/* * Copyright 2010 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkData.h" #include "SkFlate.h" #include "SkStream.h" namespace { #ifdef ZLIB_INCLUDE #include ZLIB_INCLUDE #else #include "zlib.h" #endif // static const size_t kBufferSize = 1024; // Different zlib implementations use different T. // We've seen size_t and unsigned. template <typename T> void* skia_alloc_func(void*, T items, T size) { return sk_calloc_throw(SkToSizeT(items) * SkToSizeT(size)); } static void skia_free_func(void*, void* address) { sk_free(address); } bool doFlate(bool compress, SkStream* src, SkWStream* dst) { uint8_t inputBuffer[kBufferSize]; uint8_t outputBuffer[kBufferSize]; z_stream flateData; flateData.zalloc = &skia_alloc_func; flateData.zfree = &skia_free_func; flateData.opaque = NULL; flateData.next_in = NULL; flateData.avail_in = 0; flateData.next_out = outputBuffer; flateData.avail_out = kBufferSize; int rc; if (compress) rc = deflateInit(&flateData, Z_DEFAULT_COMPRESSION); else rc = inflateInit(&flateData); if (rc != Z_OK) return false; uint8_t* input = (uint8_t*)src->getMemoryBase(); size_t inputLength = src->getLength(); if (input == NULL || inputLength == 0) { input = NULL; flateData.next_in = inputBuffer; flateData.avail_in = 0; } else { flateData.next_in = input; flateData.avail_in = SkToUInt(inputLength); } rc = Z_OK; while (true) { if (flateData.avail_out < kBufferSize) { if (!dst->write(outputBuffer, kBufferSize - flateData.avail_out)) { rc = Z_BUF_ERROR; break; } flateData.next_out = outputBuffer; flateData.avail_out = kBufferSize; } if (rc != Z_OK) break; if (flateData.avail_in == 0) { if (input != NULL) break; size_t read = src->read(&inputBuffer, kBufferSize); if (read == 0) break; flateData.next_in = inputBuffer; flateData.avail_in = SkToUInt(read); } if (compress) rc = deflate(&flateData, Z_NO_FLUSH); else rc = inflate(&flateData, Z_NO_FLUSH); } while (rc == Z_OK) { if (compress) rc = deflate(&flateData, Z_FINISH); else rc = inflate(&flateData, Z_FINISH); if (flateData.avail_out < kBufferSize) { if (!dst->write(outputBuffer, kBufferSize - flateData.avail_out)) return false; flateData.next_out = outputBuffer; flateData.avail_out = kBufferSize; } } if (compress) deflateEnd(&flateData); else inflateEnd(&flateData); if (rc == Z_STREAM_END) return true; return false; } } // static bool SkFlate::Deflate(SkStream* src, SkWStream* dst) { return doFlate(true, src, dst); } bool SkFlate::Deflate(const void* ptr, size_t len, SkWStream* dst) { SkMemoryStream stream(ptr, len); return doFlate(true, &stream, dst); } bool SkFlate::Deflate(const SkData* data, SkWStream* dst) { if (data) { SkMemoryStream stream(data->data(), data->size()); return doFlate(true, &stream, dst); } return false; } // static bool SkFlate::Inflate(SkStream* src, SkWStream* dst) { return doFlate(false, src, dst); } #define SKDEFLATEWSTREAM_INPUT_BUFFER_SIZE 4096 #define SKDEFLATEWSTREAM_OUTPUT_BUFFER_SIZE 4224 // 4096 + 128, usually big // enough to always do a // single loop. // called by both write() and finalize() static void do_deflate(int flush, z_stream* zStream, SkWStream* out, unsigned char* inBuffer, size_t inBufferSize) { zStream->next_in = inBuffer; zStream->avail_in = SkToInt(inBufferSize); unsigned char outBuffer[SKDEFLATEWSTREAM_OUTPUT_BUFFER_SIZE]; SkDEBUGCODE(int returnValue;) do { zStream->next_out = outBuffer; zStream->avail_out = sizeof(outBuffer); SkDEBUGCODE(returnValue =) deflate(zStream, flush); SkASSERT(!zStream->msg); out->write(outBuffer, sizeof(outBuffer) - zStream->avail_out); } while (zStream->avail_in || !zStream->avail_out); SkASSERT(flush == Z_FINISH ? returnValue == Z_STREAM_END : returnValue == Z_OK); } // Hide all zlib impl details. struct SkDeflateWStream::Impl { SkWStream* fOut; unsigned char fInBuffer[SKDEFLATEWSTREAM_INPUT_BUFFER_SIZE]; size_t fInBufferIndex; z_stream fZStream; }; SkDeflateWStream::SkDeflateWStream(SkWStream* out) : fImpl(SkNEW(SkDeflateWStream::Impl)) { fImpl->fOut = out; fImpl->fInBufferIndex = 0; if (!fImpl->fOut) { return; } fImpl->fZStream.zalloc = &skia_alloc_func; fImpl->fZStream.zfree = &skia_free_func; fImpl->fZStream.opaque = NULL; SkDEBUGCODE(int r =) deflateInit(&fImpl->fZStream, Z_DEFAULT_COMPRESSION); SkASSERT(Z_OK == r); } SkDeflateWStream::~SkDeflateWStream() { this->finalize(); } void SkDeflateWStream::finalize() { if (!fImpl->fOut) { return; } do_deflate(Z_FINISH, &fImpl->fZStream, fImpl->fOut, fImpl->fInBuffer, fImpl->fInBufferIndex); (void)deflateEnd(&fImpl->fZStream); fImpl->fOut = NULL; } bool SkDeflateWStream::write(const void* void_buffer, size_t len) { if (!fImpl->fOut) { return false; } const char* buffer = (const char*)void_buffer; while (len > 0) { size_t tocopy = SkTMin(len, sizeof(fImpl->fInBuffer) - fImpl->fInBufferIndex); memcpy(fImpl->fInBuffer + fImpl->fInBufferIndex, buffer, tocopy); len -= tocopy; buffer += tocopy; fImpl->fInBufferIndex += tocopy; SkASSERT(fImpl->fInBufferIndex <= sizeof(fImpl->fInBuffer)); // if the buffer isn't filled, don't call into zlib yet. if (sizeof(fImpl->fInBuffer) == fImpl->fInBufferIndex) { do_deflate(Z_NO_FLUSH, &fImpl->fZStream, fImpl->fOut, fImpl->fInBuffer, fImpl->fInBufferIndex); fImpl->fInBufferIndex = 0; } } return true; } size_t SkDeflateWStream::bytesWritten() const { return fImpl->fZStream.total_in + fImpl->fInBufferIndex; }