/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColorPriv.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkPixelRef.h" #include "SkErrorInternals.h" #include "SkBitmapProcShader.h" #if SK_SUPPORT_GPU #include "effects/GrSimpleTextureEffect.h" #include "effects/GrBicubicEffect.h" #endif bool SkBitmapProcShader::CanDo(const SkBitmap& bm, TileMode tx, TileMode ty) { switch (bm.colorType()) { case kAlpha_8_SkColorType: case kRGB_565_SkColorType: case kIndex_8_SkColorType: case kN32_SkColorType: // if (tx == ty && (kClamp_TileMode == tx || kRepeat_TileMode == tx)) return true; default: break; } return false; } SkBitmapProcShader::SkBitmapProcShader(const SkBitmap& src, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix) : INHERITED(localMatrix) { fRawBitmap = src; fTileModeX = (uint8_t)tmx; fTileModeY = (uint8_t)tmy; } SkShader::BitmapType SkBitmapProcShader::asABitmap(SkBitmap* texture, SkMatrix* texM, TileMode xy[]) const { if (texture) { *texture = fRawBitmap; } if (texM) { texM->reset(); } if (xy) { xy[0] = (TileMode)fTileModeX; xy[1] = (TileMode)fTileModeY; } return kDefault_BitmapType; } SkFlattenable* SkBitmapProcShader::CreateProc(SkReadBuffer& buffer) { SkMatrix lm; buffer.readMatrix(&lm); SkBitmap bm; if (!buffer.readBitmap(&bm)) { return NULL; } bm.setImmutable(); TileMode mx = (TileMode)buffer.readUInt(); TileMode my = (TileMode)buffer.readUInt(); return SkShader::CreateBitmapShader(bm, mx, my, &lm); } void SkBitmapProcShader::flatten(SkWriteBuffer& buffer) const { buffer.writeMatrix(this->getLocalMatrix()); buffer.writeBitmap(fRawBitmap); buffer.writeUInt(fTileModeX); buffer.writeUInt(fTileModeY); } static bool only_scale_and_translate(const SkMatrix& matrix) { unsigned mask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; return (matrix.getType() & ~mask) == 0; } bool SkBitmapProcShader::isOpaque() const { return fRawBitmap.isOpaque(); } SkShader::Context* SkBitmapProcShader::onCreateContext(const ContextRec& rec, void* storage) const { SkMatrix totalInverse; // Do this first, so we know the matrix can be inverted. if (!this->computeTotalInverse(rec, &totalInverse)) { return NULL; } void* stateStorage = (char*)storage + sizeof(BitmapProcShaderContext); SkBitmapProcState* state = SkNEW_PLACEMENT(stateStorage, SkBitmapProcState); SkASSERT(state); state->fTileModeX = fTileModeX; state->fTileModeY = fTileModeY; state->fOrigBitmap = fRawBitmap; if (!state->chooseProcs(totalInverse, *rec.fPaint)) { state->~SkBitmapProcState(); return NULL; } return SkNEW_PLACEMENT_ARGS(storage, BitmapProcShaderContext, (*this, rec, state)); } size_t SkBitmapProcShader::contextSize() const { // The SkBitmapProcState is stored outside of the context object, with the context holding // a pointer to it. return sizeof(BitmapProcShaderContext) + sizeof(SkBitmapProcState); } SkBitmapProcShader::BitmapProcShaderContext::BitmapProcShaderContext( const SkBitmapProcShader& shader, const ContextRec& rec, SkBitmapProcState* state) : INHERITED(shader, rec) , fState(state) { const SkBitmap& bitmap = *fState->fBitmap; bool bitmapIsOpaque = bitmap.isOpaque(); // update fFlags uint32_t flags = 0; if (bitmapIsOpaque && (255 == this->getPaintAlpha())) { flags |= kOpaqueAlpha_Flag; } switch (bitmap.colorType()) { case kRGB_565_SkColorType: flags |= (kHasSpan16_Flag | kIntrinsicly16_Flag); break; case kIndex_8_SkColorType: case kN32_SkColorType: if (bitmapIsOpaque) { flags |= kHasSpan16_Flag; } break; case kAlpha_8_SkColorType: break; // never set kHasSpan16_Flag default: break; } if (rec.fPaint->isDither() && bitmap.colorType() != kRGB_565_SkColorType) { // gradients can auto-dither in their 16bit sampler, but we don't so // we clear the flag here. flags &= ~kHasSpan16_Flag; } // if we're only 1-pixel high, and we don't rotate, then we can claim this if (1 == bitmap.height() && only_scale_and_translate(this->getTotalInverse())) { flags |= kConstInY32_Flag; if (flags & kHasSpan16_Flag) { flags |= kConstInY16_Flag; } } fFlags = flags; } SkBitmapProcShader::BitmapProcShaderContext::~BitmapProcShaderContext() { // The bitmap proc state has been created outside of the context on memory that will be freed // elsewhere. Only call the destructor but leave the freeing of the memory to the caller. fState->~SkBitmapProcState(); } #define BUF_MAX 128 #define TEST_BUFFER_OVERRITEx #ifdef TEST_BUFFER_OVERRITE #define TEST_BUFFER_EXTRA 32 #define TEST_PATTERN 0x88888888 #else #define TEST_BUFFER_EXTRA 0 #endif void SkBitmapProcShader::BitmapProcShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) { const SkBitmapProcState& state = *fState; if (state.getShaderProc32()) { state.getShaderProc32()(state, x, y, dstC, count); return; } uint32_t buffer[BUF_MAX + TEST_BUFFER_EXTRA]; SkBitmapProcState::MatrixProc mproc = state.getMatrixProc(); SkBitmapProcState::SampleProc32 sproc = state.getSampleProc32(); int max = state.maxCountForBufferSize(sizeof(buffer[0]) * BUF_MAX); SkASSERT(state.fBitmap->getPixels()); SkASSERT(state.fBitmap->pixelRef() == NULL || state.fBitmap->pixelRef()->isLocked()); for (;;) { int n = count; if (n > max) { n = max; } SkASSERT(n > 0 && n < BUF_MAX*2); #ifdef TEST_BUFFER_OVERRITE for (int i = 0; i < TEST_BUFFER_EXTRA; i++) { buffer[BUF_MAX + i] = TEST_PATTERN; } #endif mproc(state, buffer, n, x, y); #ifdef TEST_BUFFER_OVERRITE for (int j = 0; j < TEST_BUFFER_EXTRA; j++) { SkASSERT(buffer[BUF_MAX + j] == TEST_PATTERN); } #endif sproc(state, buffer, n, dstC); if ((count -= n) == 0) { break; } SkASSERT(count > 0); x += n; dstC += n; } } SkShader::Context::ShadeProc SkBitmapProcShader::BitmapProcShaderContext::asAShadeProc(void** ctx) { if (fState->getShaderProc32()) { *ctx = fState; return (ShadeProc)fState->getShaderProc32(); } return NULL; } void SkBitmapProcShader::BitmapProcShaderContext::shadeSpan16(int x, int y, uint16_t dstC[], int count) { const SkBitmapProcState& state = *fState; if (state.getShaderProc16()) { state.getShaderProc16()(state, x, y, dstC, count); return; } uint32_t buffer[BUF_MAX]; SkBitmapProcState::MatrixProc mproc = state.getMatrixProc(); SkBitmapProcState::SampleProc16 sproc = state.getSampleProc16(); int max = state.maxCountForBufferSize(sizeof(buffer)); SkASSERT(state.fBitmap->getPixels()); SkASSERT(state.fBitmap->pixelRef() == NULL || state.fBitmap->pixelRef()->isLocked()); for (;;) { int n = count; if (n > max) { n = max; } mproc(state, buffer, n, x, y); sproc(state, buffer, n, dstC); if ((count -= n) == 0) { break; } x += n; dstC += n; } } /////////////////////////////////////////////////////////////////////////////// #include "SkUnPreMultiply.h" #include "SkColorShader.h" #include "SkEmptyShader.h" // returns true and set color if the bitmap can be drawn as a single color // (for efficiency) static bool canUseColorShader(const SkBitmap& bm, SkColor* color) { #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK // Android expects SkShaders constructed from a Bitmap to always be queryable with // SkShader::asABitmap() return false; #endif if (1 != bm.width() || 1 != bm.height()) { return false; } SkAutoLockPixels alp(bm); if (!bm.readyToDraw()) { return false; } switch (bm.colorType()) { case kN32_SkColorType: *color = SkUnPreMultiply::PMColorToColor(*bm.getAddr32(0, 0)); return true; case kRGB_565_SkColorType: *color = SkPixel16ToColor(*bm.getAddr16(0, 0)); return true; case kIndex_8_SkColorType: *color = SkUnPreMultiply::PMColorToColor(bm.getIndex8Color(0, 0)); return true; default: // just skip the other configs for now break; } return false; } static bool bitmapIsTooBig(const SkBitmap& bm) { // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it // communicates between its matrix-proc and its sampler-proc. Until we can // widen that, we have to reject bitmaps that are larger. // const int maxSize = 65535; return bm.width() > maxSize || bm.height() > maxSize; } SkShader* SkCreateBitmapShader(const SkBitmap& src, SkShader::TileMode tmx, SkShader::TileMode tmy, const SkMatrix* localMatrix, SkTBlitterAllocator* allocator) { SkShader* shader; SkColor color; if (src.isNull() || bitmapIsTooBig(src)) { if (NULL == allocator) { shader = SkNEW(SkEmptyShader); } else { shader = allocator->createT<SkEmptyShader>(); } } else if (canUseColorShader(src, &color)) { if (NULL == allocator) { shader = SkNEW_ARGS(SkColorShader, (color)); } else { shader = allocator->createT<SkColorShader>(color); } } else { if (NULL == allocator) { shader = SkNEW_ARGS(SkBitmapProcShader, (src, tmx, tmy, localMatrix)); } else { shader = allocator->createT<SkBitmapProcShader>(src, tmx, tmy, localMatrix); } } return shader; } /////////////////////////////////////////////////////////////////////////////// #ifndef SK_IGNORE_TO_STRING void SkBitmapProcShader::toString(SkString* str) const { static const char* gTileModeName[SkShader::kTileModeCount] = { "clamp", "repeat", "mirror" }; str->append("BitmapShader: ("); str->appendf("(%s, %s)", gTileModeName[fTileModeX], gTileModeName[fTileModeY]); str->append(" "); fRawBitmap.toString(str); this->INHERITED::toString(str); str->append(")"); } #endif /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "GrTextureAccess.h" #include "effects/GrSimpleTextureEffect.h" #include "SkGr.h" bool SkBitmapProcShader::asFragmentProcessor(GrContext* context, const SkPaint& paint, const SkMatrix& viewM, const SkMatrix* localMatrix, GrColor* paintColor, GrFragmentProcessor** fp) const { SkMatrix matrix; matrix.setIDiv(fRawBitmap.width(), fRawBitmap.height()); SkMatrix lmInverse; if (!this->getLocalMatrix().invert(&lmInverse)) { return false; } if (localMatrix) { SkMatrix inv; if (!localMatrix->invert(&inv)) { return false; } lmInverse.postConcat(inv); } matrix.preConcat(lmInverse); SkShader::TileMode tm[] = { (TileMode)fTileModeX, (TileMode)fTileModeY, }; // Must set wrap and filter on the sampler before requesting a texture. In two places below // we check the matrix scale factors to determine how to interpret the filter quality setting. // This completely ignores the complexity of the drawVertices case where explicit local coords // are provided by the caller. bool useBicubic = false; GrTextureParams::FilterMode textureFilterMode; switch(paint.getFilterQuality()) { case kNone_SkFilterQuality: textureFilterMode = GrTextureParams::kNone_FilterMode; break; case kLow_SkFilterQuality: textureFilterMode = GrTextureParams::kBilerp_FilterMode; break; case kMedium_SkFilterQuality: { SkMatrix matrix; matrix.setConcat(viewM, this->getLocalMatrix()); if (matrix.getMinScale() < SK_Scalar1) { textureFilterMode = GrTextureParams::kMipMap_FilterMode; } else { // Don't trigger MIP level generation unnecessarily. textureFilterMode = GrTextureParams::kBilerp_FilterMode; } break; } case kHigh_SkFilterQuality: { SkMatrix matrix; matrix.setConcat(viewM, this->getLocalMatrix()); useBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); break; } default: SkErrorInternals::SetError( kInvalidPaint_SkError, "Sorry, I don't understand the filtering " "mode you asked for. Falling back to " "MIPMaps."); textureFilterMode = GrTextureParams::kMipMap_FilterMode; break; } GrTextureParams params(tm, textureFilterMode); SkAutoTUnref<GrTexture> texture(GrRefCachedBitmapTexture(context, fRawBitmap, ¶ms)); if (!texture) { SkErrorInternals::SetError( kInternalError_SkError, "Couldn't convert bitmap to texture."); return false; } *paintColor = (kAlpha_8_SkColorType == fRawBitmap.colorType()) ? SkColor2GrColor(paint.getColor()) : SkColor2GrColorJustAlpha(paint.getColor()); if (useBicubic) { *fp = GrBicubicEffect::Create(texture, matrix, tm); } else { *fp = GrSimpleTextureEffect::Create(texture, matrix, params); } return true; } #else bool SkBitmapProcShader::asFragmentProcessor(GrContext*, const SkPaint&, const SkMatrix&, const SkMatrix*, GrColor*, GrFragmentProcessor**) const { SkDEBUGFAIL("Should not call in GPU-less build"); return false; } #endif