/************************************************************************** * * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <GL/gl.h> #include <GL/internal/dri_interface.h> #include "intel_batchbuffer.h" #include "intel_context.h" #include "intel_mipmap_tree.h" #include "intel_regions.h" #include "intel_resolve_map.h" #include "intel_span.h" #include "intel_tex_layout.h" #include "intel_tex.h" #include "intel_blit.h" #ifndef I915 #include "brw_blorp.h" #endif #include "main/enums.h" #include "main/formats.h" #include "main/glformats.h" #include "main/texcompress_etc.h" #include "main/teximage.h" #define FILE_DEBUG_FLAG DEBUG_MIPTREE static GLenum target_to_target(GLenum target) { switch (target) { case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB: return GL_TEXTURE_CUBE_MAP_ARB; default: return target; } } /** * @param for_region Indicates that the caller is * intel_miptree_create_for_region(). If true, then do not create * \c stencil_mt. */ static struct intel_mipmap_tree * intel_miptree_create_internal(struct intel_context *intel, GLenum target, gl_format format, GLuint first_level, GLuint last_level, GLuint width0, GLuint height0, GLuint depth0, bool for_region, GLuint num_samples, enum intel_msaa_layout msaa_layout) { struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1); int compress_byte = 0; DBG("%s target %s format %s level %d..%d <-- %p\n", __FUNCTION__, _mesa_lookup_enum_by_nr(target), _mesa_get_format_name(format), first_level, last_level, mt); if (_mesa_is_format_compressed(format)) compress_byte = intel_compressed_num_bytes(format); mt->target = target_to_target(target); mt->format = format; mt->first_level = first_level; mt->last_level = last_level; mt->width0 = width0; mt->height0 = height0; mt->cpp = compress_byte ? compress_byte : _mesa_get_format_bytes(mt->format); mt->num_samples = num_samples; mt->compressed = compress_byte ? 1 : 0; mt->msaa_layout = msaa_layout; mt->refcount = 1; /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we * use it elsewhere? */ switch (msaa_layout) { case INTEL_MSAA_LAYOUT_NONE: case INTEL_MSAA_LAYOUT_IMS: mt->array_spacing_lod0 = false; break; case INTEL_MSAA_LAYOUT_UMS: case INTEL_MSAA_LAYOUT_CMS: mt->array_spacing_lod0 = true; break; } if (target == GL_TEXTURE_CUBE_MAP) { assert(depth0 == 1); mt->depth0 = 6; } else { mt->depth0 = depth0; } if (!for_region && _mesa_is_depthstencil_format(_mesa_get_format_base_format(format)) && (intel->must_use_separate_stencil || (intel->has_separate_stencil && intel->vtbl.is_hiz_depth_format(intel, format)))) { /* MSAA stencil surfaces always use IMS layout. */ enum intel_msaa_layout msaa_layout = num_samples > 1 ? INTEL_MSAA_LAYOUT_IMS : INTEL_MSAA_LAYOUT_NONE; mt->stencil_mt = intel_miptree_create(intel, mt->target, MESA_FORMAT_S8, mt->first_level, mt->last_level, mt->width0, mt->height0, mt->depth0, true, num_samples, msaa_layout); if (!mt->stencil_mt) { intel_miptree_release(&mt); return NULL; } /* Fix up the Z miptree format for how we're splitting out separate * stencil. Gen7 expects there to be no stencil bits in its depth buffer. */ if (mt->format == MESA_FORMAT_S8_Z24) { mt->format = MESA_FORMAT_X8_Z24; } else if (mt->format == MESA_FORMAT_Z32_FLOAT_X24S8) { mt->format = MESA_FORMAT_Z32_FLOAT; mt->cpp = 4; } else { _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n", _mesa_get_format_name(mt->format)); } } intel_get_texture_alignment_unit(intel, mt->format, &mt->align_w, &mt->align_h); #ifdef I915 (void) intel; if (intel->is_945) i945_miptree_layout(mt); else i915_miptree_layout(mt); #else brw_miptree_layout(intel, mt); #endif return mt; } struct intel_mipmap_tree * intel_miptree_create(struct intel_context *intel, GLenum target, gl_format format, GLuint first_level, GLuint last_level, GLuint width0, GLuint height0, GLuint depth0, bool expect_accelerated_upload, GLuint num_samples, enum intel_msaa_layout msaa_layout) { struct intel_mipmap_tree *mt; uint32_t tiling = I915_TILING_NONE; GLenum base_format; bool wraps_etc1 = false; GLuint total_width, total_height; if (format == MESA_FORMAT_ETC1_RGB8) { format = MESA_FORMAT_RGBX8888_REV; wraps_etc1 = true; } base_format = _mesa_get_format_base_format(format); if (intel->use_texture_tiling && !_mesa_is_format_compressed(format)) { if (intel->gen >= 4 && (base_format == GL_DEPTH_COMPONENT || base_format == GL_DEPTH_STENCIL_EXT)) tiling = I915_TILING_Y; else if (msaa_layout != INTEL_MSAA_LAYOUT_NONE) { /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled * Surface"): * * [DevSNB+]: For multi-sample render targets, this field must be * 1. MSRTs can only be tiled. * * Our usual reason for preferring X tiling (fast blits using the * blitting engine) doesn't apply to MSAA, since we'll generally be * downsampling or upsampling when blitting between the MSAA buffer * and another buffer, and the blitting engine doesn't support that. * So use Y tiling, since it makes better use of the cache. */ tiling = I915_TILING_Y; } else if (width0 >= 64) tiling = I915_TILING_X; } mt = intel_miptree_create_internal(intel, target, format, first_level, last_level, width0, height0, depth0, false, num_samples, msaa_layout); /* * pitch == 0 || height == 0 indicates the null texture */ if (!mt || !mt->total_width || !mt->total_height) { intel_miptree_release(&mt); return NULL; } total_width = mt->total_width; total_height = mt->total_height; if (format == MESA_FORMAT_S8) { /* The stencil buffer is W tiled. However, we request from the kernel a * non-tiled buffer because the GTT is incapable of W fencing. So round * up the width and height to match the size of W tiles (64x64). */ tiling = I915_TILING_NONE; total_width = ALIGN(total_width, 64); total_height = ALIGN(total_height, 64); } mt->wraps_etc1 = wraps_etc1; mt->region = intel_region_alloc(intel->intelScreen, tiling, mt->cpp, total_width, total_height, expect_accelerated_upload); mt->offset = 0; if (!mt->region) { intel_miptree_release(&mt); return NULL; } return mt; } struct intel_mipmap_tree * intel_miptree_create_for_region(struct intel_context *intel, GLenum target, gl_format format, struct intel_region *region) { struct intel_mipmap_tree *mt; mt = intel_miptree_create_internal(intel, target, format, 0, 0, region->width, region->height, 1, true, 0 /* num_samples */, INTEL_MSAA_LAYOUT_NONE); if (!mt) return mt; intel_region_reference(&mt->region, region); return mt; } /** * Determine which MSAA layout should be used by the MSAA surface being * created, based on the chip generation and the surface type. */ static enum intel_msaa_layout compute_msaa_layout(struct intel_context *intel, gl_format format) { /* Prior to Gen7, all MSAA surfaces used IMS layout. */ if (intel->gen < 7) return INTEL_MSAA_LAYOUT_IMS; /* In Gen7, IMS layout is only used for depth and stencil buffers. */ switch (_mesa_get_format_base_format(format)) { case GL_DEPTH_COMPONENT: case GL_STENCIL_INDEX: case GL_DEPTH_STENCIL: return INTEL_MSAA_LAYOUT_IMS; default: /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"): * * This field must be set to 0 for all SINT MSRTs when all RT channels * are not written * * In practice this means that we have to disable MCS for all signed * integer MSAA buffers. The alternative, to disable MCS only when one * of the render target channels is disabled, is impractical because it * would require converting between CMS and UMS MSAA layouts on the fly, * which is expensive. */ if (_mesa_get_format_datatype(format) == GL_INT) { /* TODO: is this workaround needed for future chipsets? */ assert(intel->gen == 7); return INTEL_MSAA_LAYOUT_UMS; } else { return INTEL_MSAA_LAYOUT_CMS; } } } /** * For a singlesample DRI2 buffer, this simply wraps the given region with a miptree. * * For a multisample DRI2 buffer, this wraps the given region with * a singlesample miptree, then creates a multisample miptree into which the * singlesample miptree is embedded as a child. */ struct intel_mipmap_tree* intel_miptree_create_for_dri2_buffer(struct intel_context *intel, unsigned dri_attachment, gl_format format, uint32_t num_samples, struct intel_region *region) { struct intel_mipmap_tree *singlesample_mt = NULL; struct intel_mipmap_tree *multisample_mt = NULL; GLenum base_format = _mesa_get_format_base_format(format); /* Only the front and back buffers, which are color buffers, are shared * through DRI2. */ assert(dri_attachment == __DRI_BUFFER_BACK_LEFT || dri_attachment == __DRI_BUFFER_FRONT_LEFT || dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT); assert(base_format == GL_RGB || base_format == GL_RGBA); singlesample_mt = intel_miptree_create_for_region(intel, GL_TEXTURE_2D, format, region); if (!singlesample_mt) return NULL; if (num_samples == 0) return singlesample_mt; multisample_mt = intel_miptree_create_for_renderbuffer(intel, format, region->width, region->height, num_samples); if (!multisample_mt) { intel_miptree_release(&singlesample_mt); return NULL; } multisample_mt->singlesample_mt = singlesample_mt; multisample_mt->need_downsample = false; if (intel->is_front_buffer_rendering && (dri_attachment == __DRI_BUFFER_FRONT_LEFT || dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT)) { intel_miptree_upsample(intel, multisample_mt); } return multisample_mt; } struct intel_mipmap_tree* intel_miptree_create_for_renderbuffer(struct intel_context *intel, gl_format format, uint32_t width, uint32_t height, uint32_t num_samples) { struct intel_mipmap_tree *mt; uint32_t depth = 1; enum intel_msaa_layout msaa_layout = INTEL_MSAA_LAYOUT_NONE; const uint32_t singlesample_width = width; const uint32_t singlesample_height = height; bool ok; if (num_samples > 1) { /* Adjust width/height/depth for MSAA */ msaa_layout = compute_msaa_layout(intel, format); if (msaa_layout == INTEL_MSAA_LAYOUT_IMS) { /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says: * * "Any of the other messages (sample*, LOD, load4) used with a * (4x) multisampled surface will in-effect sample a surface with * double the height and width as that indicated in the surface * state. Each pixel position on the original-sized surface is * replaced with a 2x2 of samples with the following arrangement: * * sample 0 sample 2 * sample 1 sample 3" * * Thus, when sampling from a multisampled texture, it behaves as * though the layout in memory for (x,y,sample) is: * * (0,0,0) (0,0,2) (1,0,0) (1,0,2) * (0,0,1) (0,0,3) (1,0,1) (1,0,3) * * (0,1,0) (0,1,2) (1,1,0) (1,1,2) * (0,1,1) (0,1,3) (1,1,1) (1,1,3) * * However, the actual layout of multisampled data in memory is: * * (0,0,0) (1,0,0) (0,0,1) (1,0,1) * (0,1,0) (1,1,0) (0,1,1) (1,1,1) * * (0,0,2) (1,0,2) (0,0,3) (1,0,3) * (0,1,2) (1,1,2) (0,1,3) (1,1,3) * * This pattern repeats for each 2x2 pixel block. * * As a result, when calculating the size of our 4-sample buffer for * an odd width or height, we have to align before scaling up because * sample 3 is in that bottom right 2x2 block. */ switch (num_samples) { case 4: width = ALIGN(width, 2) * 2; height = ALIGN(height, 2) * 2; break; case 8: width = ALIGN(width, 2) * 4; height = ALIGN(height, 2) * 2; break; default: /* num_samples should already have been quantized to 0, 1, 4, or * 8. */ assert(false); } } else { /* Non-interleaved */ depth = num_samples; } } mt = intel_miptree_create(intel, GL_TEXTURE_2D, format, 0, 0, width, height, depth, true, num_samples, msaa_layout); if (!mt) goto fail; if (intel->vtbl.is_hiz_depth_format(intel, format)) { ok = intel_miptree_alloc_hiz(intel, mt, num_samples); if (!ok) goto fail; } if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) { ok = intel_miptree_alloc_mcs(intel, mt, num_samples); if (!ok) goto fail; } mt->singlesample_width0 = singlesample_width; mt->singlesample_height0 = singlesample_height; return mt; fail: intel_miptree_release(&mt); return NULL; } void intel_miptree_reference(struct intel_mipmap_tree **dst, struct intel_mipmap_tree *src) { if (*dst == src) return; intel_miptree_release(dst); if (src) { src->refcount++; DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount); } *dst = src; } void intel_miptree_release(struct intel_mipmap_tree **mt) { if (!*mt) return; DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1); if (--(*mt)->refcount <= 0) { GLuint i; DBG("%s deleting %p\n", __FUNCTION__, *mt); intel_region_release(&((*mt)->region)); intel_miptree_release(&(*mt)->stencil_mt); intel_miptree_release(&(*mt)->hiz_mt); intel_miptree_release(&(*mt)->mcs_mt); intel_miptree_release(&(*mt)->singlesample_mt); intel_resolve_map_clear(&(*mt)->hiz_map); for (i = 0; i < MAX_TEXTURE_LEVELS; i++) { free((*mt)->level[i].slice); } free(*mt); } *mt = NULL; } void intel_miptree_get_dimensions_for_image(struct gl_texture_image *image, int *width, int *height, int *depth) { switch (image->TexObject->Target) { case GL_TEXTURE_1D_ARRAY: *width = image->Width; *height = 1; *depth = image->Height; break; default: *width = image->Width; *height = image->Height; *depth = image->Depth; break; } } /** * Can the image be pulled into a unified mipmap tree? This mirrors * the completeness test in a lot of ways. * * Not sure whether I want to pass gl_texture_image here. */ bool intel_miptree_match_image(struct intel_mipmap_tree *mt, struct gl_texture_image *image) { struct intel_texture_image *intelImage = intel_texture_image(image); GLuint level = intelImage->base.Base.Level; int width, height, depth; if (target_to_target(image->TexObject->Target) != mt->target) return false; if (image->TexFormat != mt->format && !(image->TexFormat == MESA_FORMAT_S8_Z24 && mt->format == MESA_FORMAT_X8_Z24 && mt->stencil_mt)) { return false; } intel_miptree_get_dimensions_for_image(image, &width, &height, &depth); if (mt->target == GL_TEXTURE_CUBE_MAP) depth = 6; /* Test image dimensions against the base level image adjusted for * minification. This will also catch images not present in the * tree, changed targets, etc. */ if (width != mt->level[level].width || height != mt->level[level].height || depth != mt->level[level].depth) return false; return true; } void intel_miptree_set_level_info(struct intel_mipmap_tree *mt, GLuint level, GLuint x, GLuint y, GLuint w, GLuint h, GLuint d) { mt->level[level].width = w; mt->level[level].height = h; mt->level[level].depth = d; mt->level[level].level_x = x; mt->level[level].level_y = y; DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __FUNCTION__, level, w, h, d, x, y); assert(mt->level[level].slice == NULL); mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice)); mt->level[level].slice[0].x_offset = mt->level[level].level_x; mt->level[level].slice[0].y_offset = mt->level[level].level_y; } void intel_miptree_set_image_offset(struct intel_mipmap_tree *mt, GLuint level, GLuint img, GLuint x, GLuint y) { if (img == 0 && level == 0) assert(x == 0 && y == 0); assert(img < mt->level[level].depth); mt->level[level].slice[img].x_offset = mt->level[level].level_x + x; mt->level[level].slice[img].y_offset = mt->level[level].level_y + y; DBG("%s level %d img %d pos %d,%d\n", __FUNCTION__, level, img, mt->level[level].slice[img].x_offset, mt->level[level].slice[img].y_offset); } /** * For cube map textures, either the \c face parameter can be used, of course, * or the cube face can be interpreted as a depth layer and the \c layer * parameter used. */ void intel_miptree_get_image_offset(struct intel_mipmap_tree *mt, GLuint level, GLuint face, GLuint layer, GLuint *x, GLuint *y) { int slice; if (face > 0) { assert(mt->target == GL_TEXTURE_CUBE_MAP); assert(face < 6); assert(layer == 0); slice = face; } else { /* This branch may be taken even if the texture target is a cube map. In * that case, the caller chose to interpret each cube face as a layer. */ assert(face == 0); slice = layer; } *x = mt->level[level].slice[slice].x_offset; *y = mt->level[level].slice[slice].y_offset; } static void intel_miptree_copy_slice(struct intel_context *intel, struct intel_mipmap_tree *dst_mt, struct intel_mipmap_tree *src_mt, int level, int face, int depth) { gl_format format = src_mt->format; uint32_t width = src_mt->level[level].width; uint32_t height = src_mt->level[level].height; assert(depth < src_mt->level[level].depth); if (dst_mt->compressed) { height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h; width = ALIGN(width, dst_mt->align_w); } uint32_t dst_x, dst_y, src_x, src_y; intel_miptree_get_image_offset(dst_mt, level, face, depth, &dst_x, &dst_y); intel_miptree_get_image_offset(src_mt, level, face, depth, &src_x, &src_y); DBG("validate blit mt %p %d,%d/%d -> mt %p %d,%d/%d (%dx%d)\n", src_mt, src_x, src_y, src_mt->region->pitch * src_mt->region->cpp, dst_mt, dst_x, dst_y, dst_mt->region->pitch * dst_mt->region->cpp, width, height); if (!intelEmitCopyBlit(intel, dst_mt->region->cpp, src_mt->region->pitch, src_mt->region->bo, 0, src_mt->region->tiling, dst_mt->region->pitch, dst_mt->region->bo, 0, dst_mt->region->tiling, src_x, src_y, dst_x, dst_y, width, height, GL_COPY)) { fallback_debug("miptree validate blit for %s failed\n", _mesa_get_format_name(format)); void *dst = intel_region_map(intel, dst_mt->region, GL_MAP_WRITE_BIT); void *src = intel_region_map(intel, src_mt->region, GL_MAP_READ_BIT); _mesa_copy_rect(dst, dst_mt->cpp, dst_mt->region->pitch, dst_x, dst_y, width, height, src, src_mt->region->pitch, src_x, src_y); intel_region_unmap(intel, dst_mt->region); intel_region_unmap(intel, src_mt->region); } if (src_mt->stencil_mt) { intel_miptree_copy_slice(intel, dst_mt->stencil_mt, src_mt->stencil_mt, level, face, depth); } } /** * Copies the image's current data to the given miptree, and associates that * miptree with the image. */ void intel_miptree_copy_teximage(struct intel_context *intel, struct intel_texture_image *intelImage, struct intel_mipmap_tree *dst_mt) { struct intel_mipmap_tree *src_mt = intelImage->mt; int level = intelImage->base.Base.Level; int face = intelImage->base.Base.Face; GLuint depth = intelImage->base.Base.Depth; for (int slice = 0; slice < depth; slice++) { intel_miptree_copy_slice(intel, dst_mt, src_mt, level, face, slice); } intel_miptree_reference(&intelImage->mt, dst_mt); } bool intel_miptree_alloc_mcs(struct intel_context *intel, struct intel_mipmap_tree *mt, GLuint num_samples) { assert(mt->mcs_mt == NULL); assert(intel->gen >= 7); /* MCS only used on Gen7+ */ /* Choose the correct format for the MCS buffer. All that really matters * is that we allocate the right buffer size, since we'll always be * accessing this miptree using MCS-specific hardware mechanisms, which * infer the correct format based on num_samples. */ gl_format format; switch (num_samples) { case 4: /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for * each sample). */ format = MESA_FORMAT_R8; break; case 8: /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits * for each sample, plus 8 padding bits). */ format = MESA_FORMAT_R_UINT32; break; default: assert(!"Unrecognized sample count in intel_miptree_alloc_mcs"); break; }; /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address": * * "The MCS surface must be stored as Tile Y." * * We set msaa_format to INTEL_MSAA_LAYOUT_CMS to force * intel_miptree_create() to use Y tiling. msaa_format is otherwise * ignored for the MCS miptree. */ mt->mcs_mt = intel_miptree_create(intel, mt->target, format, mt->first_level, mt->last_level, mt->width0, mt->height0, mt->depth0, true, 0 /* num_samples */, INTEL_MSAA_LAYOUT_CMS); /* From the Ivy Bridge PRM, Vol 2 Part 1 p326: * * When MCS buffer is enabled and bound to MSRT, it is required that it * is cleared prior to any rendering. * * Since we don't use the MCS buffer for any purpose other than rendering, * it makes sense to just clear it immediately upon allocation. * * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff. */ void *data = intel_region_map(intel, mt->mcs_mt->region, 0); memset(data, 0xff, mt->mcs_mt->region->bo->size); intel_region_unmap(intel, mt->mcs_mt->region); return mt->mcs_mt; } bool intel_miptree_alloc_hiz(struct intel_context *intel, struct intel_mipmap_tree *mt, GLuint num_samples) { assert(mt->hiz_mt == NULL); /* MSAA HiZ surfaces always use IMS layout. */ mt->hiz_mt = intel_miptree_create(intel, mt->target, MESA_FORMAT_X8_Z24, mt->first_level, mt->last_level, mt->width0, mt->height0, mt->depth0, true, num_samples, INTEL_MSAA_LAYOUT_IMS); if (!mt->hiz_mt) return false; /* Mark that all slices need a HiZ resolve. */ struct intel_resolve_map *head = &mt->hiz_map; for (int level = mt->first_level; level <= mt->last_level; ++level) { for (int layer = 0; layer < mt->level[level].depth; ++layer) { head->next = malloc(sizeof(*head->next)); head->next->prev = head; head->next->next = NULL; head = head->next; head->level = level; head->layer = layer; head->need = GEN6_HIZ_OP_HIZ_RESOLVE; } } return true; } void intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { intel_miptree_check_level_layer(mt, level, layer); if (!mt->hiz_mt) return; intel_resolve_map_set(&mt->hiz_map, level, layer, GEN6_HIZ_OP_HIZ_RESOLVE); } void intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { intel_miptree_check_level_layer(mt, level, layer); if (!mt->hiz_mt) return; intel_resolve_map_set(&mt->hiz_map, level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE); } static bool intel_miptree_slice_resolve(struct intel_context *intel, struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer, enum gen6_hiz_op need) { intel_miptree_check_level_layer(mt, level, layer); struct intel_resolve_map *item = intel_resolve_map_get(&mt->hiz_map, level, layer); if (!item || item->need != need) return false; intel_hiz_exec(intel, mt, level, layer, need); intel_resolve_map_remove(item); return true; } bool intel_miptree_slice_resolve_hiz(struct intel_context *intel, struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { return intel_miptree_slice_resolve(intel, mt, level, layer, GEN6_HIZ_OP_HIZ_RESOLVE); } bool intel_miptree_slice_resolve_depth(struct intel_context *intel, struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { return intel_miptree_slice_resolve(intel, mt, level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE); } static bool intel_miptree_all_slices_resolve(struct intel_context *intel, struct intel_mipmap_tree *mt, enum gen6_hiz_op need) { bool did_resolve = false; struct intel_resolve_map *i, *next; for (i = mt->hiz_map.next; i; i = next) { next = i->next; if (i->need != need) continue; intel_hiz_exec(intel, mt, i->level, i->layer, need); intel_resolve_map_remove(i); did_resolve = true; } return did_resolve; } bool intel_miptree_all_slices_resolve_hiz(struct intel_context *intel, struct intel_mipmap_tree *mt) { return intel_miptree_all_slices_resolve(intel, mt, GEN6_HIZ_OP_HIZ_RESOLVE); } bool intel_miptree_all_slices_resolve_depth(struct intel_context *intel, struct intel_mipmap_tree *mt) { return intel_miptree_all_slices_resolve(intel, mt, GEN6_HIZ_OP_DEPTH_RESOLVE); } static void intel_miptree_updownsample(struct intel_context *intel, struct intel_mipmap_tree *src, struct intel_mipmap_tree *dst, unsigned width, unsigned height) { #ifndef I915 int src_x0 = 0; int src_y0 = 0; int dst_x0 = 0; int dst_y0 = 0; intel_miptree_slice_resolve_depth(intel, src, 0, 0); intel_miptree_slice_resolve_depth(intel, dst, 0, 0); brw_blorp_blit_miptrees(intel, src, 0 /* level */, 0 /* layer */, dst, 0 /* level */, 0 /* layer */, src_x0, src_y0, dst_x0, dst_y0, width, height, false, false /*mirror x, y*/); if (src->stencil_mt) { brw_blorp_blit_miptrees(intel, src->stencil_mt, 0 /* level */, 0 /* layer */, dst->stencil_mt, 0 /* level */, 0 /* layer */, src_x0, src_y0, dst_x0, dst_y0, width, height, false, false /*mirror x, y*/); } #endif /* I915 */ } static void assert_is_flat(struct intel_mipmap_tree *mt) { assert(mt->target == GL_TEXTURE_2D); assert(mt->first_level == 0); assert(mt->last_level == 0); } /** * \brief Downsample from mt to mt->singlesample_mt. * * If the miptree needs no downsample, then skip. */ void intel_miptree_downsample(struct intel_context *intel, struct intel_mipmap_tree *mt) { /* Only flat, renderbuffer-like miptrees are supported. */ assert_is_flat(mt); if (!mt->need_downsample) return; intel_miptree_updownsample(intel, mt, mt->singlesample_mt, mt->singlesample_mt->width0, mt->singlesample_mt->height0); mt->need_downsample = false; /* Strictly speaking, after a downsample on a depth miptree, a hiz * resolve is needed on the singlesample miptree. However, since the * singlesample miptree is never rendered to, the hiz resolve will never * occur. Therefore we do not mark the needed hiz resolve after * downsampling. */ } /** * \brief Upsample from mt->singlesample_mt to mt. * * The upsample is done unconditionally. */ void intel_miptree_upsample(struct intel_context *intel, struct intel_mipmap_tree *mt) { /* Only flat, renderbuffer-like miptrees are supported. */ assert_is_flat(mt); assert(!mt->need_downsample); intel_miptree_updownsample(intel, mt->singlesample_mt, mt, mt->singlesample_mt->width0, mt->singlesample_mt->height0); intel_miptree_slice_set_needs_hiz_resolve(mt, 0, 0); } static void intel_miptree_map_gtt(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { unsigned int bw, bh; void *base; unsigned int image_x, image_y; int x = map->x; int y = map->y; /* For compressed formats, the stride is the number of bytes per * row of blocks. intel_miptree_get_image_offset() already does * the divide. */ _mesa_get_format_block_size(mt->format, &bw, &bh); assert(y % bh == 0); y /= bh; base = intel_region_map(intel, mt->region, map->mode); if (base == NULL) map->ptr = NULL; else { /* Note that in the case of cube maps, the caller must have passed the * slice number referencing the face. */ intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); x += image_x; y += image_y; map->stride = mt->region->pitch * mt->cpp; map->ptr = base + y * map->stride + x * mt->cpp; } DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, _mesa_get_format_name(mt->format), x, y, map->ptr, map->stride); } static void intel_miptree_unmap_gtt(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { intel_region_unmap(intel, mt->region); } static void intel_miptree_map_blit(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { unsigned int image_x, image_y; int x = map->x; int y = map->y; int ret; /* The blitter requires the pitch to be aligned to 4. */ map->stride = ALIGN(map->w * mt->region->cpp, 4); map->bo = drm_intel_bo_alloc(intel->bufmgr, "intel_miptree_map_blit() temp", map->stride * map->h, 4096); if (!map->bo) { fprintf(stderr, "Failed to allocate blit temporary\n"); goto fail; } intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); x += image_x; y += image_y; if (!intelEmitCopyBlit(intel, mt->region->cpp, mt->region->pitch, mt->region->bo, 0, mt->region->tiling, map->stride / mt->region->cpp, map->bo, 0, I915_TILING_NONE, x, y, 0, 0, map->w, map->h, GL_COPY)) { fprintf(stderr, "Failed to blit\n"); goto fail; } intel_batchbuffer_flush(intel); ret = drm_intel_bo_map(map->bo, (map->mode & GL_MAP_WRITE_BIT) != 0); if (ret) { fprintf(stderr, "Failed to map blit temporary\n"); goto fail; } map->ptr = map->bo->virtual; DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, _mesa_get_format_name(mt->format), x, y, map->ptr, map->stride); return; fail: drm_intel_bo_unreference(map->bo); map->ptr = NULL; map->stride = 0; } static void intel_miptree_unmap_blit(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { assert(!(map->mode & GL_MAP_WRITE_BIT)); drm_intel_bo_unmap(map->bo); drm_intel_bo_unreference(map->bo); } static void intel_miptree_map_s8(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { map->stride = map->w; map->buffer = map->ptr = malloc(map->stride * map->h); if (!map->buffer) return; /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless * invalidate is set, since we'll be writing the whole rectangle from our * temporary buffer back out. */ if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { uint8_t *untiled_s8_map = map->ptr; uint8_t *tiled_s8_map = intel_region_map(intel, mt->region, GL_MAP_READ_BIT); unsigned int image_x, image_y; intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { ptrdiff_t offset = intel_offset_S8(mt->region->pitch, x + image_x + map->x, y + image_y + map->y, intel->has_swizzling); untiled_s8_map[y * map->w + x] = tiled_s8_map[offset]; } } intel_region_unmap(intel, mt->region); DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, map->x + image_x, map->y + image_y, map->ptr, map->stride); } else { DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, map->ptr, map->stride); } } static void intel_miptree_unmap_s8(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { if (map->mode & GL_MAP_WRITE_BIT) { unsigned int image_x, image_y; uint8_t *untiled_s8_map = map->ptr; uint8_t *tiled_s8_map = intel_region_map(intel, mt->region, map->mode); intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { ptrdiff_t offset = intel_offset_S8(mt->region->pitch, x + map->x, y + map->y, intel->has_swizzling); tiled_s8_map[offset] = untiled_s8_map[y * map->w + x]; } } intel_region_unmap(intel, mt->region); } free(map->buffer); } static void intel_miptree_map_etc1(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { /* For justification of these invariants, * see intel_mipmap_tree:wraps_etc1. */ assert(mt->wraps_etc1); assert(mt->format == MESA_FORMAT_RGBX8888_REV); /* From the GL_OES_compressed_ETC1_RGB8_texture spec: * INVALID_OPERATION is generated by CompressedTexSubImage2D, * TexSubImage2D, or CopyTexSubImage2D if the texture image <level> * bound to <target> has internal format ETC1_RGB8_OES. * * This implies that intel_miptree_map_etc1() can only be called from * glCompressedTexImage2D, and hence the assertions below hold. */ assert(map->mode & GL_MAP_WRITE_BIT); assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT); assert(map->x == 0); assert(map->y == 0); /* Each ETC1 block contains 4x4 pixels in 8 bytes. */ map->stride = 2 * map->w; map->buffer = map->ptr = malloc(map->stride * map->h); } static void intel_miptree_unmap_etc1(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { uint32_t image_x; uint32_t image_y; intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); uint8_t *xbgr = intel_region_map(intel, mt->region, map->mode) + image_y * mt->region->pitch * mt->region->cpp + image_x * mt->region->cpp; _mesa_etc1_unpack_rgba8888(xbgr, mt->region->pitch * mt->region->cpp, map->ptr, map->stride, map->w, map->h); intel_region_unmap(intel, mt->region); free(map->buffer); } /** * Mapping function for packed depth/stencil miptrees backed by real separate * miptrees for depth and stencil. * * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer * separate from the depth buffer. Yet at the GL API level, we have to expose * packed depth/stencil textures and FBO attachments, and Mesa core expects to * be able to map that memory for texture storage and glReadPixels-type * operations. We give Mesa core that access by mallocing a temporary and * copying the data between the actual backing store and the temporary. */ static void intel_miptree_map_depthstencil(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { struct intel_mipmap_tree *z_mt = mt; struct intel_mipmap_tree *s_mt = mt->stencil_mt; bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT; int packed_bpp = map_z32f_x24s8 ? 8 : 4; map->stride = map->w * packed_bpp; map->buffer = map->ptr = malloc(map->stride * map->h); if (!map->buffer) return; /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless * invalidate is set, since we'll be writing the whole rectangle from our * temporary buffer back out. */ if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { uint32_t *packed_map = map->ptr; uint8_t *s_map = intel_region_map(intel, s_mt->region, GL_MAP_READ_BIT); uint32_t *z_map = intel_region_map(intel, z_mt->region, GL_MAP_READ_BIT); unsigned int s_image_x, s_image_y; unsigned int z_image_x, z_image_y; intel_miptree_get_image_offset(s_mt, level, 0, slice, &s_image_x, &s_image_y); intel_miptree_get_image_offset(z_mt, level, 0, slice, &z_image_x, &z_image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { int map_x = map->x + x, map_y = map->y + y; ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch, map_x + s_image_x, map_y + s_image_y, intel->has_swizzling); ptrdiff_t z_offset = ((map_y + z_image_y) * z_mt->region->pitch + (map_x + z_image_x)); uint8_t s = s_map[s_offset]; uint32_t z = z_map[z_offset]; if (map_z32f_x24s8) { packed_map[(y * map->w + x) * 2 + 0] = z; packed_map[(y * map->w + x) * 2 + 1] = s; } else { packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff); } } } intel_region_unmap(intel, s_mt->region); intel_region_unmap(intel, z_mt->region); DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, z_mt, map->x + z_image_x, map->y + z_image_y, s_mt, map->x + s_image_x, map->y + s_image_y, map->ptr, map->stride); } else { DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, map->ptr, map->stride); } } static void intel_miptree_unmap_depthstencil(struct intel_context *intel, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { struct intel_mipmap_tree *z_mt = mt; struct intel_mipmap_tree *s_mt = mt->stencil_mt; bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT; if (map->mode & GL_MAP_WRITE_BIT) { uint32_t *packed_map = map->ptr; uint8_t *s_map = intel_region_map(intel, s_mt->region, map->mode); uint32_t *z_map = intel_region_map(intel, z_mt->region, map->mode); unsigned int s_image_x, s_image_y; unsigned int z_image_x, z_image_y; intel_miptree_get_image_offset(s_mt, level, 0, slice, &s_image_x, &s_image_y); intel_miptree_get_image_offset(z_mt, level, 0, slice, &z_image_x, &z_image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch, x + s_image_x + map->x, y + s_image_y + map->y, intel->has_swizzling); ptrdiff_t z_offset = ((y + z_image_y) * z_mt->region->pitch + (x + z_image_x)); if (map_z32f_x24s8) { z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0]; s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1]; } else { uint32_t packed = packed_map[y * map->w + x]; s_map[s_offset] = packed >> 24; z_map[z_offset] = packed; } } } intel_region_unmap(intel, s_mt->region); intel_region_unmap(intel, z_mt->region); DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, z_mt, _mesa_get_format_name(z_mt->format), map->x + z_image_x, map->y + z_image_y, s_mt, map->x + s_image_x, map->y + s_image_y, map->ptr, map->stride); } free(map->buffer); } /** * Create and attach a map to the miptree at (level, slice). Return the * attached map. */ static struct intel_miptree_map* intel_miptree_attach_map(struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice, unsigned int x, unsigned int y, unsigned int w, unsigned int h, GLbitfield mode) { struct intel_miptree_map *map = calloc(1, sizeof(*map)); if (!map) return NULL; assert(mt->level[level].slice[slice].map == NULL); mt->level[level].slice[slice].map = map; map->mode = mode; map->x = x; map->y = y; map->w = w; map->h = h; return map; } /** * Release the map at (level, slice). */ static void intel_miptree_release_map(struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { struct intel_miptree_map **map; map = &mt->level[level].slice[slice].map; free(*map); *map = NULL; } static void intel_miptree_map_singlesample(struct intel_context *intel, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice, unsigned int x, unsigned int y, unsigned int w, unsigned int h, GLbitfield mode, void **out_ptr, int *out_stride) { struct intel_miptree_map *map; assert(mt->num_samples <= 1); map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode); if (!map){ *out_ptr = NULL; *out_stride = 0; return; } intel_miptree_slice_resolve_depth(intel, mt, level, slice); if (map->mode & GL_MAP_WRITE_BIT) { intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice); } if (mt->format == MESA_FORMAT_S8) { intel_miptree_map_s8(intel, mt, map, level, slice); } else if (mt->wraps_etc1) { intel_miptree_map_etc1(intel, mt, map, level, slice); } else if (mt->stencil_mt) { intel_miptree_map_depthstencil(intel, mt, map, level, slice); } else if (intel->has_llc && !(mode & GL_MAP_WRITE_BIT) && !mt->compressed && mt->region->tiling == I915_TILING_X) { intel_miptree_map_blit(intel, mt, map, level, slice); } else { intel_miptree_map_gtt(intel, mt, map, level, slice); } *out_ptr = map->ptr; *out_stride = map->stride; if (map->ptr == NULL) intel_miptree_release_map(mt, level, slice); } static void intel_miptree_unmap_singlesample(struct intel_context *intel, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { struct intel_miptree_map *map = mt->level[level].slice[slice].map; assert(mt->num_samples <= 1); if (!map) return; DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__, mt, _mesa_get_format_name(mt->format), level, slice); if (mt->format == MESA_FORMAT_S8) { intel_miptree_unmap_s8(intel, mt, map, level, slice); } else if (mt->wraps_etc1) { intel_miptree_unmap_etc1(intel, mt, map, level, slice); } else if (mt->stencil_mt) { intel_miptree_unmap_depthstencil(intel, mt, map, level, slice); } else if (map->bo) { intel_miptree_unmap_blit(intel, mt, map, level, slice); } else { intel_miptree_unmap_gtt(intel, mt, map, level, slice); } intel_miptree_release_map(mt, level, slice); } static void intel_miptree_map_multisample(struct intel_context *intel, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice, unsigned int x, unsigned int y, unsigned int w, unsigned int h, GLbitfield mode, void **out_ptr, int *out_stride) { struct intel_miptree_map *map; assert(mt->num_samples > 1); /* Only flat, renderbuffer-like miptrees are supported. */ if (mt->target != GL_TEXTURE_2D || mt->first_level != 0 || mt->last_level != 0) { _mesa_problem(&intel->ctx, "attempt to map a multisample miptree for " "which (target, first_level, last_level != " "(GL_TEXTURE_2D, 0, 0)"); goto fail; } map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode); if (!map) goto fail; if (!mt->singlesample_mt) { mt->singlesample_mt = intel_miptree_create_for_renderbuffer(intel, mt->format, mt->singlesample_width0, mt->singlesample_height0, 0 /*num_samples*/); if (!mt->singlesample_mt) goto fail; map->singlesample_mt_is_tmp = true; mt->need_downsample = true; } intel_miptree_downsample(intel, mt); intel_miptree_map_singlesample(intel, mt->singlesample_mt, level, slice, x, y, w, h, mode, out_ptr, out_stride); return; fail: intel_miptree_release_map(mt, level, slice); *out_ptr = NULL; *out_stride = 0; } static void intel_miptree_unmap_multisample(struct intel_context *intel, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { struct intel_miptree_map *map = mt->level[level].slice[slice].map; assert(mt->num_samples > 1); if (!map) return; intel_miptree_unmap_singlesample(intel, mt->singlesample_mt, level, slice); mt->need_downsample = false; if (map->mode & GL_MAP_WRITE_BIT) intel_miptree_upsample(intel, mt); if (map->singlesample_mt_is_tmp) intel_miptree_release(&mt->singlesample_mt); intel_miptree_release_map(mt, level, slice); } void intel_miptree_map(struct intel_context *intel, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice, unsigned int x, unsigned int y, unsigned int w, unsigned int h, GLbitfield mode, void **out_ptr, int *out_stride) { if (mt->num_samples <= 1) intel_miptree_map_singlesample(intel, mt, level, slice, x, y, w, h, mode, out_ptr, out_stride); else intel_miptree_map_multisample(intel, mt, level, slice, x, y, w, h, mode, out_ptr, out_stride); } void intel_miptree_unmap(struct intel_context *intel, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { if (mt->num_samples <= 1) intel_miptree_unmap_singlesample(intel, mt, level, slice); else intel_miptree_unmap_multisample(intel, mt, level, slice); }