// Copyright 2003-2009 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #ifndef RE2_RE2_H #define RE2_RE2_H // C++ interface to the re2 regular-expression library. // RE2 supports Perl-style regular expressions (with extensions like // \d, \w, \s, ...). // // ----------------------------------------------------------------------- // REGEXP SYNTAX: // // This module uses the re2 library and hence supports // its syntax for regular expressions, which is similar to Perl's with // some of the more complicated things thrown away. In particular, // backreferences and generalized assertions are not available, nor is \Z. // // See http://code.google.com/p/re2/wiki/Syntax for the syntax // supported by RE2, and a comparison with PCRE and PERL regexps. // // For those not familiar with Perl's regular expressions, // here are some examples of the most commonly used extensions: // // "hello (\\w+) world" -- \w matches a "word" character // "version (\\d+)" -- \d matches a digit // "hello\\s+world" -- \s matches any whitespace character // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary // "(?i)hello" -- (?i) turns on case-insensitive matching // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible // // ----------------------------------------------------------------------- // MATCHING INTERFACE: // // The "FullMatch" operation checks that supplied text matches a // supplied pattern exactly. // // Example: successful match // CHECK(RE2::FullMatch("hello", "h.*o")); // // Example: unsuccessful match (requires full match): // CHECK(!RE2::FullMatch("hello", "e")); // // ----------------------------------------------------------------------- // UTF-8 AND THE MATCHING INTERFACE: // // By default, the pattern and input text are interpreted as UTF-8. // The RE2::Latin1 option causes them to be interpreted as Latin-1. // // Example: // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1))); // // ----------------------------------------------------------------------- // MATCHING WITH SUB-STRING EXTRACTION: // // You can supply extra pointer arguments to extract matched subpieces. // // Example: extracts "ruby" into "s" and 1234 into "i" // int i; // string s; // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); // // Example: fails because string cannot be stored in integer // CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); // // Example: fails because there aren't enough sub-patterns: // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); // // Example: does not try to extract any extra sub-patterns // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); // // Example: does not try to extract into NULL // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); // // Example: integer overflow causes failure // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); // // NOTE(rsc): Asking for substrings slows successful matches quite a bit. // This may get a little faster in the future, but right now is slower // than PCRE. On the other hand, failed matches run *very* fast (faster // than PCRE), as do matches without substring extraction. // // ----------------------------------------------------------------------- // PARTIAL MATCHES // // You can use the "PartialMatch" operation when you want the pattern // to match any substring of the text. // // Example: simple search for a string: // CHECK(RE2::PartialMatch("hello", "ell")); // // Example: find first number in a string // int number; // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); // CHECK_EQ(number, 100); // // ----------------------------------------------------------------------- // PRE-COMPILED REGULAR EXPRESSIONS // // RE2 makes it easy to use any string as a regular expression, without // requiring a separate compilation step. // // If speed is of the essence, you can create a pre-compiled "RE2" // object from the pattern and use it multiple times. If you do so, // you can typically parse text faster than with sscanf. // // Example: precompile pattern for faster matching: // RE2 pattern("h.*o"); // while (ReadLine(&str)) { // if (RE2::FullMatch(str, pattern)) ...; // } // // ----------------------------------------------------------------------- // SCANNING TEXT INCREMENTALLY // // The "Consume" operation may be useful if you want to repeatedly // match regular expressions at the front of a string and skip over // them as they match. This requires use of the "StringPiece" type, // which represents a sub-range of a real string. // // Example: read lines of the form "var = value" from a string. // string contents = ...; // Fill string somehow // StringPiece input(contents); // Wrap a StringPiece around it // // string var; // int value; // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { // ...; // } // // Each successful call to "Consume" will set "var/value", and also // advance "input" so it points past the matched text. Note that if the // regular expression matches an empty string, input will advance // by 0 bytes. If the regular expression being used might match // an empty string, the loop body must check for this case and either // advance the string or break out of the loop. // // The "FindAndConsume" operation is similar to "Consume" but does not // anchor your match at the beginning of the string. For example, you // could extract all words from a string by repeatedly calling // RE2::FindAndConsume(&input, "(\\w+)", &word) // // ----------------------------------------------------------------------- // USING VARIABLE NUMBER OF ARGUMENTS // // The above operations require you to know the number of arguments // when you write the code. This is not always possible or easy (for // example, the regular expression may be calculated at run time). // You can use the "N" version of the operations when the number of // match arguments are determined at run time. // // Example: // const RE2::Arg* args[10]; // int n; // // ... populate args with pointers to RE2::Arg values ... // // ... set n to the number of RE2::Arg objects ... // bool match = RE2::FullMatchN(input, pattern, args, n); // // The last statement is equivalent to // // bool match = RE2::FullMatch(input, pattern, // *args[0], *args[1], ..., *args[n - 1]); // // ----------------------------------------------------------------------- // PARSING HEX/OCTAL/C-RADIX NUMBERS // // By default, if you pass a pointer to a numeric value, the // corresponding text is interpreted as a base-10 number. You can // instead wrap the pointer with a call to one of the operators Hex(), // Octal(), or CRadix() to interpret the text in another base. The // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) // prefixes, but defaults to base-10. // // Example: // int a, b, c, d; // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); // will leave 64 in a, b, c, and d. #include <stdint.h> #include <map> #include <string> #include "re2/stringpiece.h" #include "re2/variadic_function.h" namespace re2 { using std::string; using std::map; class Mutex; class Prog; class Regexp; // The following enum should be used only as a constructor argument to indicate // that the variable has static storage class, and that the constructor should // do nothing to its state. It indicates to the reader that it is legal to // declare a static instance of the class, provided the constructor is given // the LINKER_INITIALIZED argument. Normally, it is unsafe to declare a // static variable that has a constructor or a destructor because invocation // order is undefined. However, IF the type can be initialized by filling with // zeroes (which the loader does for static variables), AND the type's // destructor does nothing to the storage, then a constructor for static // initialization can be declared as // explicit MyClass(LinkerInitialized x) {} // and invoked as // static MyClass my_variable_name(LINKER_INITIALIZED); enum LinkerInitialized { LINKER_INITIALIZED }; // Interface for regular expression matching. Also corresponds to a // pre-compiled regular expression. An "RE2" object is safe for // concurrent use by multiple threads. class RE2 { public: // We convert user-passed pointers into special Arg objects class Arg; class Options; // Defined in set.h. class Set; enum ErrorCode { NoError = 0, // Unexpected error ErrorInternal, // Parse errors ErrorBadEscape, // bad escape sequence ErrorBadCharClass, // bad character class ErrorBadCharRange, // bad character class range ErrorMissingBracket, // missing closing ] ErrorMissingParen, // missing closing ) ErrorTrailingBackslash, // trailing \ at end of regexp ErrorRepeatArgument, // repeat argument missing, e.g. "*" ErrorRepeatSize, // bad repetition argument ErrorRepeatOp, // bad repetition operator ErrorBadPerlOp, // bad perl operator ErrorBadUTF8, // invalid UTF-8 in regexp ErrorBadNamedCapture, // bad named capture group ErrorPatternTooLarge, // pattern too large (compile failed) }; // Predefined common options. // If you need more complicated things, instantiate // an Option class, possibly passing one of these to // the Option constructor, change the settings, and pass that // Option class to the RE2 constructor. enum CannedOptions { DefaultOptions = 0, Latin1, // treat input as Latin-1 (default UTF-8) POSIX, // POSIX syntax, leftmost-longest match Quiet // do not log about regexp parse errors }; // Need to have the const char* and const string& forms for implicit // conversions when passing string literals to FullMatch and PartialMatch. // Otherwise the StringPiece form would be sufficient. #ifndef SWIG RE2(const char* pattern); RE2(const string& pattern); #endif RE2(const StringPiece& pattern); RE2(const StringPiece& pattern, const Options& option); ~RE2(); // Returns whether RE2 was created properly. bool ok() const { return error_code() == NoError; } // The string specification for this RE2. E.g. // RE2 re("ab*c?d+"); // re.pattern(); // "ab*c?d+" const string& pattern() const { return pattern_; } // If RE2 could not be created properly, returns an error string. // Else returns the empty string. const string& error() const { return *error_; } // If RE2 could not be created properly, returns an error code. // Else returns RE2::NoError (== 0). ErrorCode error_code() const { return error_code_; } // If RE2 could not be created properly, returns the offending // portion of the regexp. const string& error_arg() const { return error_arg_; } // Returns the program size, a very approximate measure of a regexp's "cost". // Larger numbers are more expensive than smaller numbers. int ProgramSize() const; // Returns the underlying Regexp; not for general use. // Returns entire_regexp_ so that callers don't need // to know about prefix_ and prefix_foldcase_. re2::Regexp* Regexp() const { return entire_regexp_; } /***** The useful part: the matching interface *****/ // Matches "text" against "pattern". If pointer arguments are // supplied, copies matched sub-patterns into them. // // You can pass in a "const char*" or a "string" for "text". // You can pass in a "const char*" or a "string" or a "RE2" for "pattern". // // The provided pointer arguments can be pointers to any scalar numeric // type, or one of: // string (matched piece is copied to string) // StringPiece (StringPiece is mutated to point to matched piece) // T (where "bool T::ParseFrom(const char*, int)" exists) // (void*)NULL (the corresponding matched sub-pattern is not copied) // // Returns true iff all of the following conditions are satisfied: // a. "text" matches "pattern" exactly // b. The number of matched sub-patterns is >= number of supplied pointers // c. The "i"th argument has a suitable type for holding the // string captured as the "i"th sub-pattern. If you pass in // NULL for the "i"th argument, or pass fewer arguments than // number of sub-patterns, "i"th captured sub-pattern is // ignored. // // CAVEAT: An optional sub-pattern that does not exist in the // matched string is assigned the empty string. Therefore, the // following will return false (because the empty string is not a // valid number): // int number; // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number); static bool FullMatchN(const StringPiece& text, const RE2& re, const Arg* const args[], int argc); static const VariadicFunction2< bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch; // Exactly like FullMatch(), except that "pattern" is allowed to match // a substring of "text". static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args const Arg* const args[], int argc); static const VariadicFunction2< bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch; // Like FullMatch() and PartialMatch(), except that pattern has to // match a prefix of "text", and "input" is advanced past the matched // text. Note: "input" is modified iff this routine returns true. static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args const Arg* const args[], int argc); static const VariadicFunction2< bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume; // Like Consume(..), but does not anchor the match at the beginning of the // string. That is, "pattern" need not start its match at the beginning of // "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next // word in "s" and stores it in "word". static bool FindAndConsumeN(StringPiece* input, const RE2& pattern, const Arg* const args[], int argc); static const VariadicFunction2< bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume; // Replace the first match of "pattern" in "str" with "rewrite". // Within "rewrite", backslash-escaped digits (\1 to \9) can be // used to insert text matching corresponding parenthesized group // from the pattern. \0 in "rewrite" refers to the entire matching // text. E.g., // // string s = "yabba dabba doo"; // CHECK(RE2::Replace(&s, "b+", "d")); // // will leave "s" containing "yada dabba doo" // // Returns true if the pattern matches and a replacement occurs, // false otherwise. static bool Replace(string *str, const RE2& pattern, const StringPiece& rewrite); // Like Replace(), except replaces successive non-overlapping occurrences // of the pattern in the string with the rewrite. E.g. // // string s = "yabba dabba doo"; // CHECK(RE2::GlobalReplace(&s, "b+", "d")); // // will leave "s" containing "yada dada doo" // Replacements are not subject to re-matching. // // Because GlobalReplace only replaces non-overlapping matches, // replacing "ana" within "banana" makes only one replacement, not two. // // Returns the number of replacements made. static int GlobalReplace(string *str, const RE2& pattern, const StringPiece& rewrite); // Like Replace, except that if the pattern matches, "rewrite" // is copied into "out" with substitutions. The non-matching // portions of "text" are ignored. // // Returns true iff a match occurred and the extraction happened // successfully; if no match occurs, the string is left unaffected. static bool Extract(const StringPiece &text, const RE2& pattern, const StringPiece &rewrite, string *out); // Escapes all potentially meaningful regexp characters in // 'unquoted'. The returned string, used as a regular expression, // will exactly match the original string. For example, // 1.5-2.0? // may become: // 1\.5\-2\.0\? static string QuoteMeta(const StringPiece& unquoted); // Computes range for any strings matching regexp. The min and max can in // some cases be arbitrarily precise, so the caller gets to specify the // maximum desired length of string returned. // // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any // string s that is an anchored match for this regexp satisfies // min <= s && s <= max. // // Note that PossibleMatchRange() will only consider the first copy of an // infinitely repeated element (i.e., any regexp element followed by a '*' or // '+' operator). Regexps with "{N}" constructions are not affected, as those // do not compile down to infinite repetitions. // // Returns true on success, false on error. bool PossibleMatchRange(string* min, string* max, int maxlen) const; // Generic matching interface // Type of match. enum Anchor { UNANCHORED, // No anchoring ANCHOR_START, // Anchor at start only ANCHOR_BOTH, // Anchor at start and end }; // Return the number of capturing subpatterns, or -1 if the // regexp wasn't valid on construction. The overall match ($0) // does not count: if the regexp is "(a)(b)", returns 2. int NumberOfCapturingGroups() const; // Return a map from names to capturing indices. // The map records the index of the leftmost group // with the given name. // Only valid until the re is deleted. const map<string, int>& NamedCapturingGroups() const; // Return a map from capturing indices to names. // The map has no entries for unnamed groups. // Only valid until the re is deleted. const map<int, string>& CapturingGroupNames() const; // General matching routine. // Match against text starting at offset startpos // and stopping the search at offset endpos. // Returns true if match found, false if not. // On a successful match, fills in match[] (up to nmatch entries) // with information about submatches. // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar", // match[3] = NULL, ..., up to match[nmatch-1] = NULL. // // Don't ask for more match information than you will use: // runs much faster with nmatch == 1 than nmatch > 1, and // runs even faster if nmatch == 0. // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(), // but will be handled correctly. // // Passing text == StringPiece(NULL, 0) will be handled like any other // empty string, but note that on return, it will not be possible to tell // whether submatch i matched the empty string or did not match: // either way, match[i] == NULL. bool Match(const StringPiece& text, int startpos, int endpos, Anchor anchor, StringPiece *match, int nmatch) const; // Check that the given rewrite string is suitable for use with this // regular expression. It checks that: // * The regular expression has enough parenthesized subexpressions // to satisfy all of the \N tokens in rewrite // * The rewrite string doesn't have any syntax errors. E.g., // '\' followed by anything other than a digit or '\'. // A true return value guarantees that Replace() and Extract() won't // fail because of a bad rewrite string. bool CheckRewriteString(const StringPiece& rewrite, string* error) const; // Returns the maximum submatch needed for the rewrite to be done by // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2. static int MaxSubmatch(const StringPiece& rewrite); // Append the "rewrite" string, with backslash subsitutions from "vec", // to string "out". // Returns true on success. This method can fail because of a malformed // rewrite string. CheckRewriteString guarantees that the rewrite will // be sucessful. bool Rewrite(string *out, const StringPiece &rewrite, const StringPiece* vec, int veclen) const; // Constructor options class Options { public: // The options are (defaults in parentheses): // // utf8 (true) text and pattern are UTF-8; otherwise Latin-1 // posix_syntax (false) restrict regexps to POSIX egrep syntax // longest_match (false) search for longest match, not first match // log_errors (true) log syntax and execution errors to ERROR // max_mem (see below) approx. max memory footprint of RE2 // literal (false) interpret string as literal, not regexp // never_nl (false) never match \n, even if it is in regexp // never_capture (false) parse all parens as non-capturing // case_sensitive (true) match is case-sensitive (regexp can override // with (?i) unless in posix_syntax mode) // // The following options are only consulted when posix_syntax == true. // (When posix_syntax == false these features are always enabled and // cannot be turned off.) // perl_classes (false) allow Perl's \d \s \w \D \S \W // word_boundary (false) allow Perl's \b \B (word boundary and not) // one_line (false) ^ and $ only match beginning and end of text // // The max_mem option controls how much memory can be used // to hold the compiled form of the regexp (the Prog) and // its cached DFA graphs. Code Search placed limits on the number // of Prog instructions and DFA states: 10,000 for both. // In RE2, those limits would translate to about 240 KB per Prog // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a // better job of keeping them small than Code Search did). // Each RE2 has two Progs (one forward, one reverse), and each Prog // can have two DFAs (one first match, one longest match). // That makes 4 DFAs: // // forward, first-match - used for UNANCHORED or ANCHOR_LEFT searches // if opt.longest_match() == false // forward, longest-match - used for all ANCHOR_BOTH searches, // and the other two kinds if // opt.longest_match() == true // reverse, first-match - never used // reverse, longest-match - used as second phase for unanchored searches // // The RE2 memory budget is statically divided between the two // Progs and then the DFAs: two thirds to the forward Prog // and one third to the reverse Prog. The forward Prog gives half // of what it has left over to each of its DFAs. The reverse Prog // gives it all to its longest-match DFA. // // Once a DFA fills its budget, it flushes its cache and starts over. // If this happens too often, RE2 falls back on the NFA implementation. // For now, make the default budget something close to Code Search. static const int kDefaultMaxMem = 8<<20; enum Encoding { EncodingUTF8 = 1, EncodingLatin1 }; Options() : encoding_(EncodingUTF8), posix_syntax_(false), longest_match_(false), log_errors_(true), max_mem_(kDefaultMaxMem), literal_(false), never_nl_(false), never_capture_(false), case_sensitive_(true), perl_classes_(false), word_boundary_(false), one_line_(false) { } /*implicit*/ Options(CannedOptions); Encoding encoding() const { return encoding_; } void set_encoding(Encoding encoding) { encoding_ = encoding; } // Legacy interface to encoding. // TODO(rsc): Remove once clients have been converted. bool utf8() const { return encoding_ == EncodingUTF8; } void set_utf8(bool b) { if (b) { encoding_ = EncodingUTF8; } else { encoding_ = EncodingLatin1; } } bool posix_syntax() const { return posix_syntax_; } void set_posix_syntax(bool b) { posix_syntax_ = b; } bool longest_match() const { return longest_match_; } void set_longest_match(bool b) { longest_match_ = b; } bool log_errors() const { return log_errors_; } void set_log_errors(bool b) { log_errors_ = b; } int max_mem() const { return max_mem_; } void set_max_mem(int m) { max_mem_ = m; } bool literal() const { return literal_; } void set_literal(bool b) { literal_ = b; } bool never_nl() const { return never_nl_; } void set_never_nl(bool b) { never_nl_ = b; } bool never_capture() const { return never_capture_; } void set_never_capture(bool b) { never_capture_ = b; } bool case_sensitive() const { return case_sensitive_; } void set_case_sensitive(bool b) { case_sensitive_ = b; } bool perl_classes() const { return perl_classes_; } void set_perl_classes(bool b) { perl_classes_ = b; } bool word_boundary() const { return word_boundary_; } void set_word_boundary(bool b) { word_boundary_ = b; } bool one_line() const { return one_line_; } void set_one_line(bool b) { one_line_ = b; } void Copy(const Options& src) { encoding_ = src.encoding_; posix_syntax_ = src.posix_syntax_; longest_match_ = src.longest_match_; log_errors_ = src.log_errors_; max_mem_ = src.max_mem_; literal_ = src.literal_; never_nl_ = src.never_nl_; never_capture_ = src.never_capture_; case_sensitive_ = src.case_sensitive_; perl_classes_ = src.perl_classes_; word_boundary_ = src.word_boundary_; one_line_ = src.one_line_; } int ParseFlags() const; private: Encoding encoding_; bool posix_syntax_; bool longest_match_; bool log_errors_; int64_t max_mem_; bool literal_; bool never_nl_; bool never_capture_; bool case_sensitive_; bool perl_classes_; bool word_boundary_; bool one_line_; //DISALLOW_EVIL_CONSTRUCTORS(Options); Options(const Options&); void operator=(const Options&); }; // Returns the options set in the constructor. const Options& options() const { return options_; }; // Argument converters; see below. static inline Arg CRadix(short* x); static inline Arg CRadix(unsigned short* x); static inline Arg CRadix(int* x); static inline Arg CRadix(unsigned int* x); static inline Arg CRadix(long* x); static inline Arg CRadix(unsigned long* x); static inline Arg CRadix(long long* x); static inline Arg CRadix(unsigned long long* x); static inline Arg Hex(short* x); static inline Arg Hex(unsigned short* x); static inline Arg Hex(int* x); static inline Arg Hex(unsigned int* x); static inline Arg Hex(long* x); static inline Arg Hex(unsigned long* x); static inline Arg Hex(long long* x); static inline Arg Hex(unsigned long long* x); static inline Arg Octal(short* x); static inline Arg Octal(unsigned short* x); static inline Arg Octal(int* x); static inline Arg Octal(unsigned int* x); static inline Arg Octal(long* x); static inline Arg Octal(unsigned long* x); static inline Arg Octal(long long* x); static inline Arg Octal(unsigned long long* x); private: void Init(const StringPiece& pattern, const Options& options); bool DoMatch(const StringPiece& text, Anchor anchor, int* consumed, const Arg* const args[], int n) const; re2::Prog* ReverseProg() const; mutable Mutex* mutex_; string pattern_; // string regular expression Options options_; // option flags string prefix_; // required prefix (before regexp_) bool prefix_foldcase_; // prefix is ASCII case-insensitive re2::Regexp* entire_regexp_; // parsed regular expression re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed re2::Prog* prog_; // compiled program for regexp mutable re2::Prog* rprog_; // reverse program for regexp bool is_one_pass_; // can use prog_->SearchOnePass? mutable const string* error_; // Error indicator // (or points to empty string) mutable ErrorCode error_code_; // Error code mutable string error_arg_; // Fragment of regexp showing error mutable int num_captures_; // Number of capturing groups // Map from capture names to indices mutable const map<string, int>* named_groups_; // Map from capture indices to names mutable const map<int, string>* group_names_; //DISALLOW_EVIL_CONSTRUCTORS(RE2); RE2(const RE2&); void operator=(const RE2&); }; /***** Implementation details *****/ // Hex/Octal/Binary? // Special class for parsing into objects that define a ParseFrom() method template <class T> class _RE2_MatchObject { public: static inline bool Parse(const char* str, int n, void* dest) { if (dest == NULL) return true; T* object = reinterpret_cast<T*>(dest); return object->ParseFrom(str, n); } }; class RE2::Arg { public: // Empty constructor so we can declare arrays of RE2::Arg Arg(); // Constructor specially designed for NULL arguments Arg(void*); typedef bool (*Parser)(const char* str, int n, void* dest); // Type-specific parsers #define MAKE_PARSER(type,name) \ Arg(type* p) : arg_(p), parser_(name) { } \ Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \ MAKE_PARSER(char, parse_char); MAKE_PARSER(signed char, parse_char); MAKE_PARSER(unsigned char, parse_uchar); MAKE_PARSER(short, parse_short); MAKE_PARSER(unsigned short, parse_ushort); MAKE_PARSER(int, parse_int); MAKE_PARSER(unsigned int, parse_uint); MAKE_PARSER(long, parse_long); MAKE_PARSER(unsigned long, parse_ulong); MAKE_PARSER(long long, parse_longlong); MAKE_PARSER(unsigned long long, parse_ulonglong); MAKE_PARSER(float, parse_float); MAKE_PARSER(double, parse_double); MAKE_PARSER(string, parse_string); MAKE_PARSER(StringPiece, parse_stringpiece); #undef MAKE_PARSER // Generic constructor template <class T> Arg(T*, Parser parser); // Generic constructor template template <class T> Arg(T* p) : arg_(p), parser_(_RE2_MatchObject<T>::Parse) { } // Parse the data bool Parse(const char* str, int n) const; private: void* arg_; Parser parser_; static bool parse_null (const char* str, int n, void* dest); static bool parse_char (const char* str, int n, void* dest); static bool parse_uchar (const char* str, int n, void* dest); static bool parse_float (const char* str, int n, void* dest); static bool parse_double (const char* str, int n, void* dest); static bool parse_string (const char* str, int n, void* dest); static bool parse_stringpiece (const char* str, int n, void* dest); #define DECLARE_INTEGER_PARSER(name) \ private: \ static bool parse_ ## name(const char* str, int n, void* dest); \ static bool parse_ ## name ## _radix( \ const char* str, int n, void* dest, int radix); \ public: \ static bool parse_ ## name ## _hex(const char* str, int n, void* dest); \ static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \ static bool parse_ ## name ## _cradix(const char* str, int n, void* dest) DECLARE_INTEGER_PARSER(short); DECLARE_INTEGER_PARSER(ushort); DECLARE_INTEGER_PARSER(int); DECLARE_INTEGER_PARSER(uint); DECLARE_INTEGER_PARSER(long); DECLARE_INTEGER_PARSER(ulong); DECLARE_INTEGER_PARSER(longlong); DECLARE_INTEGER_PARSER(ulonglong); #undef DECLARE_INTEGER_PARSER }; inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { } inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { } inline bool RE2::Arg::Parse(const char* str, int n) const { return (*parser_)(str, n, arg_); } // This part of the parser, appropriate only for ints, deals with bases #define MAKE_INTEGER_PARSER(type, name) \ inline RE2::Arg RE2::Hex(type* ptr) { \ return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \ inline RE2::Arg RE2::Octal(type* ptr) { \ return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \ inline RE2::Arg RE2::CRadix(type* ptr) { \ return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); } MAKE_INTEGER_PARSER(short, short); MAKE_INTEGER_PARSER(unsigned short, ushort); MAKE_INTEGER_PARSER(int, int); MAKE_INTEGER_PARSER(unsigned int, uint); MAKE_INTEGER_PARSER(long, long); MAKE_INTEGER_PARSER(unsigned long, ulong); MAKE_INTEGER_PARSER(long long, longlong); MAKE_INTEGER_PARSER(unsigned long long, ulonglong); #undef MAKE_INTEGER_PARSER } // namespace re2 using re2::RE2; #endif /* RE2_RE2_H */