks). // In the case of ASTC, if everything index is zero, then the interpolated value // will decode to zero provided we have the right header. We use the encoding // from recognizing all zero blocks from above. const int nBlocks = (width * height / 144); uint8_t *dst = reinterpret_cast<uint8_t *>(outputBuffer); for (int i = 0; i < nBlocks; ++i) { send_packing(&dst, SkTEndian_SwapLE64(0x0000000001FE000173ULL), 0); } return allocator->createT< SkTCompressedAlphaBlitter<12, 16, CompressorASTC>, int, int, void* > (width, height, outputBuffer); } void DecompressASTC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height, int blockDimX, int blockDimY) { // ASTC is encoded in what they call "raster order", so that the first // block is the bottom-left block in the image, and the first pixel // is the bottom-left pixel of the image dst += height * dstRowBytes; ASTCDecompressionData data(blockDimX, blockDimY); for (int y = 0; y < height; y += blockDimY) { dst -= blockDimY * dstRowBytes; SkColor *colorPtr = reinterpret_cast<SkColor*>(dst); for (int x = 0; x < width; x += blockDimX) { read_astc_block(&data, src); decompress_astc_block(reinterpret_cast<uint8_t*>(colorPtr + x), dstRowBytes, data); // ASTC encoded blocks are 16 bytes (128 bits) large. src += 16; } } } } // SkTextureCompressor