/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkResourceCache_DEFINED #define SkResourceCache_DEFINED #include "SkBitmap.h" #include "SkMessageBus.h" #include "SkTDArray.h" class SkCachedData; class SkDiscardableMemory; class SkMipMap; /** * Cache object for bitmaps (with possible scale in X Y as part of the key). * * Multiple caches can be instantiated, but each instance is not implicitly * thread-safe, so if a given instance is to be shared across threads, the * caller must manage the access itself (e.g. via a mutex). * * As a convenience, a global instance is also defined, which can be safely * access across threads via the static methods (e.g. FindAndLock, etc.). */ class SkResourceCache { public: struct Key { // Call this to access your private contents. Must not use the address after calling init() void* writableContents() { return this + 1; } // must call this after your private data has been written. // nameSpace must be unique per Key subclass. // sharedID == 0 means ignore this field : does not support group purging. // length must be a multiple of 4 void init(void* nameSpace, uint64_t sharedID, size_t length); void* getNamespace() const { return fNamespace; } uint64_t getSharedID() const { return ((uint64_t)fSharedID_hi << 32) | fSharedID_lo; } // This is only valid after having called init(). uint32_t hash() const { return fHash; } bool operator==(const Key& other) const { const uint32_t* a = this->as32(); const uint32_t* b = other.as32(); for (int i = 0; i < fCount32; ++i) { // (This checks fCount == other.fCount first.) if (a[i] != b[i]) { return false; } } return true; } private: int32_t fCount32; // local + user contents count32 uint32_t fHash; // split uint64_t into hi and lo so we don't force ourselves to pad on 32bit machines. uint32_t fSharedID_lo; uint32_t fSharedID_hi; void* fNamespace; // A unique namespace tag. This is hashed. /* uint32_t fContents32[] */ const uint32_t* as32() const { return (const uint32_t*)this; } }; struct Rec { typedef SkResourceCache::Key Key; Rec() {} virtual ~Rec() {} uint32_t getHash() const { return this->getKey().hash(); } virtual const Key& getKey() const = 0; virtual size_t bytesUsed() const = 0; // for SkTDynamicHash::Traits static uint32_t Hash(const Key& key) { return key.hash(); } static const Key& GetKey(const Rec& rec) { return rec.getKey(); } private: Rec* fNext; Rec* fPrev; friend class SkResourceCache; }; // Used with SkMessageBus struct PurgeSharedIDMessage { PurgeSharedIDMessage(uint64_t sharedID) : fSharedID(sharedID) {} uint64_t fSharedID; }; typedef const Rec* ID; /** * Callback function for find(). If called, the cache will have found a match for the * specified Key, and will pass in the corresponding Rec, along with a caller-specified * context. The function can read the data in Rec, and copy whatever it likes into context * (casting context to whatever it really is). * * The return value determines what the cache will do with the Rec. If the function returns * true, then the Rec is considered "valid". If false is returned, the Rec will be considered * "stale" and will be purged from the cache. */ typedef bool (*FindVisitor)(const Rec&, void* context); /** * Returns a locked/pinned SkDiscardableMemory instance for the specified * number of bytes, or NULL on failure. */ typedef SkDiscardableMemory* (*DiscardableFactory)(size_t bytes); /* * The following static methods are thread-safe wrappers around a global * instance of this cache. */ /** * Returns true if the visitor was called on a matching Key, and the visitor returned true. * * Find() will search the cache for the specified Key. If no match is found, return false and * do not call the FindVisitor. If a match is found, return whatever the visitor returns. * Its return value is interpreted to mean: * true : Rec is valid * false : Rec is "stale" -- the cache will purge it. */ static bool Find(const Key& key, FindVisitor, void* context); static void Add(Rec*); static size_t GetTotalBytesUsed(); static size_t GetTotalByteLimit(); static size_t SetTotalByteLimit(size_t newLimit); static size_t SetSingleAllocationByteLimit(size_t); static size_t GetSingleAllocationByteLimit(); static size_t GetEffectiveSingleAllocationByteLimit(); static void PurgeAll(); /** * Returns the DiscardableFactory used by the global cache, or NULL. */ static DiscardableFactory GetDiscardableFactory(); /** * Use this allocator for bitmaps, so they can use ashmem when available. * Returns NULL if the ResourceCache has not been initialized with a DiscardableFactory. */ static SkBitmap::Allocator* GetAllocator(); static SkCachedData* NewCachedData(size_t bytes); static void PostPurgeSharedID(uint64_t sharedID); /** * Call SkDebugf() with diagnostic information about the state of the cache */ static void Dump(); /////////////////////////////////////////////////////////////////////////// /** * Construct the cache to call DiscardableFactory when it * allocates memory for the pixels. In this mode, the cache has * not explicit budget, and so methods like getTotalBytesUsed() * and getTotalByteLimit() will return 0, and setTotalByteLimit * will ignore its argument and return 0. */ SkResourceCache(DiscardableFactory); /** * Construct the cache, allocating memory with malloc, and respect the * byteLimit, purging automatically when a new image is added to the cache * that pushes the total bytesUsed over the limit. Note: The limit can be * changed at runtime with setTotalByteLimit. */ explicit SkResourceCache(size_t byteLimit); ~SkResourceCache(); /** * Returns true if the visitor was called on a matching Key, and the visitor returned true. * * find() will search the cache for the specified Key. If no match is found, return false and * do not call the FindVisitor. If a match is found, return whatever the visitor returns. * Its return value is interpreted to mean: * true : Rec is valid * false : Rec is "stale" -- the cache will purge it. */ bool find(const Key&, FindVisitor, void* context); void add(Rec*); size_t getTotalBytesUsed() const { return fTotalBytesUsed; } size_t getTotalByteLimit() const { return fTotalByteLimit; } /** * This is respected by SkBitmapProcState::possiblyScaleImage. * 0 is no maximum at all; this is the default. * setSingleAllocationByteLimit() returns the previous value. */ size_t setSingleAllocationByteLimit(size_t maximumAllocationSize); size_t getSingleAllocationByteLimit() const; // returns the logical single allocation size (pinning against the budget when the cache // is not backed by discardable memory. size_t getEffectiveSingleAllocationByteLimit() const; /** * Set the maximum number of bytes available to this cache. If the current * cache exceeds this new value, it will be purged to try to fit within * this new limit. */ size_t setTotalByteLimit(size_t newLimit); void purgeSharedID(uint64_t sharedID); void purgeAll() { this->purgeAsNeeded(true); } DiscardableFactory discardableFactory() const { return fDiscardableFactory; } SkBitmap::Allocator* allocator() const { return fAllocator; }; SkCachedData* newCachedData(size_t bytes); /** * Call SkDebugf() with diagnostic information about the state of the cache */ void dump() const; private: Rec* fHead; Rec* fTail; class Hash; Hash* fHash; DiscardableFactory fDiscardableFactory; // the allocator is NULL or one that matches discardables SkBitmap::Allocator* fAllocator; size_t fTotalBytesUsed; size_t fTotalByteLimit; size_t fSingleAllocationByteLimit; int fCount; SkMessageBus<PurgeSharedIDMessage>::Inbox fPurgeSharedIDInbox; void checkMessages(); void purgeAsNeeded(bool forcePurge = false); // linklist management void moveToHead(Rec*); void addToHead(Rec*); void detach(Rec*); void remove(Rec*); void init(); // called by constructors #ifdef SK_DEBUG void validate() const; #else void validate() const {} #endif }; #endif