''' Created on May 19, 2011 @author: bungeman ''' import os import re import math # bench representation algorithm constant names ALGORITHM_AVERAGE = 'avg' ALGORITHM_MEDIAN = 'med' ALGORITHM_MINIMUM = 'min' ALGORITHM_25TH_PERCENTILE = '25th' # Regular expressions used throughout. PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?' SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)' BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)' TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)' # non-per-tile benches have configs that don't end with ']' or '>' CONFIG_RE = '(\S+[^\]>]):\s+((?:' + TIME_RE + '\s+)+)' # per-tile bench lines are in the following format. Note that there are # non-averaged bench numbers in separate lines, which we ignore now due to # their inaccuracy. TILE_RE = (' tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:' ' ((?:' + TIME_RE + '\s+)+)') # for extracting tile layout TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: ' PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE) SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE) BENCH_RE_COMPILED = re.compile(BENCH_RE) TIME_RE_COMPILED = re.compile(TIME_RE) CONFIG_RE_COMPILED = re.compile(CONFIG_RE) TILE_RE_COMPILED = re.compile(TILE_RE) TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE) class BenchDataPoint: """A single data point produced by bench. """ def __init__(self, bench, config, time_type, time, settings, tile_layout='', per_tile_values=[], per_iter_time=[]): # string name of the benchmark to measure self.bench = bench # string name of the configurations to run self.config = config # type of the timer in string: '' (walltime), 'c' (cpu) or 'g' (gpu) self.time_type = time_type # float number of the bench time value self.time = time # dictionary of the run settings self.settings = settings # how tiles cover the whole picture: '5x3' means 5 columns and 3 rows self.tile_layout = tile_layout # list of float for per_tile bench values, if applicable self.per_tile_values = per_tile_values # list of float for per-iteration bench time, if applicable self.per_iter_time = per_iter_time def __repr__(self): return "BenchDataPoint(%s, %s, %s, %s, %s)" % ( str(self.bench), str(self.config), str(self.time_type), str(self.time), str(self.settings), ) class _ExtremeType(object): """Instances of this class compare greater or less than other objects.""" def __init__(self, cmpr, rep): object.__init__(self) self._cmpr = cmpr self._rep = rep def __cmp__(self, other): if isinstance(other, self.__class__) and other._cmpr == self._cmpr: return 0 return self._cmpr def __repr__(self): return self._rep Max = _ExtremeType(1, "Max") Min = _ExtremeType(-1, "Min") class _ListAlgorithm(object): """Algorithm for selecting the representation value from a given list. representation is one of the ALGORITHM_XXX representation types.""" def __init__(self, data, representation=None): if not representation: representation = ALGORITHM_AVERAGE # default algorithm self._data = data self._len = len(data) if representation == ALGORITHM_AVERAGE: self._rep = sum(self._data) / self._len else: self._data.sort() if representation == ALGORITHM_MINIMUM: self._rep = self._data[0] else: # for percentiles, we use the value below which x% of values are # found, which allows for better detection of quantum behaviors. if representation == ALGORITHM_MEDIAN: x = int(round(0.5 * self._len + 0.5)) elif representation == ALGORITHM_25TH_PERCENTILE: x = int(round(0.25 * self._len + 0.5)) else: raise Exception("invalid representation algorithm %s!" % representation) self._rep = self._data[x - 1] def compute(self): return self._rep def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench, value_dic, layout_dic): """Parses given bench time line with regex and adds data to value_dic. config_re_compiled: precompiled regular expression for parsing the config line. is_per_tile: boolean indicating whether this is a per-tile bench. If so, we add tile layout into layout_dic as well. line: input string line to parse. bench: name of bench for the time values. value_dic: dictionary to store bench values. See bench_dic in parse() below. layout_dic: dictionary to store tile layouts. See parse() for descriptions. """ for config in config_re_compiled.finditer(line): current_config = config.group(1) tile_layout = '' if is_per_tile: # per-tile bench, add name prefix current_config = 'tile_' + current_config layouts = TILE_LAYOUT_RE_COMPILED.search(line) if layouts and len(layouts.groups()) == 2: tile_layout = '%sx%s' % layouts.groups() times = config.group(2) for new_time in TIME_RE_COMPILED.finditer(times): current_time_type = new_time.group(1) iters = [float(i) for i in new_time.group(2).strip().split(',')] value_dic.setdefault(bench, {}).setdefault( current_config, {}).setdefault(current_time_type, []).append( iters) layout_dic.setdefault(bench, {}).setdefault( current_config, {}).setdefault(current_time_type, tile_layout) def parse_skp_bench_data(directory, revision, rep, default_settings=None): """Parses all the skp bench data in the given directory. Args: directory: string of path to input data directory. revision: git hash revision that matches the data to process. rep: bench representation algorithm, see bench_util.py. default_settings: dictionary of other run settings. See writer.option() in bench/benchmain.cpp. Returns: A list of BenchDataPoint objects. """ revision_data_points = [] file_list = os.listdir(directory) file_list.sort() for bench_file in file_list: scalar_type = None # Scalar type, if any, is in the bench filename after 'scalar_'. if (bench_file.startswith('bench_' + revision + '_data_')): if bench_file.find('scalar_') > 0: components = bench_file.split('_') scalar_type = components[components.index('scalar') + 1] else: # Skips non skp bench files. continue with open('/'.join([directory, bench_file]), 'r') as file_handle: settings = dict(default_settings or {}) settings['scalar'] = scalar_type revision_data_points.extend(parse(settings, file_handle, rep)) return revision_data_points # TODO(bensong): switch to reading JSON output when available. This way we don't # need the RE complexities. def parse(settings, lines, representation=None): """Parses bench output into a useful data structure. ({str:str}, __iter__ -> str) -> [BenchDataPoint] representation is one of the ALGORITHM_XXX types.""" benches = [] current_bench = None # [bench][config][time_type] -> [[per-iter values]] where per-tile config # has per-iter value list for each tile [[<tile1_iter1>,<tile1_iter2>,...], # [<tile2_iter1>,<tile2_iter2>,...],...], while non-per-tile config only # contains one list of iterations [[iter1, iter2, ...]]. bench_dic = {} # [bench][config][time_type] -> tile_layout layout_dic = {} for line in lines: # see if this line is a settings line settingsMatch = SETTINGS_RE_COMPILED.search(line) if (settingsMatch): settings = dict(settings) for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)): if (settingMatch.group(2)): settings[settingMatch.group(1)] = settingMatch.group(2) else: settings[settingMatch.group(1)] = True # see if this line starts a new bench new_bench = BENCH_RE_COMPILED.search(line) if new_bench: current_bench = new_bench.group(1) # add configs on this line to the bench_dic if current_bench: if line.startswith(' tile_') : _ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench, bench_dic, layout_dic) else: _ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line, current_bench, bench_dic, layout_dic) # append benches to list for bench in bench_dic: for config in bench_dic[bench]: for time_type in bench_dic[bench][config]: tile_layout = '' per_tile_values = [] # empty for non-per-tile configs per_iter_time = [] # empty for per-tile configs bench_summary = None # a single final bench value if len(bench_dic[bench][config][time_type]) > 1: # per-tile config; compute representation for each tile per_tile_values = [ _ListAlgorithm(iters, representation).compute() for iters in bench_dic[bench][config][time_type]] # use sum of each tile representation for total bench value bench_summary = sum(per_tile_values) # extract tile layout tile_layout = layout_dic[bench][config][time_type] else: # get the list of per-iteration values per_iter_time = bench_dic[bench][config][time_type][0] bench_summary = _ListAlgorithm( per_iter_time, representation).compute() benches.append(BenchDataPoint( bench, config, time_type, bench_summary, settings, tile_layout, per_tile_values, per_iter_time)) return benches class LinearRegression: """Linear regression data based on a set of data points. ([(Number,Number)]) There must be at least two points for this to make sense.""" def __init__(self, points): n = len(points) max_x = Min min_x = Max Sx = 0.0 Sy = 0.0 Sxx = 0.0 Sxy = 0.0 Syy = 0.0 for point in points: x = point[0] y = point[1] max_x = max(max_x, x) min_x = min(min_x, x) Sx += x Sy += y Sxx += x*x Sxy += x*y Syy += y*y denom = n*Sxx - Sx*Sx if (denom != 0.0): B = (n*Sxy - Sx*Sy) / denom else: B = 0.0 a = (1.0/n)*(Sy - B*Sx) se2 = 0 sB2 = 0 sa2 = 0 if (n >= 3 and denom != 0.0): se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom)) sB2 = (n*se2) / denom sa2 = sB2 * (1.0/n) * Sxx self.slope = B self.intercept = a self.serror = math.sqrt(max(0, se2)) self.serror_slope = math.sqrt(max(0, sB2)) self.serror_intercept = math.sqrt(max(0, sa2)) self.max_x = max_x self.min_x = min_x def __repr__(self): return "LinearRegression(%s, %s, %s, %s, %s)" % ( str(self.slope), str(self.intercept), str(self.serror), str(self.serror_slope), str(self.serror_intercept), ) def find_min_slope(self): """Finds the minimal slope given one standard deviation.""" slope = self.slope intercept = self.intercept error = self.serror regr_start = self.min_x regr_end = self.max_x regr_width = regr_end - regr_start if slope < 0: lower_left_y = slope*regr_start + intercept - error upper_right_y = slope*regr_end + intercept + error return min(0, (upper_right_y - lower_left_y) / regr_width) elif slope > 0: upper_left_y = slope*regr_start + intercept + error lower_right_y = slope*regr_end + intercept - error return max(0, (lower_right_y - upper_left_y) / regr_width) return 0 def CreateRevisionLink(revision_number): """Returns HTML displaying the given revision number and linking to that revision's change page at code.google.com, e.g. http://code.google.com/p/skia/source/detail?r=2056 """ return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%( revision_number, revision_number) def main(): foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]] LinearRegression(foo) if __name__ == "__main__": main()