/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkRect.h" void SkIRect::join(int32_t left, int32_t top, int32_t right, int32_t bottom) { // do nothing if the params are empty if (left >= right || top >= bottom) { return; } // if we are empty, just assign if (fLeft >= fRight || fTop >= fBottom) { this->set(left, top, right, bottom); } else { if (left < fLeft) fLeft = left; if (top < fTop) fTop = top; if (right > fRight) fRight = right; if (bottom > fBottom) fBottom = bottom; } } void SkIRect::sort() { if (fLeft > fRight) { SkTSwap<int32_t>(fLeft, fRight); } if (fTop > fBottom) { SkTSwap<int32_t>(fTop, fBottom); } } ///////////////////////////////////////////////////////////////////////////// void SkRect::toQuad(SkPoint quad[4]) const { SkASSERT(quad); quad[0].set(fLeft, fTop); quad[1].set(fRight, fTop); quad[2].set(fRight, fBottom); quad[3].set(fLeft, fBottom); } #include "SkNx.h" static inline bool is_finite(const Sk4s& value) { auto finite = value * Sk4s(0) == Sk4s(0); return finite.allTrue(); } bool SkRect::setBoundsCheck(const SkPoint pts[], int count) { SkASSERT((pts && count > 0) || count == 0); bool isFinite = true; if (count <= 0) { sk_bzero(this, sizeof(SkRect)); } else { Sk4s min, max, accum; if (count & 1) { min = Sk4s(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY); pts += 1; count -= 1; } else { min = Sk4s::Load(&pts[0].fX); pts += 2; count -= 2; } accum = max = min; accum *= Sk4s(0); count >>= 1; for (int i = 0; i < count; ++i) { Sk4s xy = Sk4s::Load(&pts->fX); accum *= xy; min = Sk4s::Min(min, xy); max = Sk4s::Max(max, xy); pts += 2; } /** * With some trickery, we may be able to use Min/Max to also propogate non-finites, * in which case we could eliminate accum entirely, and just check min and max for * "is_finite". */ if (is_finite(accum)) { float minArray[4], maxArray[4]; min.store(minArray); max.store(maxArray); this->set(SkTMin(minArray[0], minArray[2]), SkTMin(minArray[1], minArray[3]), SkTMax(maxArray[0], maxArray[2]), SkTMax(maxArray[1], maxArray[3])); } else { // we hit a non-finite value, so zero everything and return false this->setEmpty(); isFinite = false; } } return isFinite; } #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \ SkScalar L = SkMaxScalar(al, bl); \ SkScalar R = SkMinScalar(ar, br); \ SkScalar T = SkMaxScalar(at, bt); \ SkScalar B = SkMinScalar(ab, bb); \ do { if (L >= R || T >= B) return false; } while (0) bool SkRect::intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { CHECK_INTERSECT(left, top, right, bottom, fLeft, fTop, fRight, fBottom); this->setLTRB(L, T, R, B); return true; } bool SkRect::intersect(const SkRect& r) { return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); } bool SkRect::intersect(const SkRect& a, const SkRect& b) { CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom); this->setLTRB(L, T, R, B); return true; } void SkRect::join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { // do nothing if the params are empty if (left >= right || top >= bottom) { return; } // if we are empty, just assign if (fLeft >= fRight || fTop >= fBottom) { this->set(left, top, right, bottom); } else { fLeft = SkMinScalar(fLeft, left); fTop = SkMinScalar(fTop, top); fRight = SkMaxScalar(fRight, right); fBottom = SkMaxScalar(fBottom, bottom); } } //////////////////////////////////////////////////////////////////////////////////////////////// #include "SkString.h" #include "SkStringUtils.h" static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) { storage->reset(); SkAppendScalar(storage, value, asType); return storage->c_str(); } void SkRect::dump(bool asHex) const { SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; SkString line; if (asHex) { SkString tmp; line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft); line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop); line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight); line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom); } else { SkString strL, strT, strR, strB; SkAppendScalarDec(&strL, fLeft); SkAppendScalarDec(&strT, fTop); SkAppendScalarDec(&strR, fRight); SkAppendScalarDec(&strB, fBottom); line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);", strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str()); } SkDebugf("%s\n", line.c_str()); }